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Heterogeneous Feature Selection With Multi-Modal
Deep Neural Networks and Sparse Group LASSO
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Abstract—Heterogeneous feature representations are widely
used in machine learning and pattern recognition, especially for
multimedia analysis. The multi-modal, often also high-
dimensional, features may contain redundant and irrelevant
information that can deteriorate the performance of modeling in
classification. It is a challenging problem to select the informative
features for a given task from the redundant and heterogeneous
feature groups. In this paper, we propose a novel framework to
address this problem. This framework is composed of twomodules,
namely, multi-modal deep neural networks and feature selection
with sparse group LASSO. Given diverse groups of discriminative
features, the proposed technique first converts the multi-modal
data into a unified representation with different branches of
the multi-modal deep neural networks. Then, through solving a
sparse group LASSO problem, the feature selection component is
used to derive a weight vector to indicate the importance of the
feature groups. Finally, the feature groups with large weights are
considered more relevant and hence are selected. We evaluate our
framework on three image classification datasets. Experimental
results show that the proposed approach is effective in selecting
the relevant feature groups and achieves competitive classification
performance as compared with several recent baseline methods.

Index Terms—Deep learning, feature selection, heterogeneous
data, multi-modal, sparse representation.

I. INTRODUCTION

W ITH the rapid progress in data acquisition and feature
extraction, multi-modal information has been widely

used in machine learning, pattern recognition and data mining.
For example, in data mining of social media from Twitter and
Flikcr, as shown in Fig. 1, the data may contain texts, images,
audio, and videos; in medical analysis, various multi-modal in-
formation is collected, such as X-ray, CT, MRI, PET, SPECT,
and fMRI. To represent these multi-modal data, a great number
of feature extraction and description methods have been used,
such as FFT, wavelet, HOG, SIFT, and LBP. These facts lead to
a challenging task: learning with multi-modal information.
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Fig. 1. Example images from Flickr with their associated text description tags.
The tags include some relevant words to the image itself and some other infor-
mation such as the camera settings and author’s information.

Learning from multi-modal data introduces some new dif-
ficulties. First, as we know, most existing learning algorithms
require the data to be represented by feature vectors. It has
been shown however that with vectorial representation, some
key information hidden in the raw data may be lost. Neverthe-
less, with other forms of representations, such as bag-of-features
[1], high-order tensors [2] or matrices, the original data could
be characterized more precisely. These feature descriptors, re-
flecting different aspects of the original task, may have distinct
distributions in a variety of feature spaces. It is therefore impor-
tant to effectively integrate these heterogenous features. Second,
multi-modal data are usually high-dimensional. In high-dimen-
sional feature representations, some features may be redundant
or irrelevant to the task under consideration. The irrelevant fea-
tures, or features corrupted by noise, could even deteriorate the
performance of modeling. In some applications, such as med-
ical analysis and bioinformatics, it may become expensive to
acquire and extract the features. Hence, it is highly desirable to
design an effective approach to evaluating the multi-modal fea-
tures and selecting the relevant and necessary features.
To make full use of the multi-modal information, several new

learning frameworks have been developed in recent years [3].
For example, multiple kernel learning (MKL) based algorithms
have been proposed [4]–[6] to address the problem of uni-
fying the representations of heterogenous features. Especially,
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Guillaumin et al.[7] proposed an MKL based semi-supervised
learning method to fuse both modalities of images and tags. Qi
et al. proposed a unified structured representation called Mul-
timedia Information Networks (MINets), which incorporates
multiple information cues in social media and maps different
modalities into a latent space [8], [9]. In paper [10], a robust
link transfer model is proposed for efficient link knowledge
transfer between the networks. This makes it possible for lever-
aging multi-modal information simultaneously. Yang et al.[11]
presented a multi-feature model via hierarchical regression
to exploit the information derived from various features. In
addition, sparse representation based methods have also been
proposed to exploit the redundancy in the high-dimensional
data. Wang et al.[12] presented a sparse multi-modal learning
method to integrate heterogeneous image features by solving
an optimization problem with joint structured sparsity regular-
izations. Shekhar et al.[13] proposed a method which utilizes
observations from multiple modalities to construct the sparse
representations. Moreover, deep learning based multi-modal
fusion methods have also been proposed recently [14]–[16].
For example, in [17], the distance metric between different
modalities is learned by deep neural networks. The methods
mentioned above are focused on the problem of how to utilize
multiple features more effectively. In these reasearches, how-
ever, no attention has been paid to the problem of evaluating the
importance of each type of features for the tasks investigated.
The objective of this work is on this problem by evaluating
the importance of each type of features, selecting the relevant
features, and filtering out those irrelevant types of features that
may have negative impact on the entire model.
To address the problem of feature selection from heteroge-

