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Abstract
Audio and visual signals can be used jointly to provide comple-
mentary information for multi-speaker tracking. Face detectors
and color histogram can provide visual measurements while Di-
rection of Arrival (DOA) lines and global coherence field (GCF)
maps can provide audio measurements. GCF, as a traditional
sound source localization method, has been widely used to pro-
vide audio measurements in audio-visual speaker tracking by
estimating the positions of speakers. However, GCF cannot di-
rectly deal with the scenarios of multiple speakers due to the
emergence of spurious peaks on the GCF map, making it diffi-
cult to find the non-dominant speakers. To overcome this limi-
tation, we propose a phase-aware VoiceFilter and a separation-
before-localization method, which enables the audio mixture to
be separated into individual speech sources while retaining their
phases. This allows us to calculate the GCF map for multiple
speakers, thereby their positions accurately and concurrently.
Based on this method, we design an adaptive audio measure-
ment likelihood for audio-visual multiple speaker tracking us-
ing Poisson multi-Bernoulli mixture (PMBM) filter. The exper-
iments demonstrate that our proposed tracker achieves state-of-
the-art results on the AV16.3 dataset.
Index Terms: speech separation, sound source localization,
multiple-speaker tracking, audio-visual fusion

1. Introduction
Multi-speaker tracking aims at estimating the positions of mul-
tiple speakers based on sensor measurements. It plays an im-
portant role in a number of applications such as human-robot
interaction [1], speech enhancement [2], and speaker diariza-
tion [3]. Audio and visual sensors have been used to improve
the performance of speaker tracking systems by exploiting the
complementarity between these two modalities. For instance,
if the speakers are occluded by others or the illumination con-
ditions are not good, audio signals can be used instead; if the
audio information is affected by acoustic noise or the speakers
are silent, we can turn to the visual data.

Audio measurements used in an audio-visual speaker track-
ing system can be obtained using a sound source localization
(SSL) algorithm. One of the widely used SSL methods, global
coherence field (GCF), which is based on Time Difference of
Arrival (TDOA) estimation, has been employed to provide re-
liable measurements for speaker tracking [4] [5] [6]. The GCF
feature is the summation of Generalized Cross Correlation with
Phase Transform (GCC-PHAT) among all paired microphones.
The peak on the GCF map indicates the position of the sound
source. However, the estimated location may not be reliable
if there are multiple speakers speaking concurrently due to the
emergence of spurious peaks in the GCF map [7]. To deal with
this problem, GCC-PHAT de-emphasis [7] has been proposed
to adapt GCF in multi-speaker scenarios by calculating the GCF

map again after localizing the dominant speaker. The updated
GCF map is obtained by summing up a modified GCC-PHAT,
which masks the time lags corresponding to the first speaker.
Although this method can be used in the scenarios of multi-
ple speakers, it has limited performance in localizing the non-
dominant speakers, especially when the number of speakers in-
creases [6].

In this paper, we propose to overcome the limitations of
GCF by leveraging the techniques of speech separation, i.e.,
we separate the multi-speaker audio mixture into several single-
speaker audio, and then calculate the GCF feature of individual
sources for position estimations. We propose to use a phase-
aware voicefilter for speech separation, built upon VoiceFilter
[8], which is a method for target speech separation, giving
promising performance in terms of signal to distortion ratio
(SDR). VoiceFilter performs separation by estimating the mag-
nitude spectrogram of the target speaker and reusing the phase
mixture to reconstruct the waveform of the target speech (i.e.,
the phase of each separated audio is identical). However, the
phase information is crucial for the GCF calculation, and should
be correctly estimated. Therefore, in the phase-aware Voice-
Filter, we propose to incorporate the phase estimation on the
individual speaker inspired by [9, 10]. Phase-aware VoiceFilter
contains a speaker recognition network and a target speaker sep-
aration network, where the former can produce unique embed-
ding for a speaker, and the latter separates the target speaker
from a mixture given the speaker embedding. By separating the
overlapping audio into individual speech sources with different
phases, the problem of multi-speaker SSL can be converted to
single speaker SSL, which allows GCF to be adapted for the
multi-speaker scenario.

