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Two common problems are often encountered in analysis dictionary learning (ADL) algorithms. The first one is that the original
clean signals for learning the dictionary are assumed to be known, which otherwise need to be estimated from noisymeasurements.
This, however, renders a computationally slow optimization process and potentially unreliable estimation (if the noise level is
high), as represented by the Analysis K-SVD (AK-SVD) algorithm. The other problem is the trivial solution to the dictionary, for
example, the null dictionary matrix that may be given by a dictionary learning algorithm, as discussed in the learning overcomplete
sparsifying transform (LOST) algorithm. Here we propose a novel optimization model and an iterative algorithm to learn the
analysis dictionary, where we directly employ the observed data to compute the approximate analysis sparse representation of the
original signals (leading to a fast optimization procedure) and enforce an orthogonality constraint on the optimization criterion
to avoid the trivial solutions. Experiments demonstrate the competitive performance of the proposed algorithm as compared with
three baselines, namely, the AK-SVD, LOST, and NAAOLA algorithms.

1. Introduction

Sparse signal representation has been the focus of much
recent research in signal processing fields such as image
denoising, compression, and source separation. Sparse rep-
resentation is often established on the synthesis model [1–
3]. Considering a signal x ∈ 𝑅

𝑀, the synthesis sparse
representation of x can be described as

x = Da with ‖a‖0 = 𝑘, (1)

where ‖⋅‖
0
represents the ℓ

0
pseudonorm, defined as the

number of nonzero elements of a vector. D ∈ 𝑅
𝑀×𝑁 is a

possibly overcomplete dictionary (𝑁 ≥ 𝑀), and a ∈ 𝑅𝑁,
containing the coding coefficients, is assumed to be sparse
with 𝑘 ≪ 𝑁.

Recently, an alternative form of sparse representation
model called analysis model was proposed in [4–14]. In this
model, an overcomplete analysis dictionary or operator Ω ∈

𝑅
𝑃×𝑀 (𝑃 ≥ 𝑀) is sought to transform x ∈ 𝑅𝑀 to a high

dimensional space; that is,

Ωx = z with ‖z‖0 = 𝑃 − 𝑙, (2)

where z ∈ 𝑅𝑃 is called the analysis representation of x and
assumed to be sparse and 𝑙 is cosparsity of the analysis model,
which is the number of zeros in the vector z.

Both models can be used to reconstruct an unknown
signal x from the corrupted measurement y ∈ 𝑅𝑀; that is,

y = x + k, (3)

where k ∈ 𝑅𝑀 is a Gaussian noise vector. This is an ill-posed
linear inverse problem, which has been studied extensively
[15, 16]. Using the synthesis model, the original signal x can
be estimated by solving

â = argmin
a

‖a‖0 subject to 󵄩󵄩󵄩
󵄩
𝑦 −Da󵄩󵄩󵄩

󵄩

2

2
≤ 𝜀 (4)

and then calculated as x̂ = Dâ, where 𝜀 denotes the noise
floor. It is nowwell known [6] that the original signal can also
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be recovered by solving the following analysis model based
optimization problem:

x̂ = arg min ‖Ωx‖0 subject to 󵄩󵄩󵄩
󵄩
y − x󵄩󵄩󵄩

󵄩

2

2
≤ 𝜀. (5)

For the squared and invertible dictionary, the synthesis and
the analysis models are identical withD = Ω−1 [9]. However,
the two models depart if we concentrate on the redundant
case (𝑃 > 𝑀 and 𝑁 > 𝑀). In the analysis model, the signal
x is described by the zero elements of z, that is, zero entries
in z that define a subspace which the signal x belongs to,
as opposed to the few nonzero entries of a in the synthesis
model.

The performance of both the synthesis and analysis
models hinges on the representation of the signals with an
appropriately chosen dictionary. In the past decade, a great
deal of effort has been dedicated to learning the dictionary for
the synthesis model; however, the ADL problem has received
less attention with only a few algorithms proposed recently
[5, 6, 10, 17–19]. In these works, the dictionary Ω is often
learned from the observed signals Y = [y

1
, y
2
, . . . , y

𝐾
] ∈

𝑅
𝑀×𝐾 measured in the presence of additive noise; that is,

Y = X + V, (6)

where X = [x
1
, x
2
, . . . , x

𝐾
] ∈ 𝑅

𝑀×𝐾 contains the original
signals, V = [k

1
, k
2
, . . . , k

𝐾
] ∈ 𝑅

𝑀×𝐾 is a Gaussian noise
matrix, and 𝐾 is the number of signals.