neous features, structured sparsity based techniques have been
proposed recently in [18]–[20] where the irrelevant features are
filtered out from the multiple heterogeneous feature descriptors.
In [21], [22], the problem is addressed by combining the ex-
tended -norm and unsupervised learning. The feature selec-
tion algorithm presented in [23] exploits the information shared
by multiple related tasks for multimedia content analysis. Hu et
al.[24] proposed a method based on neighborhood rough set for
heterogeneous feature subset selection. In all these approaches,
the original different features are represented by a feature vector
and then put into the same feature space, where it is assumed that
some association could be found. Nevertheless, when these ap-
proaches are applied to the problem of heterogeneous feature se-
lection, they simply neglect the distinctions among the intrinsic
structures of various feature representations extracted from dif-
ferent modalities. Intuitively, it is an unreasonable hypothesis.
Therefore, a better framework needs to be developed for hetero-
geneous feature selection. This is the second focus of our work
here.
Concentrating on the two main issues mentioned above: 1)

how to integrate the discriminative feature representations ob-
tained in different ways into a unified form of feature repre-
sentation, and 2) how to evaluate each feature group and se-
lect the relevant features for the task under consideration. In
this paper we propose a novel feature selection framework by
combining multi-modal deep neural networks with sparse group
lasso. With the multi-modal deep neural networks, the structure

of the heterogeneous features which may be hidden in a com-
plicated high dimensional and nonlinear space, can be projected
into a new linear space. Then the feature selection is achieved
through solving an optimization problem with an L1 regular-
ization together with an additional regularization which encour-
ages sparsity on feature groups. An importance weight for each
feature group will be obtained and based on which the irrele-
vant feature groups are filtered out. We applied our method to
three real world datasets with several irrelevant noisy feature
groups mixed for image classification tasks. Experimental re-
sults show that this framework can discover the relevant fea-
ture groups effectively and achieves better classification accu-
racies compared with several baseline approaches for heteroge-
nous feature selection.
The remainder of this paper is organized as follows.

Section II reviews some important and related work on mul-
tiple feature integration and heterogeneous feature selection
including the MKL method, structured sparse representation,
and deep neural networks. Section III presents the proposed
framework for grouped feature selection with multi-modal
neural networks and sparse group lasso. Experimental results
and analysis are given in Section IV. Section V draws the
conclusions and gives a discussion on future work.

II. RELATED WORK

Before introducing our heterogeneous feature selection
framework, we review some works related to multiple feature
integration and feature selection on account of some crucial
concepts and key ideas based on which our framework is
established.

A. Multiple Feature Integration With MKL
For real world data such as images, the intrinsic structure of

most of the feature descriptors extracted is often embeded in a
high dimensional and nonlinear space. To reduce the dimension-
ality of the features, several kernelization based methods have
been proposed [25], [26]. Combinedwith the support vector ma-
chine (SVM), these approaches perform well in processing high
dimensional features. However, these approaches concentrate
on learning single kernel and neglect the distinctions between
the different feature groups in the new feature space.
Different from the single kernel methods discussed above, the

MKL method learns a combination of multiple kernel functions
[27], [28]. Let be the learning set, where is the
target value for sample . Define as a set of base
kernel functions. The common MKL problem for binary classi-
fication can be formulated as

(1)

(2)

where is the weight of the kernel function , and
are coefficients to be learned from the given training data. For

multiple feature groups obtained from the same pattern, each
one could be taken as the input of a base kernel function .
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How to get an optimal , in other words, how to obtain an op-
timal combination of all the kernel functions is an important
problem.
A simple combination is to assign each kernel function the

same weight. However, this method ignores the different ef-
fects of the distrinct features on the entire model. In [4], the
MKL problem is addressed with an additional constraint on the
weights of the base kernels. This constraint encourages sparsity
on the combination of the kernels. In [29], a novel MKL dimen-
sionality reduction framework is presented, where the optimal
base kernel ensemble coefficients are determinined with
graph embedding. These approaches learn an optimal weight for
each kernel, however, for heterogeneous feature selection, the
base kernels used in these methods need to be predefined manu-
ally. In practice, choosing a proper kernel for each feature group
is an intractable and challenging problem.

B. Heterogeneous Feature Selection With Structural Sparsity
Many high-dimensional features of real world data could be

represented by a subset derived from the set of elemental de-
scriptors. This has led to the development of sparse representa-
tion based algorithms for feature selection. Tibshirani [30] pre-
sented the popular lasso algorithm in 1996. It adds an additional
L1-norm penalty on the widely used least squares loss that en-
courages the sparsity of feature coefficients. Based on lasso,
many feature selection methods were proposed in computer vi-
sion and multimedia retrieval [18], [21], [22], [31].
The approaches mentioned above, however, concentrate on