Using the phase-aware VoiceFilter, the audio measure-
ments, i.e. GCF, can be obtained more accurately, which can
then be combined with visual measurements (such as a face
bounding box obtained by a face detector), to improve the per-
formance of an audio-visual tracking system. To fuse the au-
dio and visual measurements, Bayesian-based filters, such as
Particle filter (PF) [11], can be used, which is a sequential
Monte Carlo algorithm approximating the state distribution by
a number of weighted particles obtained by sequential impor-
tance sampling. However, PF cannot deal with the scenarios
where the number of speakers is changing and unknown in dif-
ferent time steps. To deal with this issue, SMC-PHD filter
[12] was proposed to estimate the varying number of speak-
ers and their positions using audio and visual signals. Poisson
multi-Bernoulli mixture (PMBM) filter was proposed in [13]
[14] based on the conjugacy property that the predicted and up-
dated distribution follows the same distribution. PMBM em-
ploys a Poisson point process to describe the distribution of
undetected objects and employs a multi-Bernoulli mixture to
describe the distribution of detected objects. PMBM outper-
forms other Bernoulli-based filters in terms of speed and ac-
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Figure 1: The architecture of the phase-aware voicefilter

curacy [15]. Due to its superiority, PMBM has been applied
to tracking with visual information [16] or LiDAR signal [17].
We employ PMBM for audio-visual tracking, as in our previ-
ous work [18]. Different from [18], however, here we design
different audio features and audio likelihood.

Our contributions in this paper are two-folds: (1) We pro-
pose a novel SSL method with the proposed phase-aware Voice-
Filter, in order to improve the quality of audio measurements
(i.e. GCF) for multi-speaker scenarios. (2) Based on this
method, we design an adaptive audio measurements likelihood
for audio-visual speaker tracking using the PMBM filter. Ex-
perimental results show that the proposed audio-visual tracker
offers better performance than the baseline methods.

2. Proposed Method
We describe the generation of visual measurements, audio mea-
surements, and the tracking framework in this section.

2.1. Generation of Visual Measurements

The face detector Dual-Shot Face Detector (DSFD) [19] is em-
ployed to generate visual measurements due to its promising
performance in detecting faces accurately and robustly, which
can output positions of bounding boxes and related confidence
scores. More specifically, bk,i = (x, y, w, h)T denotes the i-th
bounding box at time k, where (x, y) represents the bounding
box’s top left coordinates (subscripts i and k omitted for conve-
nience) and (w, h) represents the width and height, respectively.
We select the bounding boxes with confident scores above a
predefined threshold and convert the coordinates of bounding
boxes to the coordinates of the mouth position:

ov
k,i = L · bk,i (1)

where ov
k,i is employed as the i-th visual measurement (in su-

perscript v) at time step k, L = [I, diag(0.5, 0.75)] is the ma-
trix for transforming the coordinates of the bounding boxes to
those of the mouth position [4].

2.2. Generation of Audio Measurements

We focus on the scenarios of two speakers. At first, phase-aware
VoiceFilter is employed to extract the speech source of the tar-
geted speaker conditioned on the d-vector, which is the unique
embedding for each speaker. The d-vector is obtained by en-
coding a clean audio clip of the targeted speaker via a speaker
encoder [20] pretrained on VoxCeleb2 [21] dataset. Then the
GCF maps are calculated on the separated sources, respectively,
to estimate the position of each speaker.

2.2.1. Phase-Aware VoiceFilter

VoiceFilter is a model for targeted speech separation, which
consists of a speaker recognition network and a spectrogram
masking network. However, VoiceFilter uses the phase mixture
to reconstruct the separated waveform, thus the phase of each
separated waveform is the same. Therefore, the positions of
different speakers estimated by GCF are the same since local-
ization by GCF depends on the phase difference between dif-
ferent microphones within a microphone array. To address this
issue, we propose a phase-aware VoiceFilter, by incorporating
phase prediction for the separated spectrogram.

