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Abstract—Sparse deep networks have been widely used in
many linear inverse problems, such as image super-resolution
and signal recovery. Its performance is as good as deep learning
at the same time its parameters are much less than deep
learning. However, when the linear inverse problems involve
several linear transformations or the ratio of input dimension to
output dimension is large, the performance of a single sparse deep
network is poor. In this paper, we propose a cascade sparse deep
network to address the above problem. In our model, we trained
two cascade sparse networks based on Gregor and LeCun’s
“learned ISTA” and “learned CoD”. The cascade structure can
effectively improve the performance as compared to the non-
cascade model. We use the proposed methods in image sparse
code prediction and signal recovery. The experimental results
show that both algorithms perform favorably against a single
sparse network.

I. INTRODUCTION

Linear inverse problem which has arisen throughout both
engineering and mathematical sciences aims at recovering
an original signal from a noisy linear measurement. In this
problem, given the output signal y and linear transformation
matrix A, the input signal x is estimated,

y = Ax+w ∈ RM (1)

where A ∈ RM×N and x ∈ RN , in many cases, M � N ,
we will refer to the problem as a sparse linear inverse problem
(see Fig. 1(a) for an illustration).

Examples of sparse linear inverse problems include com-
pressive sensing [1] and sparse coding [2], which have been
used in many applications such as signal, image and sound
processing.

There are a number of methods proposed to solve this
problem. We can roughly divide these methods into two
categories based on sparsity constraints, including nonconvex
optimization and convex relaxation. The nonconvex optimiza-
tion method uses an l0 norm constraint on x (e.g. [3] and [4]),
and the convex relaxation method uses an l1 norm constraint
on x (e.g. [5] and [6]).

With the success of deep learning, LeCun and Gregor
proposed two algorithms named Learned Iterative Shrinkage-
Thresholding Algorithm (LISTA) and Learned Coordinate
Descent algorithm (LCoD) [7]. The two algorithms are end to
end feed-forward neural network which uses back-propagation
and gradient descent to learn parameters. Recently, sparse
neural network has been widely used in sparse linear inverse
problems [8]–[10] and the accuracy was significantly improved
over the traditional methods.
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Fig. 1. (a) Illustration of the linear inverse problem. (b) Illustration of the two
times transformation of the original signal. When we have the output signal
y and we want recovery original signal x, we have two ways: 1) y → x,
2)y → y1 → · · · → x.

However, the above approaches have two major limitations:
1) for the linear inverse problem, the above methods do not
make full use of intermediate information when the original
signal is transformed several times; 2) for the image super-
resolution problem, the above methods have a limitation
caused by a scaling factor, i.e., for every scale we have
to retrain the network. To address these limitations, cascade
network have been proposed for the image super-resolution
[11] and image reconstruction [12] problems. Schlemper et al
[12] used cascaded non-linear convolutional neural networks
for image super-resolution. Inspired by this, we propose to
cascade the sparse networks to solve the sparse linear inverse
problem which involves more than one transformations shown
in Fig. 1(b). We perform experiments both on image data
and randomly generated signals, and compare it with the
non-cascade state-of-the-art algorithms. In summary, we focus
on the sparse linear inverse problem, which involves more
than one transformations, and solve it with efficient and
accurate algorithms. The main contributions of this paper are
as follows:

1) A cascade sparse coding network is proposed which
includes cascade LISTA and cascade LCoD;

2) The proposed algorithm is applied to linear inverse
problem to improve signal reconstruction performance.

The remainder of the paper is organized as follows: we
discuss related work in Section II. Section III introduces our
cascade sparse coding deep networks, and in Section IV we
perform extensive experimental comparison with the state-of-



the-art none-cascade deep networks. The conclusion is drawn
in Section V.

II. RELATED WORKS

This section reviews the related approaches for the sparse
linear inverse problem. We consider two recent approaches
that are most relevant to our proposed algorithm.

A. Iteration Algorithms

The convex constrained objective function [8] for solving
the linear inversion problem is

x̂ = argmin
x

1
2 ‖ y −Ax ‖

2
2 +α ‖ x ‖1 (2)

where α > 0 is a coefficient that controls the sparsity level.
1) ISTA and FISTA: One of the popular and simple al-

gorithm for linear inverse problem is the Iterative Shrinkage
and Thresholding Algorithm (ISTA) [5]. It iterates the steps
(x̂0 = 0 and for t = 0, 1, 2, ...)

x̂t+1 = ηθ(x̂t − βAT (Ax̂t − y)) (3)

where β is a step size, and ηθ is a “soft thresholding”
shrinkage function, defined as

[ηθ(r)]i = sgn(ri)(|ri| − θi)+ (4)

in which θ = 1Mβα is a threshold, 1M is a column vector
with M ones. Fast ISTA (FISTA) comes from ISTA, but its
convergence speed is much faster than ISTA, because the
iterative shrinkage operator of FISTA not only employs the
previous x̂t but also uses a very specific linear combination
of two previous points {x̂t, x̂t−1}. However, ISTA and FISTA
are not monotone algorithms. Beck and Teboulle proposed a
“monotone FISTA”, see [13] for details.