the sparsity of the single basic element in the feature vector. For
the problem of heterogeneous feature selection, they ignore the
group property of the concatenated group features. Some studies
extended the L1-norm in lasso to -norm which facilitates
group sparsity when , [32], [33]. Yuan and Lin [34] pro-
posed group lasso by considering the group structure existing in
the entire feature vector. The model yields an optimal solution
to the feature selection problem where some feature groups may
be dropped according to the sparsity coefficient . In [35], Wu
et al. extended the group lasso with the logistic regression for
heterogeneous high dimensional feature selection.
The group lasso has also been further extended to sparse

group lasso. For example, Friedman et al.[36] presented a
group lasso model with an L2-norm regularization which
yields sparisty in intra-group and inter-group simultaneously.
With sparse group lasso, not only some feature groups will be
dropped but also some features within the remaining groups will
be removed. Similarly, Wu et al.[19] presented a multi-label
boosting framework with structural group sparsity, which
yields the selection of heterogeneous features. Peng et al.[37]
employed a similar idea on identifying the primary predictors
in integrative genomics study. For all these structural sparsity
based methods, the original feature groups are concatenated
into a new long feature vector. This may be inappropriate
since the different feature groups are derived from distinctive
channels of the original data that have different distributions.

C. Feature Transformation With Deep Neural Networks
Recently, deep learning has become a hot spot in machine

learning research for its success in many fields such as image

or speech recognition and information retrieval. Given different
data, instead of designing a handcraft feature representation, a
deep learning algorithm tends to learn a good abstract represen-
tation for the current task with a series of nonlinear transfor-
mations. A typical deep architecture consists of several hidden
layers, and a hierarchical representation can be learned from the
original inputs with these hidden layers.
Hinton and Salakhutdinov [38] developed effective algo-

rithms for deep learning in 2006. In the following years, deep
learning has attracted much attention thanks to its strong ability
in feature learning. There are also some works on multi-modal
information integration using deep models. Ngiam et al.[14]
present a bi-modal deep auto-encoder which learns a joint
feature representation from audio and video simultaneously.
They apply their model to cross modality learning and bi-modal
fusion. Srivastava and Salakhutdinov [15] propose a model of
multi-modal Restricted Boltzmann Machines (RBM). Similar
to the work of [14], with this model, a joint representation
could be obtained from the two given modalities: image and
text. First, the two branches of their networks are pre-trained
separately in a completely unsupervised fashion. An additional
layer is added on the top of the two pre-trained branches and
then a RBM is constructed to fine-tune all the layers with
back-propagation. In this way, a joint distribution over images
and text is learned. In [39], a multi-source deep network is
constructed to integrate multiple information and applied to
human pose estimation. In this work, multiple less abstract
conventional representations for human pose estimation are
refined with deep networks for extracting more abstract rep-
resentation on the concept level. A fusion representation is
learned simultaneously and used for the final prediction. Wu
et al.[17] use mutlimodal deep neural networks to learn a
combined non-linear similarity function. They trained multiple
deep denoising autoencoders for different low-level features in
an unsupervised manner. In the fine-tuning stage, an optimal
combination of modality independent non-linear similarity
functions is learned. Zhou et al.[16] combine multi-modal deep
neural networks with conditional random fields (CRF) and
applied it to dialogue act recognition by using multiple fea-
tures simultaneously. Similarly, by treating different low-level
features as different modalities, the deep networks are used
for learning better latent representations. Then a CRF model is
used for discovering the correlations across labels.
However, all these approaches exploit additional hidden

layers or other shallow models for integrating multiple latent
features learned by the base multi-modal networks. They
concentrate on how to take advantage of multiple features
effectively and care little for the various impact of different
modalities on the performance of the final recognition tasks.The
key difference between our approach and the approaches men-
tioned above is that we train a unique sub-network for every
feature group (modality) while all these sub-networks share
the same optimization objective in the back-propagation period
of the fine-tuning stage. Through the multiple nonlinear trans-
formation with these sub-networks, we aim to obtain a unified
high-level abstract representation on the concept level for each
type of original feature representations. These sub-networks
are combined to construct a multi-modal neural networks.
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Fig. 2. Architecture of the proposed feature selection framework, composed of
multi-modal neural networks and sparse group LASSO. The multi-modal neural
networks is shown in the red dashed box.

Different from some fusion networks [14], [15], we do not set
any fusion layers on the top of entire networks.
In addition, the major barrier to handling multi-modal infor-

mation for conventional feature selection with regularization
is the heterogeneity existing among different modalities. How-
ever we eliminate this negative impact by mapping the hetero-
geneous modalities into a latent concept space with the elab-
orate multi-modal deep networks. This is another key differ-
ence between our framework and the exclusive feature learning
methods with sparse representation and regularization, such as

-norm. In the proposed framework, we utilize these multi-
modal networks and the sparse group lasso jointly to select the
feature groups that are relevant to classification tasks.

III. PROPOSED GROUPED FEATURE SELECTION FRAMEWORK

In this section, we present our framework combining
multi-modal deep neural networks with sparse group lasso
(MMNNSGL) for grouped feature selection.

