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Audio classification is an important problem in signal processing and pattern recognition with potential
applications in audio retrieval, documentation and scene analysis. Common to general signal classification
systems, it involves both training and classification (or testing) stages. The performance of an audio
classification system, such as its complexity and classification accuracy, depends highly on the choice of
the signal features and the classifiers. Several features have been widely exploited in existing methods,
such as the mel-frequency cepstrum coefficients (MFCCs), line spectral frequencies (LSF) and short time
energy (STM). In this paper, instead of using these well-established features, we explore the potential of
sparse features, derived from the dictionary of signal atoms using sparse coding based on e.g. orthogonal
matching pursuit (OMP), where the atoms are adapted directly from audio training data using the
K-SVD dictionary learning algorithm. To reduce the computational complexity, we propose to perform
pooling and sampling operations on the sparse coefficients. Such operations also help to maintain a
unified dimension of the signal features, regardless of the various lengths of the training and testing
signals. Using the popular support vector machine (SVM) as the classifier, we examine the performance
of the proposed classification system for two binary classification problems, namely speech–music
classification and male–female speech discrimination and a multi-class problem, speaker identification.
The experimental results show that the sparse (max-pooled and average-pooled) coefficients perform
better than the classical MFCCs features, in particular, for noisy audio data.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Audio signals acquired from an uncontrolled natural environ-
ment have different types of contents e.g. speech, music and en-
vironmental sounds. For example, in radio broadcast system, a
mixture of different types of sounds is usually encountered such
as speech for news broadcasting, music for song broadcasts or a
mixture of both. In content based retrieval system, different con-
tents such as voiced, unvoiced speech and music are required to be
distinguished from each other. Different encoders related to differ-
ent types of contents are used. When broadcasting speech, only
speech encoder should be activated while disabling encoders of all
other content types. This helps to reduce the power consumption
of the system without overloading it with simultaneous activation
of other encoders and to reduce computational costs. Such a con-
tent based system requires the signal classification system for its
front-end [1]. Audio classification is also useful for identifying the
surrounding environments of a person, e.g., in a restaurant, near
a sea-shore or in a shop [2]. Another example for the application
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of audio classification system is to find and track a specific audio
document from an archive of piles of audio recordings. All of these
exemplar applications require a powerful audio classification sys-
tem.

Signal classification is in general a two-step process. First signal
features are extracted from training data and then used to train a
classifier. Second the trained classifier is used to discriminate the
test signals based on their features. A lot of research in this area
has been conducted in last two decades with the methods pro-
posed mainly differing in the types of features and classification
techniques used [3–5].

Various time, frequency and time–frequency representations
have been used in the literature for generating audio features. For
example, zero crossing rate (ZCR) [1,6] and short-time energy (STE)
[7,8], together with their variations are the low level time domain
features that have been used extensively. ZCR measures the change
in algebraic signs of the signal amplitudes in a specified window.
The contour waveforms of speech ZCR distribution show abrupt
change in the amplitude as opposed to music contours. This dif-
ference of contours makes ZCR a discernible feature for speech
and music discrimination. STE is another time domain feature that
uses the signal energy to distinguish one type of signal from an-
other. The frequency domain features that have been used include
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Fig. 1. Block diagram of the proposed audio signal classification system.
line spectral frequencies (LSF) [9], 4 Hz modulation energy, spectral
centroid, spectral flux [10] and mel-frequency cepstral coefficients
(MFCCs) [5,8]. As an audio signal has different frequency compo-
nents, these features decompose the signal into its constituent fre-
quency components/bands and use energy corresponding to each
frequency band as a measure of discriminating feature. Some other
features are based on psychoacoustic principles and human audi-
tory systems [11], including perceptual loudness, roughness [12],
and sharpness of the signal, as well as auditory filter-bank tempo-
ral envelops (AFTE) [11].

The performance of an audio classification system is depen-
dent not only on the features used but also on the selection of
an appropriate classifier. Hence the second stage in audio classifi-
cation involves the selection of the type of classifiers. A number
of different classifiers have been used for audio signal discrimina-
tion and classification including Gaussian mixture models (GMM)
[1,13], K nearest neighbors (KNN) [10,9,14], neural network (NN)
[15,16], hidden Markov model (HMM) [7,17] and support vector
machine (SVM) [18] along with their variations.

In this paper, different from the majority of the existing meth-
ods, we propose to use a new type of features for audio classifica-
tion, which is obtained by sparse coding of signals with a variety
of pooling techniques. Sparse coding is an emerging technique in
signal processing that aims to express a signal as a linear combi-
nation of a small number of signal components (also referred to as
atoms or codewords) from a dictionary (i.e. the collection of the
atoms).