2) CoD: Coordinate Descent algorithm [14] updates a code
component which will be the largest modification of the
objective function value, while (F)ISTA updates all the code
components simultaneously. Therefore, its time complexity is
lower. When we incorporate CoD in a network, it also runs
fast. In Section III, we will analyze its time complexity.

B. Deep Learning

In Eqn. (3), let B = βAT , S = I − βATA, we have

x̂t+1 = ηθ(By + Sx̂t) (5)

and this creates a T -layer feed-forward neural network, shown
in Fig. 2(a). In this LISTA deep network, the parameter space
is Θ = [B,S,θ], the training data is (y(d),x(d))

D

d=1 and the
loss function is

LT (Θ) =
1

D

(D−1)∑
d=0

1

2
‖ x(d) − f(y(d),Θ) ‖22 (6)

where x = f(y(d),Θ). We learn the parameters by mini-
mizing the loss function through the training samples. In this
operation, we use back-propagation to calculate the gradient of
the objective function, and then use the chain rule and gradient
descent to update the parameters, see details in [7].

The operating mechanism in LCoD is the same as that in
LISTA, with the only difference in the number of parameters
that need to be updated each time. The runtime of LCoD is
much less than LISTA.

III. CASCADE STRUCTURE

A. Problem Formulation

We consider that the signals we observed are obtained by
multiple linear transforms of the original signal, expressed as

y = A1A2 · · ·AS−1ASx+w ∈ RM (7)

where A1 ∈ RM×K1 , A2 ∈ RK1×K2 · · ·AS ∈ RKS−1×N and
M < K1 < · · · < KS−1 < N . When S = 1, the problem
degenerates to what we have introduced at the beginning. We
can solve this problem by consideringA = A1A2···AS−1AS ,
and using the traditional methods. In doing so we may lose
some intermediate useful information. Empirically, we can get
a better solution when the ratio of the column to the row of
linear transformation matrix Ai is not very large which will
be analyzed in Section III. The intermediate information can
be defined as 

y0 = A1y1 ∈ RM

y1 = A2y2 ∈ RK1

· · ·
yS−1 = ASyS ∈ RKS−1

yS = x+w ∈ RN

where yj(j = 1, 2, ..., S) is the jth intermediate observation,
and the noise w can be placed in any one of the equation
alone. The above formula can be simplified as

yj−1 = Ajyj , j = 1, 2, ..., S (8)

where y = y0 and x = yS +w.

B. Cascade Algorithm

In order to make full use of the intermediate information
and improve the final result, we propose a cascade algorithm.

According to the solution of conventional sparse linear
inverse problem, we design the objective function as

x̂ = argmin
x

1
2 ‖ y−A1A2 · · ·AS−1ASx ‖22 +α ‖ x ‖1 (9)

The above formula can be split through a greedy way as

ŷj = argmin
yj

1
2 ‖ yj−1 −Ajyj ‖22 +αi ‖ yj ‖1 (10)

then we can get a multi-scale objective function as

min
{Θj}

∑
j

∑
d

‖ y(d)
j − f(y(d)

j−1;Θj) ‖ (11)

where j ∈ (1, 2...S) is the number of linear transformations
and d ∈ (1, 2...D) is the number of training samples. For each
j, we train a single sparse deep network by minimizing the
mean square error and then cascade the networks from end to
end. The cascade algorithm is also a deep network, where the
output of each lower layer deep network is the input of the
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Fig. 2. Illustration of the sparse deep networks. (a) is a single LISTA with 3
iterations, the parameters Θ = [B,S,θ] are learned from training data. (b)
is the cascade deep network, when train the cascade network, several single
deep networks are in parallel, and when test the cascade network, several
single deep networks are in series. This is the first time to use LCoD in
sparse linear inverse problem, and it can run faster than other similar sparse
deep networks. The jth deep network’s parameters Θj = [Bj ,Sj ,θj ] are
learned in parallel.

next higher layer deep network shown in Fig. 2(b). With the
increase in S, we can gradually reconstruct the original signal.

However, the cascade deep networks are not very popular
in deep learning, because the error will accumulate from the
lower to higher and then lead to a large deviation from the
result in some cases. In order to reduce the effect, we trained
every network independently, and tested it through cascade
network. With the training of individual networks, the error
will not be propagated between two adjacent networks and the
parameters we obtained will be more accurate. In the test, due
to the fact that the ratio of original signal dimension to output
signal dimension is not large any more, every single learned
deep network can achieve more accurate results. Finally we
could gain a satisfactory result.