A. Model Architecture
Fig. 2 illustrates the architecture of the proposed feature in-

tegration and selection framework. The framework consists of
two main modules: Multi-Modal Neural Networks and Feature
Selection Component. In addition, a classifier is attached on
the top for classification tasks in this paper. The core of the
entire framework is the module of Multi-Modal Neural Net-
works which is responsible for extracting abstract feature rep-
resentations. As shown in Fig. 2, this module includes multiple
sub-networks, i.e. the low-level branches in the whole architec-
ture. Similar to the MKL method where every modality is al-
located a unique kernel, we assign heterogeneous sub-networks
to different modalities These branch sub-networks differ from
each other in the construction of hidden layers, whereas they
share the same optimization criterion in the objective function
layer. The Feature Selection Component aims to find the op-
timal weights for all the feature groups by solving the optimiza-
tion problem with sparse group lasso. As a result, the features
with small weights are dropped out. The top of the framework
is the module of classifier, here SVM and logistic regression are
often used.
Each independent modality is characterized by a single fea-

ture group, and then these different modalities are sent to dif-
ferent branches of the Multi-modal Neural Networks, yielding

Fig. 3. Illustration of the structure of the sub-networks. In the pre-training
stage, we train the branch sub-networks (including those layers in the red box)
as stacked denoising auto-encoders layer-wisely. In the fine-tuning stage, we
train the branches and the shared objective function layer overall as multilayer
perceptron with back-propagation.

refined feature representations with multiple nonlinear transfor-
mations based upon the given original modalities. When all the
feature groups are transformed by the multi-modal neural net-
works, the outputs of the refined features extracted from the
top layer of each branch are concatenated into a new feature
vector. Then the Feature Selection Component takes this con-
catenation as its input and derives an optimal solution of the
weight vector. According to this weight vector, the most rele-
vant feature groups with respect to the current task are picked
out. Finally, we use these selected features in the final recogni-
tion task. In the following sections, we will describe and ana-
lyze the Multi-Modal Neural Networks and the Feature Selec-
tion Component in detail.

B. Heterogeneous Sub-Networks for Extracting Homogeneous
Feature Representation

For many approaches of heterogeneous feature selection and
multiple feature integration mentioned in previous sections, the
primary obstacle that hinders them from getting better perfor-
mance is the heterogeneity of the discriminative feature groups.
Recently, deep learning has been widely applied in machine
learning for its attractive ability in feature extraction and trans-
formation. A deep learning algorithm is usually composed of
multiple nonlinear transformations for projecting the original
inputs into a new feature space. In our proposed framework, we
use deep learning to extract homogeneous features with the het-
erogeneous sub-networks. Fig. 3 illustrates the intrinsic struc-
ture of the sub-networks. The Multi-Modal Neural Networks
are composed of an Objective Function Layer at the top level,
where a loss function is defined, and multiple sub-networks at
the lower levels i.e. branches. In this way, the heterogeneous
feature groups are cast into a unified representation where the
heterogeneity across these groups is eliminated.
To process different data, several architectures have been

developed to construct the internal structure of the deep neural
networks, including deep neural networks (DNN) [40], deep
belief networks (DBN) [41], stacked denoising autoencoders
(SDA) [42], and convolutional neural networks (CNN) [43].
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Fig. 4. Illustration of the denoising autoencoder. The inputs are corrupted by a
corruption map , and we reconstruct the original input from this corrupted .
We train all the hidden layer by minimizing the reconstruction error between
the uncorrupted input and the reconstructed .

With these deep architectures, different performance can be
achieved for a variety of data sources. In addition, the final
performance of these models is affected by the choice of the
number of hidden layers and hidden nodes. Clearly, considering
the intrinsic distribution of different modalities, it would be
desirable to construct heterogeneous neural networks for the
heterogeneous modalities. In our model, we regard each feature
group as an independent modality and assign it one of the
sub-networks (branches). The structures of the hidden layers
and the number of hidden nodes are different. Moreover, in the
sub-networks constructed for different modalities, we can ex-
ploit different basic deep architectures. For example, the CNN
performs well in processing image raw data, while the SDA
produces good performance for numerical data with noise. With
these heterogeneous sub-networks, we can deal with multiple
discriminative feature groups and train appropriate artificial
neural networks for different modalities.
In this paper, we choose SDA as the base deep architecture for

the sub-networks as the inputs are numerical vectors. There are
two stages for training the networks: unsupervised pre-training
stage and supervised fine-tuning stage. As shown in Fig. 3, de-
noising autoencoder is used to pre-train the sub-networks in the
pre-training stage. The denoising autoencoder is a variant of au-
toencoder. Fig. 4 illustrates the basic idea of a denoising au-
toencoder. Denoising autoencoder corrupts the given original
input vector into a noisy version by a corruption map-
ping of . Then the hidden units are encoded as

, where denotes a nonlinear transforma-
tion function, is the weight matrix and is the bias vector.
The nonlinear function is often set as or

. Finally, the hidden unit is decoded into the
reconstruction of . The hidden layer is trained
by optimizing the parameters of the model ( ) such
that the reconstruction error is minimized. According to
the distribution assumption of the input, the reconstruction error

is computed as either the traditional squared error

(3)

or the cross-entropy function

(4)

In this way, all the hidden layers are trained layer-wisely in the
pre-training stage and the outputs of each trained layer are used
as the inputs of the next layer in the training period.