Exploiting the fact that a row of the dictionary Ω is
orthogonal to a subset of training signals X, a sequential
minimal eigenvalue based ADL algorithm is proposed in [5].
Once the subset is found, the corresponding row of the dic-
tionary can be updated with the eigenvector associated with
the smallest eigenvalue of the autocorrelation matrix of these
signals. However, as 𝑃 increases, so does the computational
cost of the method. In [6–8], an ℓ

1
-norm penalty function

is applied to Ωx, and a projected subgradient algorithm
(called NAAOLA) is proposed for analysis operator learning.
These works employ a uniformly normalized tight frame as
a constraint on the dictionary to avoid the trivial solution
(e.g., Ω = 0), which however limits the range of possible
Ω to be learned. In [10], the Analysis K-SVD (AK-SVD)
algorithm is proposed for ADL. By keeping Ω fixed, the
optimal backward greedy algorithm (OBG) is employed to
estimate a submatrix of Ω whose rows are then used to
determine a submatrix of Y and the eigenvector associated
with the smallest eigenvalue of this submatrix is then used to
updateΩ. A generalized analysismodel, that is, the transform
model, is proposed in the learning sparsifying transform
(LST) algorithm [11]. Unlike the analysismodel (2), the sparse
representation of a signal in the LSTmodel is not constrained
to lie in the range space ofΩ. Such a generalization allows the
transform model to accommodate a wider class of signals. A
closed-form solution to the LST problem is also developed
in [13]. The LST algorithm [11] is further extended to the
overcomplete case, leading to the LOST algorithm in [12].
The transform K-SVD algorithm proposed recently in [14] is
essentially a combination of the ideas in the LOST and AK-
SVD algorithms.

There are two problems that have been observed or
already studied in some of the ADL algorithms discussed
above. The first one is associated with the computational
cost in the optimization process of the ADL algorithms.
For example, in the AK-SVD algorithm, X needs to be
estimated before learning the dictionary, and, as a result, the
optimization process becomes computationally demanding.
The second one is associated with the trivial solutions to the
dictionary, which may lead to spurious sparse representa-
tions. To eliminate such trivial solutions, extra constraints are
required, such as the full-rank constraint on Ω employed in
[11–13] and the mutual coherence constraint on the rows ofΩ
in [12, 14].

In this paper, we propose a new optimization model and
algorithm, attempting to provide alternative solutions to the
two potential problems mentioned above. More specifically,
similar in spirit to our recent work [17], we directly use the
observed data to compute the approximate analysis sparse
representation of the original signals, without having to
preestimate X for learning the dictionary. This leads to a
computationally very efficient algorithm. Moreover, different
from the LOST algorithm, we enforce an orthogonality
constraint onΩ, which, as shown later, has led to an improved
learning performance.

The paper is organized as follows. In Section 2, we discuss
the novel ADL model and algorithm. In Section 3, we show
some experimental results, before concluding the paper in
Section 4.

2. The Proposed ADL Algorithm

In some algorithms discussed above such as [10], the opti-
mization criterion is based on X. In practice, however, X
is unknown and required to be estimated from Y. This
unfortunately results in a computationally very slow opti-
mization process as shown in Section 3.1. To address this
issue, we introduce a new model and algorithm for ADL,
where, similar to [17], we use ‖ΩY‖

1
as an approximation to

‖ΩX‖
1
, which is further replaced by ‖Z‖

1
and then used as

a new constraint for the reconstruction term Z = ΩY. This
leads to the following model of ADL:

min(1
2

‖Z −ΩY‖2
𝐹
+ 𝜆‖Z‖1) , (7)

where 𝜆 > 0 is a regularization parameter. According to
the analysis model (2), Z would be an analysis coefficient
matrix only if its columns lie in the range space of the analysis
dictionary Ω. However, Z=ΩY is not explicitly enforced in
(7), and hence it is called the transform coefficient matrix as
in [19]. Using (7), the analysis dictionaryΩ is learned from Y
without having to preestimate X as opposed to the AK-SVD
algorithm, so the computational effort for estimating X from
Y is exempted.