Sparse representations have been successfully employed in
many applications like denoising [19], coding [20] and source sep-
aration [21]. For signal encoding, sparse representation helps to
reduce the encoding complexity of a signal and decrease the band-
width requirement for its transmission. For denoising [19], basis
vectors of the transformation matrix representing noise are dif-
ferent from those representing the actual signal, hence the coeffi-
cients showing the activity of noise basis vectors are different from
those of actual signal. However less attention has been paid in the
literature to their use for audio signal classification. The sparse
coefficients have a high potential to be used as signal features
for classification due to their discriminating property. Recently,
[22] and [2] used sparse coefficients for drums and environmental
sounds classification respectively. They named those coefficients
MP-based features as matching pursuit (MP) algorithm was used
to calculate them. Semi-supervised learning algorithms have also
been used with sparsity constraints for audio classification in [23],
a self-taught learning strategy in a semi-supervised fashion, whose
complexity is of order O (L3) for L non-zero coefficients. The algo-
rithm [24] employs deep belief networks for unsupervised learning
of sparse coefficients. Dictionary learning based on high level au-
dio features has been used for audio classification in a supervised
fashion in [25].

Many signals are either naturally sparse, or they can be made
sparse in some specific domain by using some predefined trans-
forms such as the discrete Fourier transform (DFT) or the discrete
cosine transform (DCT). Apart from using predefined transforms,
learning transform matrix directly from training data has also been
proposed recently [26,19,20]. This inherent or manufactured spar-
sity of audio signals will lead potentially to a lower computational
complexity and less demand of the resources.
In this paper, based upon the discriminating properties of
sparse coefficients, we propose an audio classification system
where sparse coefficients are used as audio features with the appli-
cation of the state of the art SVM classifier. The K-SVD dictionary
learning algorithm [19] is used to learn a dictionary from train-
ing signals. The learnt dictionary is used to find sparse codes of
training and test signals. The standard practice for training the
classifier is to use training vectors of the same dimensions. Since
in our case, different sizes of training and testing signals result
in training and testing coefficient vectors with different dimen-
sions. Hence we introduce novel max pooled and average pooled
sparse coefficients for audio signal classification which not only
solve the issue due to the mismatched dimensions but also select
only those dictionary atoms that have a maximum or high con-
tribution towards signal representations. They serve to summarize
a coefficient matrix representing a signal to a vector that helps
to drastically decrease computational complexity and memory re-
quirements. Summarizing the matrix to a vector may lose some
important signal information essential for discrimination. Hence
we introduce sampled sparse as well as sampled mel-frequency
coefficients (MFCCs) for the classification system. We evaluate the
discriminating power of pooled and sampled sparse coefficients by
comparing them with the sampled MFCCs particularly under noisy
conditions.

This paper has been divided into the following sections. Sec-
tion 2 discusses the whole audio classification system in detail in-
cluding K-SVD algorithm for dictionary learning, orthogonal match-
ing pursuit (OMP) for sparse coding and various pooling and sam-
pling techniques. Section 3 presents the experiments performed
together with the analysis of results. The conclusion is given in
Section 4.

2. The proposed audio signal classification system

A block diagram of the proposed audio classification system is
shown in Fig. 1. Dictionaries are learned from the training signals
and used to find sparse coefficients of the training and the testing
signals. Pooling/sampling is performed on those sparse coefficients
to reduce the large amount of data to an appropriate level and to
give the training vectors a unified length. More importantly, it is
used to get the compact representation of features which are in-
variant to local transformations. These pooled/sampled coefficients
are then used as features and fed to the SVM classifier [18] for
audio classification task.

2.1. Dictionary learning of training signals

An important element in sparse coding is the design of an ap-
propriate dictionary whose atoms are used to represent a signal
sparsely. Dictionary is a transformation matrix that is used to rep-
resent a signal in a specific domain, e.g. the frequency domain,
which can be obtained by a predefined function such as the DCT.
Unlike other approaches [2] in which a predefined dictionary is
used for sparse coding, we use a dictionary learning algorithm that
adapts to the internal structure of the training signals under spe-
cial constraints, e.g. sparsity.