However, our objective is to transform the discriminative fea-
ture groups into homogeneous feature representations. These
low-level features convey different information of the same con-
cept. It is not trivial to find the connection between them directly
from a relatively low semantic level. Nevertheless, these hetero-
geneous modalities could be associated with each other easily
from the higher concept level. Actually, the concept prior is con-
tained within supervised information, such as labels, pair-wise
similarity constraints. Therefore, an objective function layer,
shared by all the sub-networks, is set at the top level of theMulti-
Modal Neural Networks. We introduce this auxiliary layer to
utilize the given labels and establish the intrinsic link among
multiple modalities, which is expressed in the form of objective
function to be optimized according to the current pattern recog-
nition task. In the fine-tuning stage, this top layer is added into
the sub-networks and all the parameters are fine-tuned with the
back-propagation algorithm to minimize the loss function. De-
pending on the given recognition task, a variety of loss functions
can be adopted. In this paper, the prediction error defined on the
multi-class classification tasks is considered. Given a -class
classification task, we suppose the input sample has features
totally. The top layer has the following parameters: the weight
matrix of and the bias vector of . The loss
function of the negative log-likelihood of the softmax regres-
sion is calculated as

(5)

where denotes the -th sample and is its label indicator.
If the -th sample belongs to class , the corresponding indi-
cator . denotes the -th row of the weight matrix

and is an indicator function whose value is 1 if the -th
sample belongs to the -th class; otherwise, 0. For convenience,
we slightly abuse the notation for to denote the input of the
objective function layer. The actual input is the latent represen-
tation extracted from the top layer of the sub-network, as
shown in Fig. 3. We use gradient descent to minimize the loss
and fine-tune every sub-network with back-propagation. Specif-
ically, to avoid the interference across modalities, we connect
each sub-network to the objective function layer with part of the
nodes in this layer. In terms of implementation, we can pre-train
and fine-tune different sub-networks separately. The only con-
nection across modalities is the same concept prior (i.e. label
information). This auxiliary layer is used only for fine-tuning
all the networks and it is discarded once all the networks are
well trained.
In this way, we fine-tune the whole sub-networks to yield

high-level abstract feature representations for the classification
task. After a series of non-linear transformations, these abstract
features are able to express complex patterns. With this addi-
tional auxiliary layer in the fine-tuning stage, we combine the
concept prior with deep generative learning. Meanwhile, we ob-
tain the refined feature representations from the top layer of each
branch sub-network, on a group-by-group basis. These new fea-
ture representations are concatenated as the input of the feature
selection component.
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C. Feature Group Evaluation and Selection

Since the module of Multi-Modal Neural Networks has trans-
formed the original feature representations into multiple homo-
geneous vectors, the feature selection component will evaluate
these feature groups and select the most relevant subsets for
the current pattern recognition task. Accounting for the grouped
property in the refined feature descriptors, we exploit the sparse
group lasso for grouped feature selection. It should be noted that
for presentation clarity, in this subsection, we abuse the notation
for to denote the refined features obtained in previous section.
Given a training set of

consisting of samples of classes, where
denotes the -dimen-

sional feature vector refined previously by the multi-modal
networks for the -th sample,

is the corresponding label indicator,
if sample belongs to class ; otherwise, . Let

denote the training data
matrix, and
be the label indicator matrix. Suppose the -dimensional
feature vector is divided into non-overlapping groups
and denotes the size of the -th feature group. Define

as the coefficient vector for
label , where is the corresponding coefficient subvector of
group , and as the features of the training data
corresponding to the -th group. The grouped feature selection
problem for the -th label indicator can be formulated as the
following optimization task:

(6)

where is the loss function, and is the regulariza-
tion. According to the training data and the specific task, the
loss function could take different forms. In this paper we con-
sider the task of image classification and therefore the logistic
loss is applied

(7)

where is the intercept. The regularization in (6) is formu-
lated as

(8)

where and are regularization parameters, and the hyper-
parameter is the weight of feature group and always set as
the squared root of the feature group size .
The regularization of (8) includes two parts: common

L1-norm penalty and an additional penalty which encourages
sparsity on the group level of features. In other words, the
regularization in (8) leads to sparsity in both inter-group and
intra-group features. Not only some feature groups but also
some features within the same group are discarded if their
weights are zero. The features whose weights are nonzeros are
selected.