With the model (7), however, there is a trivial solution;
that is, Ω = 0, Z = 0. To avoid such a solution, additional
constraints on Ω are required. In [12], a full column rank
constraint has been imposed on Ω through the use of a
negative log determinant of Ω𝑇Ω. However, the inverse of



The Scientific World Journal 3

Table 1: Image denoising results (PSNR in dB).

𝜎 Noisy in dB ADL method Lena House Peppers

5 34.15

OIHT-ADL 38.26 38.08 37.70
NAAOLA 37.36 37.04 35.93
AK-SVD 38.44 39.20 37.93
LOST 38.16 38.50 37.47

10 28.13

OIHT-ADL 35.02 34.79 33.89
NAAOLA 32.73 32.61 31.12
AK-SVD 34.85 35.32 33.82
LOST 34.75 34.77 33.61

15 24.61

OIHT-ADL 33.17 33.05 31.69
NAAOLA 30.87 30.82 29.22
AK-SVD 32.59 32.98 31.28
LOST 32.88 32.82 31.38

20 22.11

OIHT-ADL 31.83 31.71 30.13
NAAOLA 29.65 29.22 27.40
AK-SVD 31.38 31.51 29.76
LOST 31.64 31.47 29.84

Ω
𝑇
Ω needs to be computed in the conjugate gradientmethod

in [12], and the inverse of Ω𝑇Ω may affect the stability of
the numerical computation when the initial of Ω𝑇Ω is ill
conditioned. To address this problem, in our work, a function
defined on Ω𝑇Ω = I is employed as a constraint term which
enforcesΩ to be a full column rank matrix, based on the fact
that the ranks of Ω and its corresponding Gram matrix are
equal. This leads to the following new optimization criterion:

min(1
2

‖Z −ΩY‖2
𝐹
+ 𝜆‖Z‖1) subject to Ω𝑇Ω = I. (8)

Using a Lagrangian multiplier 𝛾, the optimization problem
can be reformulated as

min(1
2

‖Z −ΩY‖2
𝐹
+ 𝜆‖Z‖1 +

𝛾

4

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑇
Ω − I󵄩󵄩󵄩󵄩

󵄩

2

𝐹
) . (9)

It is worth noting that our proposed objective function
(9) is essentially different from the one used in [7]. In [7], the
objective function is defined as follows:

min(‖ΩX‖1 +
𝛾

4

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑇
Ω − I󵄩󵄩󵄩󵄩

󵄩

2

𝐹
+

𝜆

4

∑

𝑖

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

w𝑇
𝑖
w
𝑖
−

𝑀

𝑃

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

2

) , (10)

wherew
𝑖
is the 𝑖th row ofΩ.With (10), the analysis dictionary

is learned from the clean signalX and the sparse constraint is
enforced on ΩX. In our proposed ADL algorithm, however,
the analysis dictionary is directly learned from the noisy
observed signal Y and thus can tolerate some sparsification
errors as in [11]. The results of the experiments demonstrate
that our proposed approach is more robust.

Note also that whenZ is sparse, minimizing ‖ΩY‖
1
can be

obtained by the minimization of ‖Z −ΩY‖2
𝐹
, subject to the

sparsity constraint. However, both Z and Ω are unknown.
To solve the problem, we propose an iterative method to
alternatively update the estimation of Z andΩ.

2.1. Estimating Z. Given the dictionary Ω, we first consider
the optimization of Z only. In this case, the objective function
(9) can be modified as

Ẑ = arg min
Z

(

1

2

‖Z −ΩY‖2
𝐹
+ 𝜆‖Z‖1) . (11)

The first-order optimality condition of Z implies that

Z −ΩY + 𝜆 sign (Z) = 0. (12)

Therefore, we have

𝑍
𝑖𝑗
=

{
{

{
{

{

(ΩY)𝑖𝑗 − 𝜆, (ΩY)𝑖𝑗 > 𝜆;
(ΩY)𝑖𝑗 + 𝜆, (ΩY)𝑖𝑗 < −𝜆;
0 otherwise,

(13)

where 𝑖 = 1, 2, . . . , 𝑃 and 𝑗 = 1, 2, . . . , 𝐾 are the indices of the
matrix elements. It is well known that the above solution for
Z is called soft thresholding. Indeed, the sparsity constraint
‖Z‖
1
is only an approximation to ‖Z‖

