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Abstract—Environmental Sound Classification (ESC) plays a 
vital role in machine auditory scene perception. Deep learning 
based ESC methods, such as the Dilated Convolutional Neural 
Network (D-CNN), have achieved the state-of-art results on 
public datasets. However, the D-CNN ESC model size is often 
larger than 100MB and is only suitable for the systems with 
powerful GPUs, which prevent their applications in handheld 
devices. In this study, we take the D-CNN ESC framework and 
focus on reducing the model size while maintaining the ESC 
performance. As a result, a lightweight D-CNN (termed as LD-
CNN) ESC system is developed. Our work lies on twofold. First, 
we propose to reduce the number of parameters in the 
convolution layers by factorizing a two-dimensional convolution 
filters (L×W) to two separable one-dimensional convolution 
filters (L×1 and 1×W). Second, we propose to replace the first 
fully connection layer (FCL) by a Feature Sum layer (FSL) to 
further reduce the number of parameters. This is motivated by 
our finding that the features of the environmental sounds have 
weak absolute locality property and a global sum operation can 
be applied to compress the feature map. Experiments on three 
public datasets (ESC50, UrbanSound8K, and CICESE) show that 
the proposed system offers comparable classification 
performance but with a much smaller model size. For example, 
the model size of our proposed system is about 2.05MB, which is 
50 times smaller than the original D-CNN model, but at a loss of 
only 1%-2% classification accuracy.  

Keywords—Environmental Sound Classification, Convolutional 
Neural Network, Lightweight Dilated Convolutional Neural 
Network, Spatial Factorization  Convolution Layer, FeatureSum 
Layer 

I. INTRODUCTION  

Environmental Sound Classification (ESC) has become 
increasingly popular recently, with many potential 
applications, such as abnormal sound detection, human 
emotion estimation and robot interaction. 

Deep learning based ESC systems have been proposed and 
achieved the outstanding classification accuracy [1, 2, 4, 5]. 
Typically, 1D convolution is used to extract high-level feature 
information from mel-spectragram automatically [1]. Results 
showed that 1D convolution based ESC performs much better 
than the traditional SVM based ESC. Dai et al. [2] presented a 
very deep convolutional Neural Network (CNN) ESC model 

(up to 34 weight layers) that directly uses raw waveforms as 
inputs [3], and their experimental results showed that the 
CNN-ESC method outperforms the traditional SVM-ESC 
method with human designed MFCC features by 30% 
accuracy. Moreover, Piczak [4] designed a shallow ESC 
model using 2D convolution which consists of two 2D 
convolutional layers with max-pooling and two fully 
connected layers [4] and they obtain 64.5% accuracy on the 
ESC50 dataset. In our previous work [5], a dilated convolution 
network (D-CNN) ESC model was developed in which 
enlarged convolution filters are applied for extracting long 
contextual feature information, and it surpasses the method 
proposed by Dai et al over 10% accuracy. 

Although these existing DNN-based ESC systems achieve 
good classification accuracy, they normally have large model 
size. For illustrating purpose, the model size of several state-
of-art deep neural network based ESC systems is listed in 
Table I. It is clear that these existing models have a size larger 
than 100MB, which need powerful GPUs to compute and 
greatly limit their applications in handheld devices. 

TABLE Ⅰ. BASIC INFORMATION OF MAIN STREAM ESC SYSTEMS 

Reference ESC method Model size 
2017 ICASSP [2] Very Deep CNNs 128M 
2015 MLSP [4] PiczakCNN 105M 
2017 DSP [5] D-CNN 105.3M 

In this paper, we focus on the D-CNN ESC model and aim 
to reduce its model size while maintaining the ESC 
performance. As a result, we propose a Lightweight D-CNN 
ESC model (named as LD-CNN for short). Our contribution 
mainly lies on twofold. First, a spatial factorization 
convolution layer is used to reduce the number of parameters 
in the convolution layers of the D-CNN model by 
decomposing a two-dimensional convolution filters (L×W) 
into two separable one-dimensional convolution filters (L×1 
and 1×W). Second, a FeatureSum layer is introduced to 
replace a fully connection layer of the D-CNN model, which is 
able to further reduce the number of network parameters.  