We keep the speaker recognition network in VoiceFilter,
which aims to produce a unique d-vector for each speaker. The
original spectrogram masking network in VoiceFilter contains
convolutional layers, LSTM layers and fully connected layers.
It takes the magnitude spectrogram of mixed audio and d-vector
as input, and generates a soft mask. This mask is multiplied
with the magnitude spectrogram of the mixture audio to gener-
ate the speaker-oriented magnitude spectrogram. As shown in
Figure 1, in addition to the soft mask prediction, we perform the
phase variance prediction using two additional branches, from
which the output Pr and Pi have the same shape as the magni-
tude mask. Then we calculate the phase variation θ as follows:

cos∠θ = Pr/
√

P 2
r + P 2

i (2)

sin∠θ = Pi/
√

P 2
r + P 2

i (3)

By combining the mixture phase with the estimated phase
variation, the reconstructed magnitude spectrogram Mr and
phase spectrogram Mi can be estimated as follows:

Mr = Mmag cos(∠M + ∠θ) (4)

Mi = Mmag sin(∠M + ∠θ) (5)

where ∠M is the mixed phase and Mmag denotes the predicted
magnitude, obtained by the multiplication of the predicted mag-
nitude mask with the mixed magnitude. Finally, we obtain the
separated audio by applying the inverse STFT on the complex
spectrogram Mr + j ·Mi, where j is the imaginary unit.

2.2.2. Global Coherence Field

Global coherence field (GCF) is a sound source localization
method using audio signals from a microphone array. First,
GCC-PHAT of audio signals from the j-th pair of microphones
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Figure 2: Estimation of positions of the dominant speaker and
the non-dominant speaker in Seq02+Seq01 by our proposed
method and the baseline method de-emphasize. In the GCF
map, the intensity of the color denotes the possibility of the exis-
tence of the speaker. The white circle denotes the position of the
microphone array. The estimations are calculated in the height
of the speaker’s mouths.

in the array, i.e., sj ∈ S at time t, is calculated:

Gj(τ, t) =

∫ +∞

−∞

Tsj,1(t, f)T
∗
sj,2(t, f)∣∣Tsj,1(t, f)

∣∣ ∣∣∣T ∗
sj,2(t, f)

∣∣∣ej2πfτdf (6)

where τ is the inter-microphone time lag, f is frequency, sj,1
and sj,2 denote the two microphones of the j-th pair, T is the
STFT and ∗ is the complex conjugate. GCF is the summation
of GCC-PHAT over all microphone pairs. Following [4], we
employ the speaker height z calculated by projecting the face
bounding box to the 3D space to assist the calculation of GCF,

GCF (p, t) =
1

|S|

|S|∑
n=1

Gn (τn(p|z), t) (7)

where |S| is the number of microphone pairs, and p denotes
possible positions over the entire space. The position p leading
to the peak in the GCF map is regarded as the sound source
position.

The phase-aware voicefilter is applied on the audio mix-
ture from each microphone to obtain each individual speech
source. The GCF maps are then calculated on each pair of sep-
arated sources, respectively. The positions pa

1 = (x1, y1, z1)
and pa

2 = (x2, y2, z2) are estimated by picking peaks on GCF
maps calculated on separated speech sources.

2.3. PMBM Filter

The PMBM filter can be used to estimate the number of speak-
ers and the position of each speaker x = (x, y) at each time
step, where (x, y) represents the location of the speaker. In
each iteration, the speakers that are associated to measurements
are defined as detected speakers, and the those not associated

to measurements are defined as undetected speakers. Poisson
point process µ(·) is used to describe the distribution of unde-
tected speakers xu and multiple Bernoulli mixture f(·) is used
to describe the detected speakers xd, where xu and xd are two
disjoint subsets of existing speakers x. The PMBM density
pk(·) which is used to represent the states of speakers, can be
derived as the convolution of µ(·) and f(·):

pk(x) =
∑

xu⊎xd=x

µk (x
u) fk

(
xd

)
(8)

2.3.1. Prediction

The predicted distribution pk+1|k (xk+1) can be calculated by
the Chapman Kolmogorov equation:

pk+1|k (xk+1) =

∫
π (xk+1 | xk) pk|k (xk) δxk (9)

where π (xk+1 | xk) represents the prediction matrix. We sup-
pose the speakers follow the uniform motion [22].