0
. In order to promote

sparsity and to improve the approximation, one could instead
use the hard thresholding method [20] as an alternative, that
is, setting the smallest components of the vectors to be zeros
while retaining the others:

𝑍
𝑖𝑗
= {

(ΩY)𝑖𝑗,
󵄨
󵄨
󵄨
󵄨
󵄨
(ΩY)𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
> 𝜆;

0, otherwise.
(14)

As such, the solution obtained using the constraint ‖Z‖
1
will

be closer to that using ‖Z‖
0
.

2.2. Dictionary Learning. For a given Z, the objective func-
tion (9) is nonconvex with respect to Ω, similar to the
objective function (10); that is,

Ω̂ = arg min
Ω

𝑓 (Ω)

= arg min
Ω

(

1

2

‖Z −ΩY‖2
𝐹
+

𝛾

4

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑇
Ω − I󵄩󵄩󵄩󵄩

󵄩

2

𝐹
) .

(15)

The local minimum of the objective function (15) can be
found by using a simple gradient descent method

Ω
𝑡+1
= Ω
𝑡
− 𝛼∇𝑓 (Ω) , (16)

where 𝛼 is a step size and ∇𝑓(Ω) = −(Z −ΩY)Y𝑇 + 𝛾(ΩΩ𝑇 −
I)Ω. If the rows of Ω have different scales of norm, we
cannot directly use the hard thresholdingmethod to obtainZ.
The phenomenon is called scaling ambiguity. Moreover, the
constraint Ω𝑇Ω = I can enforce Ω to be of full column rank
but cannot avoid a subset of rows of Ω to be possibly zeros.
Hence, we normalize the rows of Ω to prevent the scaling
ambiguity and replace the zero rows, if any, by the normalized
random vectors; that is,

ŵ
𝑖
=

{

{

{

ŵ
𝑖

󵄩
󵄩
󵄩
󵄩
ŵ
𝑖

󵄩
󵄩
󵄩
󵄩2

,
󵄩
󵄩
󵄩
󵄩
ŵ
𝑖

󵄩
󵄩
󵄩
󵄩2
̸= 0;

r, otherwise,
(17)
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where ŵ
𝑖
is the 𝑖th row of Ω̂ and r is a normalized random

vector. There may be other methods to prevent this problem,
for example, by adding the normalization constraint to the
objective function [7] or by adding the mutual coherence
constraint on the rows ofΩ to the objective function [12, 14];
however, this is out of the scope of our work. Although, after
the row normalization, the columns of the dictionary are
no longer close to the unit norm, the rank of Ω̂ will not be
changed.

2.3. Convergence. In the step of updating Z, the algorithm to
optimize the objective function (11) is analytical. Thus, the
algorithm is guaranteed not to increase (11) and converges to
a local minimum of (11) [21]. Furthermore, in the dictionary
update step, Ω is updated by minimizing a fourth-order
function, and thus amonotonic reduction in the cost function
(15) is guaranteed.

Our algorithm (called orthogonality constrained ADL
with iterative hard thresholding, OIHT-ADL) to learn anal-
ysis dictionary is summarized in Algorithm 1.

3. Computer Simulations

To validate the proposed algorithm, we perform two exper-
iments. In the first experiment, we show the performance
of the proposed algorithm for synthetic dictionary recovery
problems. In the second experiment, we consider the natural
image denoising problems. In these experiments,Ω

0
∈ 𝑅
𝑃×𝑀

is the initial dictionary in which each row is orthogonal to a
random set of𝑀−1 training data and is also normalized [10].
For performance comparison, the AK-SVD [10], NAAOLA
[8], and LOST [12] algorithms are used as baselines.

3.1. Experiments on Synthetic Data. Following the work in
[10], synthetic data are used to demonstrate the performance
of the proposed algorithm in recovering an underlying
dictionary Ω. In this experiment, we utilize the methods to
recover a dictionary that is used to produce the set of training
data. The convergence curves and the dictionary recovery
percentage are used to show their performance. If min

𝑖
(1 −

|ŵ𝑇
𝑖
w
𝑗
|) < 0.01, a roww𝑇

𝑗
in the true dictionaryΩ is regarded

as recovered, where ŵ𝑇
𝑖
is an atom of the trained dictionary.