The objective function for dictionary learning of an input signal
Y ∈ Rn×m with sparsity constraint is given as

‖Y − AX‖2
F s.t. ∀q ‖xq‖0 � T0 (1)
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Fig. 2. Dictionary learning of training audio signals. Class specific time domain sig-
nals yc are first converted to matrix Yc and then used to learn a class specific
dictionary Ac .

where A ∈ Rn×l is a dictionary matrix, X ∈ Rl×m is a coefficient
matrix with xq being its q-th column vector, T0 is a small positive
value indicating the sparsity of vector xq and ‖ · ‖0 is the l0 norm
counting the number of non-zero values in vector xq . ‖·‖F denotes
the Frobenius norm.

Dictionary learning is often achieved with a two-step iterative
process. In the first step, given input signal Y and an initial dic-
tionary matrix A, sparse coefficient matrix X containing xq vectors
is calculated. In the second step, given the input signal matrix Y
and coefficients matrix X calculated in the previous step, dictio-
nary vectors (i.e. atoms) are updated. These two steps are iterated
until the most appropriate dictionary matrix is found in the sense
that a predefined cost function such as (1) is optimized.

An increased research interest in the area of dictionary learn-
ing has led to some state of the art algorithms like maximum
likelihood (ML) based methods [27], method of optimal directions
(MOD) [28], maximum a-posteriori probability (MAP) [26], K-SVD
[19] and the majorization minimization (MM) [20] methods. As
demonstrated in [20], the K-SVD algorithm produces more accu-
rate dictionary than MOD and MAP, but offers comparable results
to that of MM method. Moreover, it has better convergence prop-
erties and denoising capabilities [19]. Based upon these merits, we
use the K-SVD algorithm for dictionary learning of our training sig-
nals.

2.1.1. K-SVD dictionary learning algorithm
In the two-step dictionary learning process, the K-SVD algo-

rithm [19] uses (OMP) [29] for sparse coefficients calculation and
singular value decomposition (SVD) for calculating and updating
the dictionary atoms. In the dictionary learning step, AX is decom-
posed into K rank-1 matrices by selecting a dictionary element ak
and its corresponding coefficient vector xk

T which is the k-th row
in matrix X, with its sparsity level denoted as T .

‖Y − AX‖2
F =

∥∥∥∥∥Y −
K∑

j=1

a jx
j
T

∥∥∥∥∥
2

F

=
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(

Y −
∑
j �=k

a jx
j
T

)
− akxk

T

∥∥∥∥
2

F

= ∥∥Ek − akxk
T

∥∥2
F (2)

where Ek is the error term formulated by excluding an arbitrar-
ily selected dictionary element from A. Now SVD is used to find
the closest rank-1 matrix that effectively minimizes the error. Af-
ter removing columns from Ek that do not use ak , the SVD of Ek
yields U�VT , where the first column of U gives the updated dictio-
nary atom ak and the first column of V multiplied by �(1,1) gives
the coefficient vector xk

T corresponding to the dictionary atom. It-
erating through the two steps of dictionary learning, the K-SVD
produces a dictionary that fits the given signal Y.

2.1.2. Learning dictionary atoms from training signals by K-SVD
Dictionary learning process for the set of training signals is

shown in Fig. 2. For the purpose of classification, training signals
yc,i of each class are passed through the K-SVD algorithm to get its
corresponding dictionary, where c represents the class of the signal
e.g. speech (sp), music (mus), male (m) and female ( f ), and i in yc,i
represents the index of the training signal in that class of audio
signals. Before applying K-SVD, the one-dimensional raw training
signals yc,i are first decomposed into frames of equal length of
size Rn without overlap and concatenated side by side to form a
two-dimensional matrices Yc,i . This set of all two-dimensional sig-
nals belonging to one class are combined together to form one
large matrix Yc = [Yc,1,Yc,2, . . . ,Yc,N ]. This large matrix Yc ∈ Rn×m

is fed to the K-SVD to get a dictionary Ac ∈ Rn×l representing the
dictionary of one class of the signals.

This dictionary Ac is used to obtain the sparse coefficients of
both the training and testing signals for each class in the sparse
coding stage.

2.2. Sparse coding

In this method, a natural signal is represented in terms of a
small number of codewords or atoms taken from a dictionary ei-
ther predefined or learned. Given a dictionary, many methods have
been developed for finding the sparse coefficients to encode the
signal such as matching pursuit (MP) [30], orthogonal matching
pursuit (OMP) [29], basis pursuit (BP) [31], regression shrinkage
and selection (LASSO) [32], focal under-determined system solver
(FOCUSS) [33] and gradient pursuit (GP) [34]. Here we use OMP to
find sparse coefficients which is the part of K-SVD two step dictio-
nary learning process.