Fig. 5. Sample images from the adopted datasets.

Fig. 6. Number of images in different classes in the adopted datasets. (a) An-
imal-10. (b) NUS-WIDE-Object. (c) MSRA-MM.

Let denote the logistic loss in (7), and define
as the penalty terms of (8). The optimization problem could be
defined as a new form

(9)

Treating the penalty as a Moreau-Yosida regularization,
Liu and Ye [44] proposed an efficient algorithm to solve the
optimization above and provided related lemmas and detailed
proofs in their paper. We exploit the implementation of this
method provided in the toolbox of SLEP.1 At each iteration, it
only needs to evaluate the function value and the gradient. The
algorithm converges with a linear time complexity, thus it could
process large-scale data efficiently.

1[Online]. Available: http://www.public.asu.edu/jye02/Software/SLEP/
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TABLE I
FEATURE GROUPS OF ANIMAL-10 DATASET

TABLE II
FEATURE GROUPS OF NUS-WIDE-OBJECT DATASET

Algorithm 1 Feature Group Evaluation with Refined Feature
Representations

Input: Training set ,
Label descriptors matrix

.
Output:Weight vector of all features ,

Importance vector of feature groups
.

For label

End For

For each feature group

End For

Algorithm 1 describes the procedure for evaluating the im-
portance of feature groups output from the multi-modal neural
networks. In Algorithm 1, denotes the probability that
the sample belongs to class . Each time we get one weight
vector for the corresponding label indicator by solving the

optimization problem. However, there exist multiple label in-
dicators. To evaluate the relevance of the feature to the current
task for all the labels, we introduce another weight for
each label and obtain the final weight vector for the features.
Then we obtain the importance for each feature group

(10)

where denotes the -th feature in the -th group and is
the size of Group . According to this importance vector, the
feature groups with nonzero weights are selected and they are
considered more relevant to the current task. These features are
used for the final recognition task. At the same time, if the spar-
sity parameter , some features within the same group are
also left out in order to improve the efficiency of the model.

IV. EXPERIMENTS

In this section, we demonstrate the effectiveness of the pro-
posed framework for classification tasks with three real-world
image recognition dataset.

A. Data Description
The three datasets we used are: Animal with Attributes, NUS-

WIDE-Object andMSRA-MM2.0. Fig. 5 presents some sample
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TABLE III
FEATURE GROUPS OF MSRA-MM DATASET

TABLE IV
CLASSIFICATION ACCURACIES WITH INDIVIDUAL

FEATURE GROUP OF ANIMAL-10

images of those datasets. Note that, for MSRA-MM 2.0, we are
unable to provide the raw images here, as it is already closed
and we have only got its image feature matrix.
• Animal-10 dataset
The Animal dataset2 contains 30475 images of 50 animal
classes from Flickr and Google Picasa. We select 9607 im-
ages of 10 classes from the 50 animal classes for image
classification and rename this subset as Animal-10. The
number of each class in Animal-10 is presented in Fig. 6(a).
We randomly take 8000 images for training and the re-
maining 1607 images for testing. Table I lists all the fea-
ture groups we adopted in our experiments including seven
commonly used meaningful feature groups and additional
seven noisy feature groups. We obtain seven types of com-
monly used feature descriptors for every image of this
dataset (1-7 in Table I). To demonstrate the effectiveness
of the proposed framework for filtering irrelevant features,
we add another five different types of noise groups (8-12
in Table I). We also add some Gaussian noise to two orig-
inal feature groups, with the noise added here following a
normal distribution of .

2[Online]. Available: http://attributes.kyb.tuebingen.mpg.de/

TABLE V
CLASSIFICATION ACCURACIES WITH INDIVIDUAL

FEATURE GROUP OF NUS-WIDE-OBJECT

TABLE VI
CLASSIFICATION ACCURACIES WITH INDIVIDUAL

FEATURE GROUP OF MSRA-MM

• NUS-WIDE-Object Dataset
The NUS-WIDE-Object dataset3 consists of 30000 images
from Flickr. Text description tags are attached to every
image by the authors of the photos. These 30 thousands im-
ages are classified into 31 classes and the number of images

3[Online]. Available: http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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TABLE VII
CLASSIFICATION ACCURACIES COMPARISION ON THREE IMAGE CLASSIFICATION TASKS

in every class is presented in Fig. 6(b). We take 20000 im-
ages randomly as the training set and the remaining 10000
images as the test set. Table II lists all 14 feature groups we
adopted for this dataset. Five commonly used feature de-
scriptors are extracted from this dataset (1-5 in Table II).
Besides, we extract two document feature representations
[55] from the text photo descriptions (6,7 in Table II). Same
as the Animal-10 dataset, we get extra seven noisy feature
groups for this dataset and adopt them in our experiments
(8-14 in Table II).

