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ABSTRACT
Acoustic signals in a shallow ocean environment are severely
distorted due to the time-varying and inhomogeneous nature
of the propagation channel. In this paper, a state-space
model is introduced to characterize the uncertainties of
the shallow ocean and a Rao-Blackwellized particle filter
(RBPF) is developed to estimate the model parameters. Since
both modal functions and horizontal wave numbers of the
channel are assumed unknown, the state-space model has
a high nonlinearity and high dimensionality. As the modal
functions are linear with the measurements conditioning on
the horizontal wave numbers, a Kalman filtering (KF) is
employed to marginalize out the modal functions. Hence
only the horizontal wave numbers need to be estimated by
using a PF. Simulation results show that the proposed RBPF
algorithm significantly outperforms the existing approaches.

Index Terms— Shallow ocean acoustic model, wave
number, modal function, Rao-Blackwellized particle filter.

I. INTRODUCTION

Modeling acoustic wave propagation in a shallow ocean
environment is an important topic and lies at the heart
of many underwater signal processing applications. It is a
challenging problem as uncertainties arise due to the time-
varying and inhomogeneous nature of the ocean environ-
ment, and the received signal is seriously distorted due to
multiple reflections from ocean boundaries.

Traditionally, matched-field processor (MFP) that com-
pares the measured pressure-field to that predicted by a
propagation model has been employed for parameter esti-
mation [1]. To implement an MFP, the source location is
required and is obtained by computing model predictions of
the field at the array for various assumed source positions.
However, the shallow ocean acoustic channel tends to vary
with space and time. In [2], a state-space model was for-
mulated to characterize all these dynamics and accordingly,
extended Kalman filter (EKF) and unscented Kalman filter
(UKF) approaches were introduced to estimate the states that
characterize the channel. Such approaches are categorized as

model-based methods in that the acoustic propagation and
measurement uncertainties are modeled and included into
the estimation algorithms. Very recently, the particle filtering
(PF) approach which is more appropriate for nonlinear and
non-Gaussian systems has been employed for parameter
estimation of the shallow ocean model [2]–[4] and shown
to achieve better estimation performance.

In a shallow ocean model, the horizontal wave numbers
are considered unknown parameters in addition to the modal
functions due to inhomogeneous time-varying nature of the
environment. However, if all these parameters are blindly
encapsulated into the estimated state, the performance of PF
algorithm suffers due to the high dimensionality of the state.
In this paper, a Rao-Blackwellized particle filtering (RBPF)
method is developed to reduce the dimensionality of the state
to be processed by PF. In essence, in this method the system
model is reorganized in a linear fashion conditioned on the
horizontal wave numbers. The Kalman filter (KF) is then
employed to provide an optimal solution for this linear part.
Following this, the horizontal wave numbers are the only
state to be estimated by the PF. Hence, the PF can achieve
better estimation accuracy with the same number of particles
because the dimensionality is reduced. Our contribution here
is incorporating a Rao-Blackwellization technique to obtain
an analytical solution for part of the state, and therefore
reduce the dimensionality of the state for PF algorithm.
Simulations are organized to demonstrate the superiority of
the proposed algorithm over the existing EKF and PF.

II. SIGNAL MODEL

For modeling acoustic wave propagation in a shallow
ocean environment, we assume a horizontally stratified ocean
of depth h with a known horizontal source range rs and
depth zs, and the acoustic wave propagation is governed
by the Helmholtz equation [5]. The normal-mode acoustic
pressure propagation model can be written as

s(rs, z) =
M∑

m=1

βm(rs, zs)ψm(z) (1)



where βm(rs, zs) is the modal coefficient defined as

βm(rs, zs) = qψm(zs)
e−αr(m)rs√
κr(m)rs

ejκr(m)rs (2)

where q is the source amplitude, and αr(m), κr(m) and
ψm(·) are the modal attenuation, the horizontal wave number
and the modal function associated with the mth mode respec-
tively. The modal function holds an eigenvalue equation in
z, given as [6]

d2

dz2
ψm(z) + κ2z(m)ψm(z) = 0 (3)

for m = 1, . . . ,M . The eigen-value set {ψm(z)} are the
modal functions and κz is the wave number in the depth
direction. The solutions of (3) depend on the sound speed
profile c(z), the boundary conditions and the corresponding
dispersion relation given by