2.2.1. Orthogonal matching pursuit algorithm
To calculate sparse coefficients of an input signal with a given

dictionary, the OMP algorithm [29] projects the input signal on
the subspace spanned by the dictionary atoms. The atom which
strongly correlates with the signal or its residual is selected and
used for calculation of the coefficients. The whole algorithm works
as follows:

• Initialize the residual r0 to be the input signal vector yq and
coefficient vector x0 to zero.

• At step k, a new atom is selected according to the following
optimization problem

λk = arg max
ω∈Ω

∣∣〈rk−1,aω〉∣∣ (3)

where 〈·,·〉 is a dot product, | · | is a modulus, Ω is the index
set of all the atoms in the dictionary and λk is the index of
the selected atom.

• Let Λk = {λ1, . . . , λk} list the atoms that have been chosen at
step k, then the k-th approximant (coefficient) is calculated as

xk = arg min
x

‖yq − x‖ s.t. x ∈ span{aλ: λ ∈ Λk} (4)

This minimization can be performed incrementally by the
standard least squares techniques. The residual is then calcu-
lated as rk = rk−1 − 〈rk−1,aλk 〉aλk .

2.2.2. Sparse coding of training and testing signals
Sparse coefficients matrices of training signals Xcd,i from each

class are obtained by using the OMP algorithm [29], here the d
subscript represents the class specific dictionary that produces the
coefficient matrix. The input training signals Yc,i are projected on
the subspace spanned by the dictionaries Ac of each class. The
sparse coefficient vectors of each class thus obtained are then com-
bined from end to end to form one vector of a larger dimension.
For example, for speech–music classification system, each speech
signal vector ysp,i from Ysp,i in the training set is projected on the
learned speech Asp and music Amus dictionaries separately and the
resulting two sparse coefficient vectors each of dimension Rl are
combined together to create a sparse coefficient vector of dimen-
sion R2l . The same process is also repeated with the music signal
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Fig. 3. Extraction of sparse coefficients using OMP. Y1,i of class-1 signal is mapped to
both class specific dictionaries A1 and A2 to get their respective sparse coefficients
matrices X11,i and X12,i which are then concatenated together to form X1. Same
process is repeated for Y2,i .

vectors ymus,i . This process is depicted in Fig. 3. The sparse coef-
ficients of these training signals are used to train the SVM model
for signal classification.

The same procedure is used to extract the sparse coefficients of
test signals X′

cd,i .

2.3. Pooling/sampling of coefficients matrix

Inspired by visual feature extraction methods [35–37], we apply
pooling methods to our training and test coefficients matrices to
deal with the matrices of different number of columns. Typically,
the pooling operation is a sum, an average, a max or any other
commutative combination rule. For a sparse coefficient matrix X
extracted from a learned dictionary A, the following pooled feature
vectors are obtained by a predefined pooling function

z = F(X) (5)

where the F is either a max or an average pooling defined on
each row of sparse coefficient matrix X. In case of max pooling,
F is defined as

zp = max
{|xp1|, |xp2|, . . . , |xp Q |} (6)

where zp is the p-th element of z, xpq is the matrix element at
p-th row and q-th column of matrix X. For the average pooling,
F is defined as

z = 1

Q

Q∑
q=1

xq (7)

where Q is the total number of coefficients vectors in matrix X. In
the max pooling, for each row vector in a matrix X, the element
with the maximum value is picked and selected as a representa-
tive of that row vector. For the average pooling, the average of all
the elements in a row vector of a matrix X is taken and selected
as a representative of that row vector. In this way, each matrix is
represented as a single column vector thus reducing the size of
data and computational complexity. Hence coefficient matrix Xcd,i
is pooled down to vector zcd,i as shown in Fig. 4. The same pooling
operation is applied to the testing signal coefficient matrix X′

cd,i to
get z′

cd,i .
Pooling is applied to summarize the feature distribution of data

of interest into a statistical representation. Hence, here different
pooling techniques construct different signal statistics. For sparse
codes, the max pooling picks those coefficients values that show
maximum contribution from the dictionary atoms while average
pooling represents the mean of the dictionary atoms contribution.
Further in Section 3.7, we discuss why the max pooling gives bet-
ter performance as compared to the average pooling. Sparse coding
Fig. 4. Max/average pooling of training sparse coefficient matrix Xcd,i . This results
in the max/average pooled vector zcd,i of the input matrix.

Fig. 5. Sampling of training sparse coefficient matrix Xcd,i into a size-reduced sam-
pled matrix Xr

cd,i .

combined with pooling also reduces the effect of noise in the sig-
nals as demonstrated by the experiments.