2.3.2. Update

The predicted distribution at time k + 1 can be corrected with
the measurement model m (zk+1 | xk+1):

pk+1|k+1 (xk+1) =
m (zk+1 | xk+1) pk+1|k (xk+1)∫

m
(
zk+1 | x′

k+1

)
pk+1|k

(
x′
k+1

)
δx′

k

(10)
The measurement likelihood at time k is denoted by

m (zk | xk). For audio measurements m (oa
k | xk), we design

an adaptive audio likelihood based on our separation-before-
localization method:

m (oa
k | xk) ∝ exp

[
− (oa

k − xk)
T Σ−1

a (oa
k − xk)

]
(11)

Let pa
1,k and pa

2,k denote the positions estimated from the
separated audio and pa

m,k is the position estimated from the
mixed audio. They are converted to coordinates in the image
plane ya

1,k,y
a
2,k,y

a
m,k through the camera calibration informa-

tion [23]. We also include the audio measurements ya
m,k de-

rived from the mixed audio in the audio likelihood in case the
mixed audio is not well separated. The audio measurement
oa
k contains

{
ya
1,k,y

a
2,k,y

a
m,k

}
if the corresponding GCF peak

value vai,k(i = 1, 2,m) is beyond the threshold λ.
The visual likelihood follow Gaussian distribution centered

at the estimated position ov
k =

{
ov
k,1,o

v
k,2, ...,o

v
k,N

}
(N is the

number of bounding boxes) calculated in Section 2.1:

m (ov
k | xk) ∝ exp

[
− (ov

k − xk)
T Σ−1

v (ov
k − xk)

]
(12)

The distribution of audio likelihood and visual likelihood is
assumed to be independent. The audio and visual measurements
are fused as follows:

m (zk | xk) = m (oa
k | xk) ·m (ov

k | xk) (13)

3. Experiments
3.1. Dataset

We employed AV16.3 [25] dataset for performance evaluations.
In Av16.3, there are two circular arrays with each containing
16 microphones to record audio, and three cameras to record
the video. In the experiment, we focus on the scenarios of two-
speaker tracking. The speech separation models tend to perform



Table 1: Tracking Results. The results of AV-A-PF [22], MS-SMC-PHD [12] and AV-GLMB [24] are from [24].

Sequence Seq18 Seq19 Seq24 Seq25 Seq30 Avg
Camera 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

AV-A-PF [22] 14.3 11.7 15.8 11.9 9.6 12.1 10.0 8.9 10.0 14.8 7.7 8.9 13.8 8.9 10.3 11.3
MS-SMC-PHD [12] - - - - - - 14.0 15.0 14.1 15.7 13.9 17.1 16.7 16.9 19.3 15.8
AV-GLMB [24] 15.7 10.9 6.3 15.3 11.6 5.4 16.5 10.6 7.0 17.7 10.8 10.7 14.8 10.4 15.7 12.0
Proposed 9.6 10.2 8.6 10.1 9.2 7.2 12.1 11.9 8.3 9.8 10.9 12.0 11.3 7.8 19.5 10.6

Table 2: MSE results for opposite gender audio mixtures.

Sequence 02 + 01 02 + 03 02 + 12 02 + 15 18 Avg
De-empha[7] 1.08 1.11 0.98 1.10 0.69 0.99
Proposed 0.75 0.92 0.93 1.10 0.71 0.88

Table 3: MSE results for the same gender audio mixtures.

Sequence 19 24 25 30 Avg
De-empha[7] 0.76 0.67 1.43 0.99 0.90
Proposed 0.83 1.42 0.63 0.84 0.93

better in opposite gender audio mixture [26]. To demonstrate
the advantages of the proposed separation-before-localization
method, we evaluate the model performance on opposite gen-
der audio mixtures and the same-gender audio mixtures, re-
spectively. For opposite gender audio mixtures, we select se-
quence 18. In addition, we create additional sequences by sum-
ming up the audio of sequence 02 and sequence 01 (02+01), se-
quence 02 and sequence 03 (02+03), sequence 02 and sequence
12 (02+12), sequence 02 and sequence 15 (02+15), where se-
quence 02 is one female speaking and other sequences are one
male speaking. For the same-gender audio mixtures, we select
sequences 19, 24, 25 and 30.