1). Spatial factorization convolution layer: It is well-known 
that the size of receptive field in a CNN model significantly 
affects its ability in learning contextual and spatial feature 



information. Generally, the size of the receptive field is 
dependent on the size of convolution filters. However, large 
convolution filters usually require large number of parameters 
in the CNN model. For enhancing computational efficiency, 
the InceptionNet v2 has been proposed in Googlenet [6], where 
an N×N convolution filter is decomposed into two separate 
convolution filters with 1×N and N×1 size respectively. It is 
noted that two separate filters with 1×N and N×1 size can be 
used to obtain an equal size of the receptive field with an N×N 
convolution filter, while reducing the number of parameters in 
the convolution layers. In addition, a large number of 
experiments in Googlenet [6] have demonstrated that this kind 
of factorization would not have negative effect on the 
distribution of the extracted features if the same size of 
receptive field is retained. Bearing this concept in mind, we 
propose to decompose a two-dimensional convolution filters (L
×W) into two separate one-dimensional convolution filters (L
×1 and 1×W). As a result, the number of parameters in the 
convolution layer can be reduced significantly. 

2). FeatureSum layer: It is well-known that the fully 
connected layers (FCL) in CNN, such as AlexNet [16] and 
VGG [17], are modelled with a large number of parameters. 
Examining the property of general environmental sounds, we 
found that they have weak absolute locality in the time-
frequency spectrogram [7]. Hence, it may be inferred that the 
spatial information extracted in high-level feature maps does 
not contribute much to the final classification accuracy. 
Making use of this property, we propose a FeatureSum layer to 
replace the fully connected layer in the D-CNN ESC model. 
Specifically, a global sum operation is applied for each input 
feature map so that only the global statistical features of 
environmental sounds are preserved. The detailed design is 
given in Section II-B. 

II. THE PROPOSED METHOD 

In this section, we present the scheme of the proposed 
lightweight dilated convolutional neural network (LD-CNN), 
whose architecture is shown in Fig. 1.  

This network is a two-channel system, each with 8 layers 
including the input and the output layer. As shown in Fig. 1, 
two-channels have the same model structure. For the left 
channel, the input is the log-mel spectrum, while for the right 
channel, the input is the delta spectrum. The log-mel spectrum 
and the delta spectrum represent the static and dynamic 
features of sound events, respectively. As shown in Fig. 1, 
these two features are separately fed into the input layer of the 
right and left channel in the LD-CNN network. Followed by 
the input layer, there is a spatial factorization convolution 
layer (SFCL). The SFCL contains two separable layers, the 
first layer has 80 convolution filters with 57×1 size, while the 
second layer has 80 convolution filters with 1×6 size. Then a 
max pooling layer (MPL1) is followed by the SFCL. The 
pooling size and stride size is (4×3) and (1×3) respectively. 
After that, a dilated convolution layer (DCL) with 80 
convolution filters is used to increase the receptive field of the 
network. The size of these filters are 1×3. Next, an 80 
channels max pooling layer (MPL2) is used to generate more 
abstract features. The pooling size is (1×3) and stride size is 

set as the same used for MPL1. Followed by the MPL2, a 
FeatureSum Layer (FSL) is designed to compress high 
dimensional feature maps. In our design, there are no trainable 
parameters in FSL. The output of the FSL is a 1 × 80 
dimensional vector which is input to the fully connected layer 
(FCL) with 5000 neurons. Finally, an output layer with 
softmax activation function gives the classification result. 
Moreover, we use uniform initialization for fully connected 
layers, and normal initialization for convolution layers.   

 

Fig 1. Architecture of the LD-CNN model. 

In the following subsection, we will introduce the details 
of our LD-CNN model presented in Fig 1. 

A. The Spatial Factorization Convolution Layer (SFCL) 

The structures of the traditional convolution layer and our 
proposed spatial factorization convolution layer (SFCL) are 
shown in Fig. 2. 

From Fig. 2, it can be seen that our designed SFCL is a 
factorization of the traditional convolution layer (CL). Here, 
we denote L and W as the length and width of a convolution 
filter respectively, and Nc as the number of convolution filters 
in a convolution layer. 

A commonly used CL usually contains Nc filters with L×
W size. However, in our SFCL, the traditional convolution 
layer is factorized into two separable convolution layers as 
shown in Fig. 2 (b). The first layer contains Nc filters with L×
1 size and the second layer contains Nc filters with 1×W size. 



 
Fig 2. Illustration of (a) traditional convolution layer and (b) our proposed 
spatial factorization convolution layer (SFCL). 