Pooling is also helpful in making the feature representation
compact. In our audio classification system, we use SVM classi-
fier in the classification stage which needs to be trained before the
classification of the test data. An alternative way of pooling is to
concatenate the column vectors of the coefficient matrices into a
single column vector of a larger dimension. In practice, however,
the coefficient matrices generated from different training signals
have different number of column vectors. As a result, the pooled
vectors do not have a uniform length, which makes SVM training
less practical. Hence we perform pooling along each row of a co-
efficient training matrix as indicated in Fig. 4. This transforms the
coefficient matrix to a single vector of equal dimension and thus
helps to keep the vectors of different sizes of signals compact and
in a unified dimension.

Another method for training the classifier is to use all the
vectors in the training coefficient matrices as training examples.
However, depending upon the number of training signals, the to-
tal number of training vectors can become very large which are
difficult to be managed by memory-limited computing machines.
To cope with this problem, we perform sampling on each signal
coefficients matrix to considerably reduce the size of each matrix.
Sampling of data vectors is a process of selecting smaller numbers
of vectors from training matrix randomly and labeling them with
their corresponding signal label. In this way, the reduced set of
coefficient vectors represents a training coefficient matrix. Hence
the coefficient training matrix Xcd,i is sampled down to the size-
reduced matrix Xr

cd,i as shown in Fig. 5, where superscript r shows
the reduced size of a matrix. The same process is repeated with
the test coefficient matrix X′

cd,i to get X′r
cd,i .

2.4. Signal classification by SVM

Our motive for finding sparse coefficients is to use them for
audio classes discrimination in the signal classification stage where
the SVM [18] is used as a classifier.

The diagram of the proposed audio signal classification system
is shown in Fig. 6. We use the non-linear SVM for our binary clas-
sification problem where one class has class label zi = +1 and
the other class has class label zi = −1. We use Euclidean distance
and radial basis function (RBF) kernel in the SVM. For compari-
son, we also use linear SVM for one of the experiments of gender
classification. The training data points used to define the feature
space are vectors zc from max/average pooled sparse coefficients
matrices Zc , or vectors xr

c from sampled sparse coefficient matri-
ces Xr

c . z′
c,i represents max/average sparse coefficient vector of a

test signal. Depending upon the pooling technique, each test signal
is classified using its corresponding trained SVM.

For sampled test coefficients, a matrix which represents one
signal has a smaller number of vectors than the original signal.
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Fig. 6. Sparse coefficients based audio signal classification using SVM. z′
c,i repre-

senting a pooled test signal and X′r
c,i representing the sampled test signal are fed

to classifier. Zc is a matrix containing max/average pooled training vectors and Xr
c

contains sampled training vectors.

Hence the classification decision is made by majority voting of the
vectors’ labels in a coefficient matrix. If the class labels for the ma-
jority of sparse coefficient vectors in a test matrix are positive, it
is considered belonging to one class otherwise to the other class.

2.5. Extension to multi-class audio classification

We extend our binary classification system to multi-class audio
classification tasks such as speaker identification. With the same
classifier setting in one-vs-all fashion, the performance of pooled
sparse features is evaluated against the sampled MFCCs to identify
C different speakers including male and female. The overall classi-
fication accuracy in percentage is calculated as

∑C
k=1

Nk,a
Nk,t

C
× 100 (8)

where Nk,a is the number of correctly classified test signals in one
class, Nk,t is the total number of test signals in the same class and
C is the total number of classes.

3. Experiments

We apply our proposed audio classification system on two bi-
nary classification problems and a multi-class problem: speech–
music classification, female–male gender classification and speaker
identification problem. The datasets, experimental setup and re-
sults are presented in the following subsections.

3.1. Datasets

For speech–music classification, 446 different speech signals
from TIMIT [38] database are used as training signals which in-
clude male and female speakers speaking different sentences with
different style and accent. Each signal has a different duration
ranging from 1.5 seconds to 5 seconds. Overall, the total duration
for 446 speech signals is 22.8 minutes sampled at 16 kHz. Other
training data belongs to the music class which is composed of 98
music signals with different notes, taken from the University of
Iowa Musical Instruments Database [39]. These music signals are
sampled at 44.1 kHz having a total duration of 3.37 minutes. To
evaluate the classification performance, additional 125 speech and
49 music signals that were not used during the training process
are used in the test stage. The performance comparison between
the sparse coefficients and MFCC is shown.

For gender classification, we used the same TIMIT [38] database
from which 201 female speech signals with a total duration of
10.3 minutes and 245 male speech signals with a total duration
of 12.5 minutes are chosen for training, and 40 female speech and
50 male speech signals for testing. The training and testing data do
not overlap with each other.