κ2 =
ω2

c2(z)
= κ2r(m) + κ2z(m) (4)

where κr(m) is the mth horizontal wave number and
ω is the harmonic source frequency. Let ϕm(z) =
[ϕm1(z), ϕm2(z)]

T and define ϕm1(z) = ψm(z) and
ϕm2(z) = d/dz

(
ψm(z)

)
. The eigenvalue equation in state-

space form is

d

dz
ϕm(z) = Am(z)ϕm(z) (5)

where Am(z) is the coefficient matrix given as

Am(z) =

[
0 1

−κ2z(m) 0

]
(6)

The horizontal wave number κr(m) can be roughly es-
timated using wavenumber spectrum estimation methods.
However, these are unable to account for the fluctuating
and time-varying nature of the environment. Thus κr(m)
is considered as an unknown environmental parameter to
be estimated and is included into the state vector. Let
θm(z) = κr(m). The whole state vector can be constructed
as x(z) = [xϕ(z)

T ,xθ(z)
T ]T , where

xϕ(z) = [ϕT1 (z), ϕ
T
2 (z), . . . , ϕ

T
M (z)]T ∈ R2M×1 (7)

xθ(z) = [θ1(z), θ2(z), . . . , θM (z)]T ∈ RM×1 (8)

The state process can be written as

d

dz
xϕ(z) = A(z)xϕ(z) + vϕ(z) (9)

d

dz
xθ(z) = 0+ vθ(z) (10)

where A(z) = diag
(
A1(z), . . . ,AM (z)

)
, and vϕ(z) and

vθ(z) are the zero-mean Gaussian processes given by
vϕ(z) ∼ N (0,Σϕ) and vθ(z) ∼ N (0,Σθ) respectively. The
measurement process can be written as

y(z) = s(rs, z) = C
(
xθ(z)

)
xϕ(z) + w(z) (11)

where C
(
xθ(z)

)
= [β1(·), 0, β2(·), 0, . . . , βM (·), 0], and

w(z) ∼ N (0, σ2) is the measurement noise process. E-
quations (9), (10) and (11) give a full state space model
that describes the dynamics and uncertainties of the shallow
ocean characteristics such as horizontal wave numbers and
modal functions. In next section, an RBPF approach will be
developed to estimate these characteristics.

III. RAO-BLACKWELLIZED PARTICLE
FILTERING IMPLEMENTATION

Assume that zℓ is the depth of the ℓth sensor and z1:ℓ =
[z1, . . . , zℓ]. Given a measurement sequence y(z1:ℓ)) =
[y(z1), . . . , y(zℓ)], the task is to estimate the posterior dis-
tribution p(x(z)|y(z1:ℓ)). Such a task can be achieved by
using a Bayesian recursive estimation, given as

Predict :

p
(
x(zℓ)

∣∣y(z1:ℓ−1)
)
=

∫ (
x(zℓ)

∣∣x(zℓ−1

)
p
(
x(zℓ−1)

∣∣y(z1:ℓ−1)
)
dx(zℓ−1); (12)

Update :

p
(
x(zℓ)

∣∣y(z1:ℓ)) ∝ p(y(zℓ)∣∣x(zℓ))
p
(
x(zℓ)

∣∣y(z1:ℓ−1)
)
. (13)

In this recursion, p
(
y(zℓ)

∣∣x(zℓ)) is the likelihood of the state
and p

(
x(zℓ)

∣∣y(z1:ℓ−1)
)

is the probability density function
(PDF) of a prior distribution. The Bayesian recursion states
that given the transition density and likelihood, the posterior
distribution of the state can be recursively estimated.