 

Specifically, in the CL, the size of parameters U1 is 
calculated by: 

U1 = L×W×Nc                                         (1) 

In the SFCL, the size of parameters U2  is calculated by (2): 

U2 = L×1×Nc ＋ 1×W×Nc                            (2) 

Comparing (2) with (1), we could easily find that U2 is 
much smaller than U1. 

In our proposed LD-CNN ESC model, L and W are set to 
57 and 6 respectively, and Nc is set to 80. Then, we can get the 
following results: U1=57×6×80=27360 and U2= 57×1×80 
+ 1×6×80=5040. It is easy to see that U1 is more than 5 
times larger than U2. 

In addition, in order to intuitively illustrate and compare 
the ability of using the spatial factorization convolution layer 
for feature extraction, the feature maps extracted by the 
traditional convolution layer and the spatial factorization 
convolution layer are illustrated respectively through the T-
SNE visualization tool, which is shown in Fig. 3. From this 
figure, we can see that the features extracted by the spatial 
factorization convolution layer have similar distribution to 
those extracted by the traditional convolution layer, which 
indirectly verifies that the capability of our proposed spatial 
factorization convolution layer for feature extraction is 
maintained if the receptive field obtained by convolution 
layers remains the same.  

B. The FeatureSum Layer 

Usually, in traditional CNN models, the network 
parameters are mainly from the two fully connected layers in 
the higher layers. The structure of a traditional CNN model is 
shown in Fig. 4 (a). Let us define the following parameters: 
For feature maps generated from the second max pooling layer 
(MPL2), T and R are the length and width of each feature map 
respectively, Na is the number of feature maps. In addition, we 
set the number of neurons in the FCL1 and FCL2 to be the 
same, denoted as Nfc, and No is the number of neurons in the 
output layer. 

       

 
Fig 3. Illustration of the distribution of high-level features extracted by 
traditional convolutional layer  and our proposed SFCL (input audio file 
consists of 101 frames, two acoustic events: mouse click and keyboard typing. 
Each point represents one feature vector)  

 

Fig 4 (a) shows that in traditional CNN model, Na feature 
maps with T×R size output from the max pooling layer (MPL2) 
are directly transformed into the 1-dimensional vector with the 
size of 1×T×R×Na through a flatten operation [8] and then fed 
into the following fully connected layer (FCL1) with Nfc 
neurons. Followed by the FCL1, there is another fully 
connected layer (FCL2). Therefore, the size of parameters U3 

between MPL2 and FCL2 is calculated by (3): 

 U3 = (1×T×R×Na×Nfc +Nfc ) + (Nfc ×Nfc +Nfc )              (3) 

To reduce the size of parameters caused by the fully 
connected layers, a FeatureSum layer is proposed to replace 
the first fully connected layer (FCL1), which is shown in Fig. 
4 (b).  

 
Fig 4. Details of (a) two fully connnected layers  used in the traditional CNN 
model; (b) a featuresum layer and a fully connected layer used in our proposed 
CNN model. 

As shown in Fig. 4 (b), for the Na feature maps with T×R 
size generated from the MPL2, we make a featuresum 
operation for every feature map. The process of featuresum 
operation is illustrated in Fig. 5.  

For every feature map included in the Na feature maps, we 
denote bi as the sum value of features in the i-th feature map 
and aix as features in the i-th feature map. The featuresum 
operation calculates the sum value of the features in the i-th 
feature map and output it to the following layers. As 
environmental sounds have weak absolute locality in the time-
frequency spectrogram [7], using a more spatial abstract high-
level feature map would have less effect on the final 
classification accuracy. Therefore, based on this observation, 
the Featuresum operation calculate the statistic values of 
features like global pooling, and thus renders more abstract 
spatial feature maps. 



 
Fig 5. Illustration of the FeatureSum Operation (aij represents the j-th value in 
the i-th feature map, bi represents the value of the i-th neuron in the 
FeatureSum Layer). 

 

Through the Featuresum operation, the dimension of 
feature maps has been largely compressed.  

As shown in Fig. 4 (b), through replacing the FCL1 with a 
FeatureSum Layer (FSL), the size of parameters U4 between 
the MPL2 and the FCL2 is calculated by (4): 

 U4 = (1×1×Na×Nfc) +Nfc                    (4) 

Comparing (4) with (3), we could easily find that U4 is 
much smaller than U3, which means that our featuresum layer 
can effectively reduce parameters in the CNN model. 