A subset of TIMIT corpus is selected for speaker identification
of 5 speakers and 10 utterances (sentences) per speaker, result-
ing in a total of 50 utterances. For different number of utterances
Fig. 7. Speech–music classification for noisy testing data with SNR changing from
−10 dB to 10 dB based on clean training data. Results for clean testing data are
also shown.

per speaker, we perform classification in such a way that training
and testing examples do not overlap with each other. Sparse coef-
ficients for training and testing data are extracted as described in
Section 2 and its classification performance is compared with that
of the sampled MFCC and DicClassifer [25].

3.2. Setup

In two binary classification problems, experiments are per-
formed using clean as well as noisy training and testing data.
Different levels of white Gaussian noise with zero mean and unit
variance is added to the training and testing data with the signal
to noise ratio (SNR) ranging from 10 dB to −10 dB. We further
explore the effect of various dictionary size on the classification
performance.

By using K-SVD, class specific dictionaries of size 256 × 1000
and 256 × 700 are learned for speech–music and female–male
classification tasks respectively. For speaker identification, speaker
specific dictionaries for various training utterances per speaker are
learned, each of size 320 × 320.

The sparse coefficient vectors of the training and test signals
are calculated on a frame-by-frame basis. Each frame is mapped
to speech and music dictionaries separately which results in two
sparse coefficient vectors, each of dimension 1000 having maxi-
mum 13 non-zero values. These two sparse coefficient vectors per
frame are combined together to obtain a single coefficient vector of
dimension 2000 with maximum 26 non-zero values. The resulting
coefficient matrices per signal per class are max pooled, average
pooled and sampled to get training and testing vectors for the SVM
classifier.

In matrix sampling operation, one out of 10 column vectors
is picked up randomly and selected as a representative of the 10
column vectors. These frames are also used to get the MFCC coef-
ficients of the training signals with each having a dimension of 13
followed by normalization of values between 0 and 1. Since pooling
operations are only applicable to codebook/dictionary based fea-
tures, only sampling operation is applied to MFCC matrices. For
sampled feature vectors, classification decision is made based on
majority voting.

3.3. Results

3.3.1. Classification using clean training data
Using the clean training data, the overall classification accuracy

with varying SNRs of testing data is given in Fig. 7 using max-
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Fig. 8. Female–male speech classification for noisy testing data with SNR changing
from −10 dB to 10 dB based on clean training data. Results for clean testing data
are also shown.

pooled, average-pooled and sampled sparse coefficients as well as
sampled MFCCs along with the results for clean testing signals.

Fig. 7 clearly shows supremacy of sparse coefficients over
MFCCs as good features for classification. For added noise, max
pooled sparse coefficients perform better as compared to other
pooled or sampled sparse coefficients as well as sampled MFCCs.
This shows that for each signal, the highest value of the sparse
coefficients exhibits the discerning signal feature for classification.
Both the average pooled and sampled sparse coefficients perform
better as compared to the sampled MFCC coefficients for the noisy
signals. The only exception when MFCC outperforms sparse coeffi-
cients is for the clean test signals (without any noise). However the
trade-off lies in its increased computational complexity as sampled
MFCC matrices are used as training and testing examples as com-
pared to the pooled sparse coefficients matrices. Moreover, most
audio signals of practical interest have some noise in them which
implies that sparse coefficients are better options for speech–music
classification in practice.

Fig. 8 shows performance for gender speech classification. Again
in this case, the max-pooled sparse coefficients give the best per-
formance followed by average pooled and then sampled sparse
coefficients. This shows that even with a higher computational
complexity, the performance using MFCC is poorer as compared
to that using sparse coefficients.

3.3.2. Classification using noisy training data
To evaluate the classification robustness based on different fea-

tures, we also perform classification using noisy training data with
SNR varying from 10 dB to −10 dB. Figs. 9(a)–(d) show the over-
all speech–music classification performance for noisy training data
with SNR of 0 dB, 5 dB, 10 dB and −10 dB. In all these figures,
the max-pooled sparse coefficients show more robust noise rejec-
tion capability as compared to other coefficients. Sampled MFCCs
give the best classification performance when the SNR of train-
ing signals is similar to that of test signals. Beyond that specific
SNR range, MFCC performance degrades. The classification accuracy
variance based on max-pooled and average-pooled sparse coeffi-
cients is lower as compared to sampled MFCCs and sparse coeffi-
cients. This shows that the pooled sparse coefficients are robust
features against noise in general and max-pooled sparse coeffi-
cients in particular.