The measurement function is nonlinear and therefore, the
EKF approach [6] and PF approach [4] have been employed
to estimate the posterior distribution. It has been shown
that the PF approach is more appropriate under such a
highly nonlinear scenario [7]. However, taking all states
into account is cumbersome for the PF approach due to the
curse of the dimensionality. Recall the state space model,
the state of modal function xϕ(z) holds a linear relationship
with the measurement conditioning on the state xθ(z). This
means given the estimation of xθ(z), an analytical solution
for p

(
xϕ(z)

∣∣xθ(z),y(z1:ℓ)
)

can be obtained. Hence, it is
possible to exploit a Kalman filter to marginalize out the
modal functions. Consequently, only the horizontal wave
numbers need to be handled by using the PF. Such a
technique is referred to as Rao-Blackwellization and widely
used for the state estimation where part of state space model
is linear and Gaussian [7]. Using Bayesian theorem, the
posterior distribution can be decomposed as

p
(
x(zℓ)

∣∣x(zℓ−1),y(zℓ)
)
= p

(
xθ(zℓ)

∣∣y(zℓ))︸ ︷︷ ︸
PF

× p
(
xϕ(zℓ)

∣∣xθ(zℓ),xϕ(zℓ−1),y(zℓ)
)︸ ︷︷ ︸

KF

, (14)



in which p
(
xϕ(zℓ)

∣∣xθ(zℓ),xϕ(zℓ−1),y(zℓ)
)

is analytically
tractable and p

(
xθ(zℓ)

∣∣y(zℓ)) can be estimated by PF ap-
proximation. Since part of the state can be estimated by using
a KF, the dimension of the state to be processed by the
PF can be reduced. Consequently, the Rao-Blackwellization
based PF is able to provide better estimates than the standard
PF when the same number of particles is used.

The core idea of PF is that it uses a set of particles
and importance weights of these particles to approximate
the posterior distribution. Assuming that N particles are
used to approximate the above Bayesian recursion, the PDF
p
(
xθ(zℓ)

∣∣y(zℓ)) is represented by {x(i)
θ (zℓ), w

(i)
k }Ni=1. The

entire procedure of PF processing can be summarized as
following. At each time step, the particles are sampled
according to the state dynamic model (10), given as

x
(i)
θ (zℓ) ∼ p

(
x
(i)
θ (zℓ)

∣∣x(i)
θ (zℓ−1)

)
. (15)

These particles are then employed in the KF steps to
marginalize out the modal functions. Assume that at the
previous time step, the state and covariance estimates are
x̂
(i)
ϕ (zℓ−1) and P̂

(i)
ϕ (zℓ−1) respectively. The predictions are:

x
(i)
ϕ (zℓ|zℓ−1) =A(i)(zℓ)x̂

(i)
ϕ (zℓ−1) (16)

P
(i)
ϕ (zℓ|zℓ−1) =A(i)(zℓ)P̂

(i)
ϕ (zℓ−1)A

(i)(zℓ)
T +Σϕ (17)

The Kalman gain is then calculated as

S(i) =C
(
x
(i)
θ (zℓ)

)
P

(i)
ϕ (zℓ|zℓ−1)C

T
(
x
(i)
θ (zℓ)

)
+ σ2 (18)

K(i) =P
(i)
ϕ (zℓ|zℓ−1)C

T
(
x
(i)
θ (zℓ)

)(
S(i)

)−1
(19)

The dependency on zℓ in (18) and (19) is ignored to simplify
the expression. The state and covariance are updated as

x̂
(i)
ϕ (zℓ) =x

(i)
ϕ (zℓ|zℓ−1) +K(i)

×
(
y(zℓ)−C

(
x
(i)
θ (zℓ)

)
x
(i)
ϕ (zℓ|zℓ−1)

)
(20)

P̂
(i)
ϕ (zℓ) =P

(i)
ϕ (zℓ|zℓ−1)−K(i)

×C
(
x
(i)
θ (zℓ)

)
P

(i)
ϕ (zℓ|zℓ−1) (21)

The filtered distribution is N
(
x̂(i)(zℓ), P̂

(i)(zℓ)
)
. The im-

portance weights of the particles are then evaluated by

w
(i)
k = w

(i)
k−1p

(
y(zℓ)

∣∣x(i)
θ (zℓ)

)
, (22)

The likelihood of the particles are then calculated as

p
(
y(zℓ)

∣∣x(i)
θ (zℓ)

)
=

1√
2πσ2

× exp

{
− 1

2σ2

(
y(zℓ)−C

(
x
(i)
θ (zℓ)

)
x
(i)
ϕ (zℓ|zℓ−1)

)2
}
(23)

Algorithm 1: RBPF for model parameter estimation.