• MSRA-MM Dataset
The MSRA-MM dataset4 includes 1 million images
collected from Microsoft Live Search. There are 50000
labelled images categorized into 100 concepts. We choose
8607 images of 14 classes from the 100 classes for image
classification. Fig. 6(c) shows the number of images from
each class in this subset. We randomly take 7000 images
for training and use the remaining in test. This dataset
provides six types of visual features for each image.
Table III lists its feature groups. Similarly, we add extra
seven noisy feature groups into this dataset in our experi-
ments (7-13 in Table III).

B. Experimental Setup

We apply our MMNNSGL framework to the three datasets
mentioned above and compare the proposed method against
four other methods: (1) SVM with the concatenation of all orig-
inal multiple feature groups, (2) MKL method [4], (3) MtBGS
[19], (4) Group Lasso with Logistic Regression (GLLR) [20].
We denote themethod of using support vector machine classifier
with the original feature concatenation by SVM and take its per-
formance as a baseline. For method of GLLR, we utilize group
lasso for logistic regression to select grouped features from the
original features and use SVM to classify the test set with the se-
lected features. Similarly, we take SVM as the basic classifier of
our framework. We denote these two methods by GLLR+SVM
and MMNNSGL+SVM, respectively.
In addition, to demonstrate the feature extraction ability of

the multi-modal neural networks, we present the classification
performance of three basic methods with individual feature
group as baselines: (1) SVM with the original individual fea-
ture group, (2) SVM with the refined features, (3) the logistic
regression classifier with refined features. We denote them
by SVM, MMNN+SVM and DNN, respectively. The logistic
regression classifier is attached to the objective function layer
of the multi-modal neural networks in our proposed framework.
As to SVM, we randomly take a small validation set and seek

4[Online]. Available: http://research.microsoft.com/en-us/projects/
msrammdata/

the optimal kernel and corresponding parameters according to
the classification accuracy on the validation set. This procedure
is similar to cross-validation. We have tested the RBF kernel
and linear kernel for every modality. We search the optimal
parameters and in the range of [0.01, 5] and [0.1, 10]
respectively.
We implemented the MKL learning algorithm for multi-class

classification on the foundation of simpleMKL. We also imple-
mented the key algorithm of MtBGS and applied it to single
label multi-class image classification tasks. For MKL method,
an independent kernel was set for each individual feature group.
We have tried some different kernels including RBF kernel,
Polynomial kernel and linear kernel. We selected the kernel for
every modality according to the classification performance on a
small validation set. Then a relatively optimal kernel was allo-
cated to each modality. In the method ofMtBGS, the parameters
( , ) are optimized in the range of to 1 with a step of
0.005. Similarly, the parameters of sparse group lasso exploited
in our feature selection component are tuned in the same range
of values.
The GLLR and MtBGS are implemented with the sparse

learning package of SLEP. The SVM in all our experiments
is implemented with the LIBSVM5 software package. We
implemented the multi-modal neural networks with the deep
learning library of Theano.6 Considering the computational
demand for training the multi-modal neural networks, we run
our algorithm on GPU to accelerate the training procedure.

C. Experimental Results
First we evaluate the proposed framework using different

single feature groups to verify the capability of multi-modal
neural networks in feature extraction. Tables IV,V and VI show
the classification accuracies with different features on three
adopted datasets. The bold numbers denote the best accuracy
of the compared methods.
Obviously, for all the different feature groups except for

the random noise groups, using refined features achieve better
performance than using the original features. For those noisy
feature groups obtained by mixing the original features with
Gaussian noise, using the refined features extracted by the
sub-networks of our multi-modal neural networks gives much
better classification accuracies than using the un-refined fea-
tures. This also demonstrates the denoising effectiveness of the
deep neural networks. The results also confirm that through the
sub-networks we have obtained better feature representations
for each individual feature group. We also notice that with the
same refined feature representation, using SVM usually gets

5[Online]. Available: http://www.csie.ntu.edu.tw/%7ecjlin/libsvm/
6[Online]. Available: http://deeplearning.net/software/theano/
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better classification performance than the method of logistic re-
gression. For this reason, we set the SVM as the basic classifier
for our framework finally.
On the other hand, from the results we can see that these noisy

features can have negative impact on the final classification ac-
curacy if we use multiple feature groups jointly for the task. To
demonstrate the ability of the proposed framework for filtering
the irrelevant features, we conduct a series of experiments and
compare our method with other methods. The results are shown
in Table VII. We also give the results of the method that uses
SVM to classify the test set with the refined representations of
multi-modal networks without feature selection. The method is
denoted as MMNN+SVM in Table VII.
Empirical evidence shows that our framework outperforms

other methods significantly in all the three datasets. At the same
time, we can also find that those noisy feature groups deteriorate
the performance of the models to certain degrees. For the same
SVM, using some single type of feature is better than using all
the feature groups.
To show the effectiveness of the feature selection in the com-