Ω ∈ 𝑅
50×25 is generated with random Gaussian entries, and

the dataset consists of 𝐾 = 50000 signals each residing in a
4-dimensional subspace with both the noise-free setup and
the noise setup (𝜎 = 0.04, SNR = 25 dB). The parameters of
the proposed algorithm are set empirically by experimental
tests, and we choose the parameters as 𝜆 = 0.1, 𝛾 = 10,
and 𝛼 = 10−4 which give the best results in atom recovery
rate. We have tested the parameters with different values in
the ranges of 10−2 < 𝜆 < 10

2, 10−2 < 𝛾 < 10
2, and

10
−2
< 𝛼 < 10

−5. For the AK-SVD algorithm, the dimension
of the subspace is set to be 𝑟 = 4 following the setting in [10].
For the NAAOLA algorithm, we set 𝜆 = 0.5 which is close
to the default value 𝜆 = 0.3 in [8]. The parameters in the
LOST algorithms are set as those in [11]; that is, 𝛼 = 10−4,
𝜆 = 𝜂 = 𝜇 = 10

5, 𝑝 = 20, and 𝑠 = 29. The convergence

curves of the error by the first term of (7) versus the iteration
number are shown in Figure 1(a). It can be observed that the
compared algorithms take different numbers of iterations to
converge (the terms used tomeasure the rates of convergence
are slightly different in these algorithms, because different
cost functions have been used), which are approximately
200, 100, 1000, and 300 iterations for the OIHT-ADL, AK-
SVD, NAAOLA, and LOST algorithms, respectively. Thus,
the recovery percentages of these algorithms are measured
at these different iteration numbers (to ensure that each
algorithm converges to the stable solutions). It is observed
from Figure 2 that 76%, 94%, 42%, and 72% of the rows in
the true dictionary Ω are recovered for the noise-free case
and 72%, 86%, 12%, and 68% for the noisy case, respectively.
Note that the recovery rates for the LOST algorithm are
obtained with random initialization. With the DCT and
identitymatrix initialization, the LOST algorithm can recover
74% and 72% rows of the true dictionary Ω in noise-free
and noise cases, respectively, after 300 iterations. Although
it may not be necessary to recover the true dictionary in
practical applications, the use of atom recovery rate allows
us to compare the proposed algorithm with the baseline
ADL algorithms as it has been widely used in these works.
The recovery rate by the NAAOLA algorithm is relatively
low, mainly because it employs a uniformly normalized tight
frame as a constraint on the dictionary and this constraint has
limited the possibleΩ to be learned. The AK-SVD algorithm
performs the best in terms of the recovery rate, that is,
taking fewer iterations to reach a similar recovery percentage.
However, the running time in each iteration of the AK-SVD
algorithm is significantly higher than that in our proposed
OIHT-ADL algorithm. The total runtime of our algorithm
for 200 iterations is about 825 and 832 seconds for the noise-
free and noise case, respectively. In contrast, the AK-SVD
algorithm takes about 11544 or 10948 seconds, respectively,
for only 100 iterations (Computer OS:Windows 7, CPU: Intel
Core i5-3210M@ 2.50GHz, and RAM: 4GB).This is because
our algorithm does not need to estimate X in each iteration,
as opposed to the AK-SVD algorithm.

3.2. Experiments on Natural Image Denoising. In this exper-
iment, the training set of 20,000 image patches, each of
7 × 7 pixels, obtained from three images (Lena, House,
and Peppers) that are commonly used in denoising [10],
has been used for learning the dictionaries, each of which
corresponds to a particular noisy image. Noise with different
level 𝜎, varying from 5 to 20, is added to these image
patches. The dictionary of size 63 × 49 is learned from
the training data which are normalized to have zero mean.
For fair comparison, the dictionary size is the same as that
in [10]. The dictionary with a bigger size may lead to a
sparser representation of the signal but may have a higher
computational cost. Similar to Section 3.1, enough iterations
are performed for the tested algorithms to converge. The
parameters for the OIHT-ADL algorithm are set the same as
those in Section 3.1, except that 𝜆 = 0.05. For the AK-SVD
algorithm, the dimension of the subspace is set to be 𝑟 = 7
following the setting in [10]. For the NAAOLA algorithm,
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Figure 1: The convergence curves of the ADL algorithms for both the noise-free and noise case (where SNR = 25 dB).