3.2. Implementation Details

For phase-aware VoiceFilter, the CNN block in Figure 1 has
eight convolutional layers. Each layer is preceded by the Ze-
roPad2d layer and followed by BatchNorm2d and ReLU layer.
The LSTM block has bidirectional architecture with 5064 di-
mensional input layer and 400 dimensional hidden layer. The
model is trained on Librispeech [27] dataset with 200,000 steps.
To obtain the d-vector, we extract audio clips from single
speaker sequences which has the same speaker as in the multiple
speakers sequences. The audio clips are input to the pretrained
speaker encoder [20] to get the d-vector. For face detecting,
the predicted bounding boxes by DSFD whose confidences are
above 0.8 are reserved for visual measurements.

3.3. Analysis of the Quality of Audio Measurements

We use Mean Square Error (MSE) to measure the reliability of
audio measurements. We implement the de-emphasis method
[7] and compare it with our proposed method. The results on
opposite gender audio mixtures are listed in Table 2. For each
sequence, the average MSE in localizing the dominant speaker
and the non-dominant speaker is reported. The average MSE
(Avg) over all sequences is shown in the last column. It is
shown that our proposed method outperforms the de-emphasis
method. We also visualize the GCF map in Figure 2. In this
case, the two speakers are standing very closely (One stands
at (1.452m,−1.145m) and the other at (1.482m,−1.106m)).

When estimating the position of the dominant speaker (Figure
2a and Figure 2c), the proposed method shows comparative per-
formance with the baseline method. When estimating the posi-
tion of the second speaker (Figure 2d), the estimation by the de-
emphasis method deviates substantially from the ground truth.
The reason is that de-emphasis masks the time lags correspond-
ing to the dominant speaker. However, as the two speakers
are very close, the mask used can remove the positional cues
corresponding to the non-dominant speaker. The spurious peak
caused by reverberation or background noise on the left in Fig-
ure 2d emerges. Our method can perform robustly in this cir-
cumstance (Figure 2b). The MSE results on the same gender
audio mixtures are shown in Table 3. The performance of the
proposed method is comparative to the baseline, and is not as
good as that on opposite gender audio mixtures. The reason
is that the mixed audio is not well separated by VoiceFilter as
the model tends to have more difficulty in separating the same
gender mixture than opposite gender mixture [26].

3.4. Analysis of Tracking Results

We compare our proposed tracker on sequences of multiple
speakers with state-of-the-art methods, AV-A-PF [22], MS-
SMC-PHD [12] and AV-GLMB [24]. We test the proposed
tracker ten times and the average results are calculated. The
PMBM tracker is initialized with measurements at the starting
frame. We also use MSE to evaluate the tracker’s performance
and the results are shown in Table 1. The last column (Avg)
demonstrates the overall performance of each tracker. In AV-
A-PF, the number of targets is known, and is initialized with
ground truth, which reduces the task difficulties. Our proposed
tracker does not need to know the number of targets and can deal
with the scenarios of a time-varying number of targets. It gives
the lowest tracking errors as compared to the baseline methods.

4. Conclusions
We have presented a novel sound source localization method
with the assistance of the proposed phase-aware VoiceFilter,
which overcomes the limitation of the traditional GCF method.
This method provides better localization performance as com-
pared to the baseline method on opposite gender audio mix-
tures and achieves performance that is comparable to the base-
line method on the same gender audio mixtures. The proposed
tracker using visual and audio measurements achieves state-of-
the-art results on the AV16.3 dataset.
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[12] V. Kılıç, M. Barnard, W. Wang, A. Hilton, and J. Kittler, “Mean-
shift and sparse sampling-based SMC-PHD filtering for audio in-
formed visual speaker tracking,” IEEE Transactions on Multime-
dia, vol. 18, no. 12, pp. 2417–2431, 2016.

[13] J. L. Williams, “Marginal multi-Bernoulli filters: RFS derivation
of MHT, JIPDA, and association-based MeMBer,” IEEE Trans-
actions on Aerospace and Electronic Systems, vol. 51, no. 3, pp.
1664–1687, 2015.
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