Initialisation: for i = 1, . . . , N , draw particles
according to (26); set the initial weight w̃(i)

0 = 1/N ;
for ℓ← 1 to L do

for i← 1 to N do
1) draw samples according to equation (15);
2) KF marginalization from (16) to (21);
3) compute the likelihood according to (23);
4) calculate the weight according to (22);

end
5) normalise the weight w̃(i)

k = w
(i)
k /

∑N
i=1 w

(i)
k ;

6) resample the particles according to the weights;
7) output the estimates.

end

After the resampling scheme, the posterior distribution of
the state is thus approximated by

p
(
xθ(zℓ)

∣∣y(zℓ)) ≈ N∑
i=1

w̃
(i)
k δ

x
(i)
θ (zℓ)

(
xθ(zℓ)

)
, (24)

p
(
xϕ(zℓ)

∣∣y(zℓ)) ≈ N∑
i=1

w̃
(i)
k N (x̂(i)(zℓ), P̂

(i)(zℓ)), (25)

where δ(·) is a Dirac-delta function, and w̃
(i)
k is a normal-

ized weight. In practical implementation, the state can be
initialized by estimates via the MFP method. Assume that
the initial state is x̄0. The initial distribution can be given as

x
(i)
0 ∼ N (x̄0,Σ0) (26)

where Σ0 is the variance of initial distribution that charac-
terizes the error of the MFP estimates. All implementation
steps of the RBPF approach are summarized in Algorithm
1. The proposed approach differs from traditional PF [4] for
model parameter estimation in that the modal functions are
analytically estimated by using KF, and only the horizontal
wave numbers are estimated by using PF.

IV. SIMULATIONS

In this section, simulations are provided to demonstrate the
tracking performance. The performance is compared with
that of existing EKF approach [6] and PF approach [4].
A noisy shallow ocean channel with a depth of 100 m is
simulated. The signal source is located at a depth of 36
m and a horizontal range of 5 km. The center frequency
of the source signal is 100 Hz. This leads to the signal
field propagating with six normal modes. Considering the
fluctuations in the ocean, the wave numbers are initialized
with a bias of 1.0× 10−4. This accounts for the uncertainty
present in describing the shallow ocean environment. Other
parameters are set as following: N = 200, σ2 = 1.0× 103,
Σϕ = 1.0 × 10−6 and Σθ = 1.0 × 10−8. These parameters
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Fig. 1. Results of estimation and ground truth under SNR =
10 dB for: modes 1, 2, 4 and 5 (top), pressure field (middle)
and corresponding wave numbers (bottom).

are selected based on extensive experimental study and are
found be able to provide good estimates.

Figure 1 presents a comparison of estimation using the
RBPF against the EKF and traditional PF at an SNR of
10 dB. The ground truth and corresponding estimates of
modal functions 1, 2, 4 and 5 are plotted on the top
of the figure. Signal field and wave numbers are also
presented. The estimation results show that the proposed
RBPF algorithm provides better accuracy than traditional
EKF and PF approaches. RBPF converges faster to the
true value of the wave numbers despite the initial bias. Its
accuracy in estimating modal functions is significantly better.
Consequently, the signal recovery is significantly improved
in the noisy environment.

Multiple Monte Carlo (MC) simulations are also orga-
nized to study the performance of the proposed algorithm.
The normalized mean square error (MSE) over 50 MC
runs for the modal function, wave number and signal field
estimation is presented in Fig. 2. Different noisy data from
0dB to 30dB with a 5dB increment are generated. The results
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Fig. 2. RMSE versus different SNRs for wave numbers (left),
modal functions (center) and signal field (right)

further demonstrate the superiority of the proposed algorithm
over other existing approaches. For all estimations, the MSE
is significantly lower than that of other existing approaches.
Due to Rao-Blackwellization, the state dimensionality to
be processed by the PF is reduced. Consequently, RBPF
performs much better than the traditional PF approach.

V. CONCLUSION

An RBPF approach is introduced in this paper to estimate
the modal functions and wavenumbers of a shallow ocean
channel. Conditioning on the horizontal wave numbers, the
modal functions are linearly dependent on the measurements.
Hence, the modal functions are analytically estimated by us-
ing a KF and only the wave numbers need to be estimated by
the PF. The estimation accuracy is thus improved by the pro-
posed approach. Simulations show that the proposed RBPF
algorithm significantly outperforms the existing approaches
in estimating these parameters. Future work includes modal
order detection and real underwater data applications.
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