In our LD-CNN model, the length T and width R of feature 
maps generated from MPL2 are 1 and 3 respectively, and the 
number of feature maps Na is 80. The number of neurons Nfc in 
each fully connected layer is 5000. Then, we can get the 
following results: U3=1×1×3×80×5000+5000 + 5000×
5000+5000=26210000 and U4 = 1 × 1 × 80 ×
5000+5000=405000. It is easy to see that U3 is more than 60 
times larger than U4. 

In addition, we visualize feature maps by the T-SNE 
visualization tool to intuitively compare the feature 
distribution with and without Featuresum layer. Fig. 6 shows 
that the feature distributions are changed slightly, which 
implies a similar discriminability for environmental sound 
classification. 

 
Fig 6.  Illustration of features maps output by the fully connected layer with 
and without the global sum operation (input audio file consists of 101 frames, 
two acoustic events: mouse click and keyboard typing. Each point represents 
one feature vector , other model parameters are kept the same). 

III. EXPERIMENTS AND RESULTS 

The performance of our proposed LD-CNN is evaluated 
and compared in this section. . The procedure of LD-CNN 
ESC system is shown in Fig. 7. In the testing stage, feature 
extraction module and audio segmentation module are the 
same as those in the training stage. Key steps are as follows: 

 

Fig. 7. Procedure of the LD-CNN ESC system 

1) Data augmentation module: At the beginning, raw 
waves of sound event are input into the data augmentation 
module to increase the size of the datasets. To mitigate the 
overfitting issue, time-stretch transforming method [5] is used 
to get slightly faster or slower audio examples. 

2) Feature extraction module: We use Hamming window 
to extract the log-mel spectrum and the delta spectrum from 
raw wave data, which follows the commonly used method of 
feature extraction as in [5].   

3) Audio segmentation module: Following the method in 
[5], the whole feature spectrogram of an audio event is split 
into several segments, which essentially increases the size of 
training data.  

4) Network model training module: All the segments 
generated from the audio segmentation module are used as 
input (i.e. mini-batch in turn) to train a suitable LD-CNN 
model for the ESC task. The SGD method [10] is used to train 
the LD-CNN network and the batch normalization operation 
[9] is used in the spatial factorization convolution layer. The 
learning rate and momentum of training stage is set to 0.01 
and 0.9 respectively. In addition, the cross entropy [10] is used 
as the loss function in the output layer. The key experimental 
settings are listed in Fig. 1 and more details of the LD-CNN 
are described in Section . Ⅱ  

5) Model testing module: The well-trained LD-CNN 
model is used to extract high-level feature maps and then 
classify these extracted features. Finally, in the output layer, 
the probability voting method is adopted to obtain the average 
of the posterior class probabilities for all the segments. Then 
the class with highest average posterior probability is chosen 
as the output class for this testing. 

A. Datasets 

In order to evaluate the performance of the proposed LD-
CNN, similar to D-CNN [5], we conducted several tests over 
three public datasets (ESC50, UrbanSound8K, and CICESE). 
Some statistical information of these three datasets including 
the split of training/testing datasets, duration time, and number 
of classes are shown in Table . As there is much difference Ⅱ
between the length of an audio file in different datasets, so the 
size of input feature map is chosen differently (UrbanSound8K: 
2×60×31, ESC50: 2×60×101, CICESE: 2×60×41) 

TABLE Ⅱ. BASIC INFORMATION OF DATASETS 

Datasets Classes Train/Test Duration Content 
UrbanSound8K 10 90%/10% 9.7 hours Surrounding 

sounds 
ESC50 50 80%/20% 2.8 hours Life sounds 
CICESE 7 75%/25% 14 min Indoor sounds

B.Experimental Comparison and Analysis 

1) Comparison with the state-of-the-art ESC methods 

We compare the classification accuracy and model size of 
the proposed LD-CNN with several state-of-the-art ESC 
methods. The results are shown in Table Ⅲ. It is clear to see 
that the size of the LD-CNN model is over about 50 times 
smaller than other state-of-the-art methods, while it nearly 
retains comparable classification accuracy on three datasets, 



which demonstrates that the LD-CNN offers a good tradeoff 
between the performance and the model size.  