Input: Observed data Y ∈ 𝑅𝑀×𝐾, the initial dictionaryΩ
0
∈ 𝑅
𝑃×𝑀, 𝜆, 𝛾, 𝛼, the number of iterations 𝑐

Output: DictionaryΩ
Initialization: SetΩ := Ω

0

For 𝑡 = 1, . . . , 𝑐 do
(i) FixingΩ, computeΩY
(ii) Update the analysis coefficients Ẑ using (14)
(iii) Fixing Ẑ, update the dictionaryΩ using (16)
(iv) Normalize rows inΩ using (17)

End

Algorithm 1: OIHT-ADL.
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Figure 2: The recovery percentage curves of the ADL algorithms.

we set 𝜆 = 3 (𝜎 = 5), 𝜆 = 1 (𝜎 = 10, 15), and 𝜆 = 0.5
(𝜎 = 20). For the LOST algorithm, the parameter values are
set as 𝛼 = 10−11, 𝜆 = 𝜂 = 𝜇 = 105, 𝑝 = 20, and 𝑠 = 21.
The parameters for the NAAOLA algorithm and the LOST
algorithmare chosen empirically.The examples of the learned
dictionaries are shown from the top to the bottom row in
Figure 3, where each atom is shown as a 7 × 7 pixel image
patch. The atoms in the dictionaries learned by the AK-SVD
algorithm are sorted by the number of training patches which
are orthogonal to the corresponding atoms, and therefore
the atoms learned by the AK-SVD algorithm appear to be
more structured. Sorting is however not used in our proposed
algorithm.Thenweuse the learneddictionary to denoise each
overlapping patch extracted from the noisy image. Each patch
is reconstructed individually and finally the entire image is
formed by averaging over the overlapping regions. We use
the OBG algorithm [10] to recover each patch image. For

fair comparison, we do not use the specific image denoising
method designed for the corresponding ADL algorithm such
as the one in [12]. The denoising performance is evaluated
by the peak signal to noise ratio (PSNR) defined as PSNR =
10 log

10
(255
2 KM/∑𝐾

𝑖=1
∑
𝑀

𝑗=1
(𝑥
𝑖𝑗
− 𝑥
𝑖𝑗
)
2
) (dB), where 𝑥

𝑖𝑗
and

𝑥
𝑖𝑗
are the 𝑖𝑗th pixel value in noisy and denoised images,

respectively.The results, averaged over 10 trials, are presented
inTable 1, fromwhichwe can observe that the performance of
the OIHT-ADL algorithm is generally better than that of the
NAAOLA algorithm and the LOST algorithm. It is also better
than that of the AK-SVD algorithm when the noise level is
increased.

4. Conclusion

Wehave presented a novel optimizationmodel and algorithm
for ADL, where we learn the dictionary directly from the



The Scientific World Journal 7

(a) Lena (b) House (c) Peppers

(d) Lena (e) House (f) Peppers

(g) Lena (h) House (i) Peppers

(j) Lena (k) House (l) Peppers

Figure 3: The learned dictionaries of size 63 × 49 by using the OIHT-ADL, AK-SVD, NAAOLA, and LOST algorithms on the three images
with noise level 𝜎 = 5. The results of the OIHT-ADL are shown in the top row in (a) Lena, (b) House, and (c) Peppers, followed by the
AK-SVD, NAAOLA, and LOST in the remaining rows.

observed noisy data.We have also enforced the orthogonality
constraint on the optimization criterion to remove the trivial
solutions induced by a null dictionary matrix. The proposed
method offers computational advantage over the AK-SVD
algorithm and also provides an alternative to the LOST

algorithm in avoiding the trivial solutions. The experiments
performed have shown its competitive performance as com-
pared to the three state-of-the-art algorithms, the AK-SVD,
NAAOLA, and LOST algorithms, respectively. The proposed
algorithm is easy to implement and computationally efficient.
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