Figs. 10(a)–(d) show the accuracy of female–male speech clas-
sification with noisy training data of 0 dB, 5 dB, 10 dB and −10 dB
respectively. These figures show that the pooled and sampled
sparse coefficients are better for female–male speech classification
as compared to the sampled MFCCs. Particularly the low variance
of max pooled sparse coefficients based classification results shows
their good robustness to noise.

3.3.3. Effect of dictionary size on sparse coefficients based classification
The results we have shown so far are based on the dictio-

nary size of 1000 for speech–music classification and 700 in
male–female speech classification. Fig. 11 shows audio classifi-
cation based on different dictionary sizes for noisy as well as
clean testing data with clean training data. The SNR for noisy
testing data changes from −10 dB to 10 dB. Figs. 11(a) and (b)
show speech–music classification results based on max-pool and
average-pool sparse coefficients, respectively with variable dictio-
nary size changing from 256 to 1300 while Figs. 11(c) and (d)
show female–male speech classification results. Fig. 11 shows that
changing the dictionary size does not change noticeably the classi-
fication performance for speech–music as well as gender speech
classification. For female–male speech classification, max-pooled
sparse coefficients give better performance for SNR = −10 dB with
reduced dictionary size while average pooled sparse coefficients
show comparable classification accuracy for a larger dictionary
size. The sparsity level in the case of both dictionary sizes is fixed
i.e. 13. However, an overall trend is that the dictionary size does
not affect the classification performance much.

3.4. Multi-class classification

We have also investigated the performance of using pooled
sparse coefficients for a multi-class problem of speaker identifi-
cation. The classification results are shown in Table 1. For different
number of utterances per speaker, the max pooled sparse features
outperform the MFCC features. This shows that in multi-class case
too, the max pooled sparse features are better than the MFCCs.

3.5. Classification with linear SVM

The classification results shown so far were computed using
non-linear SVM with RBF kernel. We also show some results ob-
tained using linear SVM. To this end, we repeat the female–male
speech classification experiments performed in Fig. 8 and the
multi-class classification experiments performed in Table 1, by re-
placing the non-linear SVM with the linear SVM. The results for
gender classification are shown in Fig. 12. It appears that the clas-
sification accuracy using the linear SVM is similar to that of the
non-linear SVM. By comparing Tables 1 and 2, the same trend for
speaker identification can also be seen.

3.6. Comparison with DicClassifier

We also compared sparse max pool features with the work pre-
sented in [25]. For comparison purposes, we named the algorithm
as DicClassifier. This method takes raw audio data, converts them
to matrix form, extract linear predictive coding (LPC) features from
them, learns LPC-dictionaries for each class and then uses those
class specific LPC-dictionaries as classifier for the classification of
test signals. The test signals are also converted to LPC coefficients
and then projected on the class specific LPC-dictionaries for clas-
sification. To make a fair comparison of our work with that of
DicClassifier, we learned 13 LPC features from audio data frames
and then learned dictionaries of the same size as that of max
pooled sparse coefficients dictionaries. 13 LPC coefficients were
chosen because we used the same number of coefficients for MFCC
and sparse coefficients.
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Fig. 9. Speech–music classification with training and testing data both distorted by additive white Gaussian noise with SNR changing from −10 dB to 10 dB for the testing
data. Results for clean testing data are also shown. (a) Training data SNR = 0 dB. (b) Training data SNR = 5 dB. (c) Training data SNR = 10 dB. (d) Training data SNR = −10 dB.
Table 1
Classification performances for identification of 5 speakers for different features us-
ing non-linear SVM with different number of utterances per speaker.

# training utterances
per speaker

MFCC Sparse
maxPool

Sparse
avPool

2 47.96% 74.29% 45.71%
5 53.42% 72% 68%
8 50.88% 80% 50%

Instead of learning features from raw audio data, DicClassifier
learns dictionaries of higher level features of audio signals. This
is similar to the work as described in [2] where the combina-
tion of MFCC and sparse features were used for the classification
of environmental sounds which naturally improves the classifica-
tion performance. However our work is to tweak with learned
sparse features of raw audio data by using different pooling tech-
niques to investigate their performance in comparison with those
of non-pooled sparse coefficients and conventional audio features
like MFCC.
Table 2
Classification performances for the identification of 5 speakers for different features
using the linear SVM with different number of utterances per speaker.