TABLE .Ⅲ  COMPARISON WITH THE STATE-OF-THE-ART ESC METHODS 

ESC system UrbanSo
und8K 

ESC50 CICESE Network 
Size 

TF-CNN[1] - 55% - - 

Very Deep CNNs [2] 72% 48.4% - 128M 
PiczakCNN [4] 80.3% 64.5% 81% 105M 

D-CNN [5] 81% 68.5% 87.1% 105.3M 

LD-CNN (ours) 79% 66% 86% 2.05M 

 
2) Comparison of different lightweight networks 

Next, for ESC task, we compare the proposed LD-CNN 
with two general lightweight networks (Fully-CNN [11], 
DenseNet ESC [13]) and three other lightweight neural 
networks based on D-CNN through using different network 
compression operation (pruning-X [14], Depthwise Separable 
convolution [15], and LZ Coding [12]). Here, pruning-X 
means that 5000 neurons in each fully connected layer in D-
CNN are pruned into X according to the pruning method in 
[14]. The experimental results are shown in Table .Ⅳ   

TABLE .Ⅳ  COMPARISON OF DIFFERENT LIGHTWEIGHT NETWORKS 

ESC system UrbanSou
nd8K 

ESC50 CICESE Network 
Size 

Fully-CNN [11] 72% 60.8% 88% 16.7M 

LZ Coding [12] 81% 68.5% 87.1% 93M 

DenseNet [13] - 65.7% 81% 390.3KB 

pruning-2000[14] 80.3% 64% 85.7% 18.3M 

pruning-1000[14] 79% 62% 82.9% 5.3M 

DepthWise [15] 80% 67% 87.6% 103M 

LD-CNN (ours) 79% 66% 86% 2.05M 

From Table , we can see that, compaⅣ red with Fully-
CNN, our LD-CNN has smaller model size better or 
comparable classification accuracy. The main reason is that 
Fully-CNN uses many large convolution filters in every 
convolution layer, usually every layer with 1024 or 2048 
filters, which induce a high-computational complexity. 
Compared with DenseNet, our LD-CNN has larger model size 
but higher classification accuracy. The main reason is that 
DenseNet has no fully connected layers which gives smaller 
model size but less feature representation ability, especially 
for sound events with complex conditions (CICESE). 
Compared with DepthWise and LZ Coding methods, our LD-
CNN has much smaller model size. Obviously, DepthWise 
method only compresses parameters in convolution layer 
while retaining the same parameters in the fully connected 
layer. And LZ Coding method only compresses the storage of 
weight files on disk, which is less likely to achieve a very high 
compression ratio. Compared with the pruning-X compression 
methods, the proposed LD-CNN performs better both on the 
classification accuracy and the compression ability. The main 
reason is that the pruning-X method directly drops all 
relatively small weights in the fully connected layer which 
may cause feature information loss if they are not carefully 
selected. 

3) Effects of filter size in the Spatial Factorization 
Convolution Layer 

To evaluate the effect of the filter size (L and W) in Spatial 
Factorization Convolution Layer on ESC task, we conduct an 
experiment on three datasets. Specifically, we vary the length 
parameter L from 37 to 77 at the step size of 10 and vary the 
width parameter W from 4 to 8 at the step size of 1. The 
experimental results are given in Fig.8. From the experimental 
results, we have the following observations: 1) The filter size 
used in Spatial Factorization Convolution Layer has different 
impact on the ESC classification accuracy over three datasets. 
The range of variation is about 5% for three datasets. 2) With 
the increasing of L and W, the classification accuracy firstly 
goes up, reaches the maximum value and then drop down. The 
main reason possible is that a relatively larger filter size has 
stronger capability of extracting contextual information as 
well as frequency information in features of sound event. 
However, even larger filter size may introduce some unhelpful 
information since zero padding effect in convolutional 
operation. According to the results obtained in Fig 8, in our 
experiments, we set filter size L=57 and W=6, respectively. 

 
Fig 8.  The classification accuracy versus filter size in the Spatial Factorization 
Convolution Layer. 

IV. CONCLUSIONS 

In this paper, we have proposed a lightweight dilated 
convolutional neural network (LD-CNN) for environmental 
sound classification task. In LD-CNN, a spatial factorization 
Convolution Layer and a FeatureSum Layer have been 
developed to reduce the number of network parameters 
meanwhile maintain the performance of classification. 
Compared with the state-of-the-art D-CNN ESC methods and 
other lightweight networks for ESC task, our proposed LD-
CNN ESC system demonstrates competitive classification 
performance but with a much smaller model size. For example, 
our LD-CNN model size is about 2.05M, which is 50 times 
smaller than the original D-CNN model [5], but at the loss of 
only 1%-2% classification accuracy. Our future research will 
focus on improving classification accuracy of the lightweight 
convolutional neural network based ESC system. 
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