pared methods, we investigate the weights of the features ob-
tained by different methods. For the MKL method, the algo-
rithm yields a weight for the kernel of each feature group. How-
ever, the methods of MtBGS, GLLR and our MMNNSGL yield
a weight corresponding to each single dimensionality in the fea-
ture groups. We calculate the weight for each feature group de-
fined as in Algorithm 1 to compare the effectiveness of these
methods using feature selection. Fig. 7 shows the weight for
each feature group obtained by different methods on the three
datasets, respectively.
It can be observed that our method can effectively filter the

noisy feature groups that are deemed to be irrelevant to the final
classification task. All the random noise and the noisy original
feature groups are weighted zero in all the three datasets. It en-
dows only those feature groups that are relevant and informa-
tive to the classification task with a proper value. In contrast,
the other three methods assign incorrect weights to those irrel-
evant features because of the distinction of the heterogeneous
features. For example, with the GLLR method using the orig-
inal features, high weights have been assigned to the group of
random noise. Even though the MKLmethod assigns every fea-
ture group with a different weight, it cannot select those feature
groups that are more relevant to the classification task. We no-
tice that the results of MtBGS are close to ours. For the dataset
of Animal-10,MtBGS assigns a zero weight to the random noise
group but a relatively high weight to the noisy feature group. For
the NUS-WIDE-Object dataset, MtBGS sets the weights for all
the feature groups to nonzeros.With higher sparsity coefficients,
MtBGS can filter out most of the feature groups, nevertheless it
gives a poor classification performance.
After we obtain the importance weights of the individual fea-

ture groups, a feature group is selected if its weight is larger
than a predefined threshold ( in our experiments). We be-
lieve that the importance weight has the potential to quantify the
relevance of each feature group to the given task. To verify this
hypothesis, we conduct extra experiments. For each dataset, we
sort the feature groups by the importance value in a descending

Fig. 7. Weights of different feature groups obtained by the methods compared,
which, from top left to bottom right, are the MKL, MtBGS, GLLR, and
the proposed method, respectively. (a) Animal-10. (b) NUS-WIDE-Object.
(c) MSRA-MM.

order. We then add each single feature group into a concate-
nated group feature vector one by one. The test set is then used
to evaluate the classification performance of using the concate-
nated feature groups with the SVM classifier. The results are
illustrated in Fig. 8. The red triangle denotes the position where
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Fig. 8. Classification accuracy changes with respect to the inclusion of the fea-
ture group with lower weights. We sort the feature groups shown in Tables I, II,
and III, respectively, by their importance values derived from our MMNNSGL.
The number on the horizontal axis shows the indices of the sorted refined feature
groups. The red triangle denotes the position from which the feature group with
zero weights is included. (a) Animal-10. (b)NUS-WIDE-Object. (c)MSRA-MM.

the feature groups with zero weights are added. It is evident that
we could even achieve a relatively better performance by using
the feature descriptors from only a few feature groups. Those
groups with zero weights have little effect on the classification
performance of our model. We can also see that with the help
of deep networks in our model, the overall performance drops
only slightly in spite of adding irrelevant feature groups. This
further confirms the effectiveness of feature refinement with our
multi-modal neural networks.
All the empirical results show that the proposed frame-

work can transform the original heterogeneous features into
a new form that possesses a better discrimination ability. The
MMNNSGL method has the ability to select those features that
are more relevant to the image classification tasks considered.

V. CONCLUSION AND FUTURE WORK

We have presented a method for combining deep neural net-
works with sparse representation and proposed theMulti-Modal
Neural Networks with Sparse Group Lasso framework for
grouped heterogeneous feature selection. Different from some
existing methods applied to multiple feature integration, such
as MKL and Group Lasso based methods, the proposed frame-
work exploits the distinction among the heterogeneous features

and their different importance for the considered recognition
tasks. The main advantage of the proposed framework lies
in the powerful ability in feature transformation. With the
multi-modal neural networks, a new unified representation is
extracted from each original feature group where the hetero-
geneity across the groups is eliminated. An extended method
of sparse group lasso is used to learn the weight or importance
of each feature with the unified feature representations. Finally,
the most relevant features are picked out for the given recog-
nition tasks. We have evaluated our framework on three real
world datasets for image classification. Experimental results
have demonstrated the improved performance of our approach
in grouped feature selection, multiple feature integration, and
classification accuracy, as compared with several baseline
methods.
Despite the fact that we only applied the proposed

MMNNSGL framework to the single-label multi-class clas-
sification problem, it could be further extended to other tasks
such as multi-label categorization or retrieval tasks. For these
tasks, the loss function may have to be defined in a different
way according to their properties. On the other hand, we have
obtained the weights of each feature group and selected the
feature groups with weights of high values. However, the
information of their importance has not yet been exploited to
improve the classification performance, which is a question
worth further studying.
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