# training utterances
per speaker

MFCC Sparse
maxPool

Sparse
avPool

2 46.28% 71.43% 45.71%
5 49.81% 72% 32%
8 48.51% 80% 50%

The classification performance of DicClassifier using LPC as well
as raw data is shown in Table 3. For a small number of training ut-
terances, sparse max pooled coefficients outperform DicClassifier.
However when using 5 and 8 training utterances for each speaker,
DicClassifier performs better only when LPC features are used as
input. If the raw data is used, DicClassifier has far poorer per-
formance as compared to the use of pooled sparse features. This
shows that if the max pooled sparse features are combined with
high level features of audio data like LPC or MFCC, the classifica-
tion performance can be considerably improved.
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Fig. 10. Female–male speech classification with training and testing data both distorted by additive white Gaussian noise with SNR changing from −10 dB to 10 dB for
testing data. Results for clean testing data are also shown. (a) Training data SNR = 0 dB. (b) Training data SNR = 5 dB. (c) Training data SNR = 10 dB. (d) Training data
SNR = −10 dB.
3.7. Further discussion

Results suggest that learned sparse coefficients show promising
characteristics as feature representative of audio signals. Particu-
larly, max pooled sparse coefficients give excellent performance
for a large range of noisy training and testing data. This is be-
cause an overcomplete dictionary gives rise to sparse coefficients,
whose maximum value represents the response of a dictionary
atom showing maximum contribution in defining the signal fea-
ture. In case of feature sampling, many dictionary atoms in speech
as well as music may be similar. Hence, while sampling the train-
ing coefficient matrices to obtain the subset of the original coeffi-
cient vectors, most of the coefficient values may represent similar
dictionary atoms, though from different classes. This confuses the
classifier during the training process and thus degrades the over-
all classification accuracy. Moreover, this sampling process may
or may not represent the dictionary elements with the strongest
contribution towards signal’s feature representation. It seems that
with sampling, our classification accuracy should improve as we
Table 3
Classification performances for the identification of 5 speakers using DicClassifier.

# training utterances
per speaker

DicClassifier

Raw audio LPC

2 28.57% 65.71%
5 36% 84%
8 30% 90%

are selecting more vectors to represent signal features. However, it
shows degradation in classification accuracy even with an increase
in computational complexity and memory requirement.

For speech–music classification with noisy training data, MFCCs
show better performance when the noise level of training and test-
ing signals is equal while such behavior is not shown in female–
male speech classification. This shows that MFCCs are good in dis-
criminating those classes which are highly separable as in the case
of speech–music class. However, when classes are overlapping like
female–male speech class, their performance degrades.
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Fig. 11. Audio classification based on variable dictionary size for noisy as well as clean testing data using clean training data. The SNR for noisy testing data changes from
−10 dB to 10 dB.
The max-pooled sparse coefficients show better performance
even when the classes are overlapping. Average pooling for sparse
coefficients gives relatively lower performance as compared to max
pooled coefficients. This means that average pooling reduces the
contribution of the most active dictionary elements towards sig-
nal features. This dilution of most active dictionary elements gives
poorer performance.

The overall classification results based on sparse coefficients
seem to be less affected by the dictionary size. This shows that
pooled and sampled sparse coefficients always select best dic-
tionary atoms for sparse representation irrespective of dictionary
size.

Another benefit of pooling operation is its robustness to noise.
Superior performance of pooling not only shows the dilution of
noise added to the coefficient elements but also the rejection of
noisy elements, particularly in the case of max pooling.
In addition to the advantages of pooling operation discussed
above, the reduction of the size of each training and testing sig-
nal’s coefficient matrix to a vector drastically decreases the overall
computational complexity of the whole classification process.

4. Conclusion

We have presented a method of using learned dictionaries to
extract signal features for speech–music and female–male speech
classification, as well as speaker identification. We learned differ-
ent dictionaries with each representing one class of signal. Using
those dictionaries, we calculated the sparse coefficients of each
class. These sparse coefficients were further nurtured by using
pooling and sampling techniques. We found that those sparse coef-
ficients were very good representatives of signal features that can
be used for speech discrimination and speaker identification. Par-
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Fig. 12. Comparison of classification performance for gender classification with lin-
ear and non-linear SVM. L and NL in legend represent the linear and non-linear
SVM respectively.

ticularly, the max pooled sparse coefficients vectors best described
the signal features. Our results show that the pooled sparse coef-
ficients outperform the MFCC features for the task of audio classi-
fication, particularly for noisy data and overlapping classes. More-
over, as the pooling technique summarizes a coefficient matrix in
to a vector, the computational complexity of the classification pro-
cess is drastically reduced which makes it potentially useful to be
considered for future online applications.
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