C. Learning and Testing

We have discussed the problem that we want to address
and the structure of cascade deep networks in the above
two sections. In this section, we present the algorithm for
parameters learning in Algorithm 1 and testing in Algorithm
2.

Algorithm 1: parameters learning of cascade LISTA
Input: Original signal x, intermediate signal yj ,

observation signal y and linear transformation matrix
Aj ;

Output: learned parameters Θ = [B,S,θ];
1: Set j = 1;
2: repeat
3: Initialize Bj = βAT

j , Sj = Ij − βAT
j A,

θj = 1Kjβα and the single deep network layer T ;
4: repeat
5: Take a set of training data (y

(d)
j−1,y

(d)
j );

6: Calculate forward network for T times by using
Eqn. (5);

7: Update parameters Θj = [Bj ,Sj ,θj ] through
back-propagation;

8: until MSEj convergence
9: until j > S

10: return Θ;

Algorithm 2: testing of cascade LISTA
Input: Observation signal y and learned parameters

Θ = [B,S,θ];
Output: Original signal x

1: Set j = 1, Initialize x = 0;
2: repeat
3: Using learned parameter Θj in Eqn.(5), calculate yj

until convergence;
4: until j > S
5: return x;

D. Analysis and Discussion

The effectiveness and complexity of the proposed algorithm-
s are discussed below.

1) Effectiveness: As shown in Fig. 3, with the decrease in
the ratio of N/M , the convergence rate and the final accuracy
achieved can be improved in single deep networks, and this
suggests that reducing the ratio is effective for dealing with
multiple transforms and large ratio problems. This observation
forms the basis of our proposed algorithm. For a linear inverse
problem with a large N/M , we convert it to a problem with
N/KS−1,KS−1/KS−2, ...,K1/M , and the ratio can be on
average decreased to N/M

S in every single deep network, so
that we can get a better result in every deep network and in
the end a better result in the cascade structure. Since the error
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Fig. 3. Illustration of the average NMSE achieved by a single LISTA with
different ratios of N/M .

will be propagated between two adjacent networks, the value
of N/M

S should not be too small.
2) Time complexity: The time complexity of the cascade al-

gorithm is polynomial. The complexity of LISTA per iteration
is O(N2) while for LCoD this is O(N) [7]. Since the cascade
structure is trained in parallel, the time complexity is the same
as that for a single network. As for the test part, the time

complexity is
O(K2

1 ) +O(K2
2 ) + · · ·+O(N2)︸ ︷︷ ︸
S

6 O(SN2)

for CLISTA and
O(K1) +O(K2) + · · ·+O(N)︸ ︷︷ ︸

S

6 O(SN)

for CLCoD per iteration, where S is the number of the cascade
networks. When N is large, CLCoD is significantly faster than
CLISTA.

IV. EXPERIMENTS

In this section, we compare our proposed cascade structure
with single deep networks on two different types of data,
including randomly generated signal [8] and image data. For
fair evaluation, we use the original source codes [9] [7] in
which the parameters of each method are tuned for best
performance. The evaluated algorithms are: FISTA, CoD [14],
LISTA, LCoD [7], LAMP [9], LVAMP [9], CLISTA and
CLCoD.

A. Experiment on Randomly Generated Signal

We randomly generate the dataset in a way similar to
[9]. In this dataset, Y ∈ RM×1000, A1 ∈ RM×K1 and
Y1 ∈ RK1×1000 are the output signal, linear transformation
matrix and intermediate signal, respectively. In order to com-
pare the performance of the cascade algorithm with the single
network algorithm, we sparsely decompose Y1 to obtain the
intermediate variables A2 ∈ RK1×N and original signals
X ∈ RN×1000. It can be thought of as a linear inverse model
for S = 2, and the model is

Y = A1A2X +W and Y1 = A2X (12)
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Fig. 4. Illustration of the result of different algorithms on linear inverse
problem. (a) For an i.i.d. Gaussian A1 and the dimension is from 250 to
1000. (b) For an i.i.d. Gaussian A1 and the dimension is from 250 to 700.
(c) For A1 with the condition number 15 and the dimension is from 250 to
1000. (d) For A1 with the condition number 15 and the dimension is from
250 to 700. (e) For A1 with the condition number 100 and the dimension
is from 250 to 1000. (f) For A1 with the condition number 100 and the
dimension is from 250 to 700.

We experiment on i.i.d. Gaussian A1 and A1 whose condition
number is 15 and 100 respectively. A matrix which possesses
a low condition number is said to be well-conditioned, while
a high condition number is said to be ill-conditioned. We
consider two different sets of dimensions, one is M = 250,
K1 = 500 and N = 1000, the other is M = 250, K1 = 375
and N = 700.

The parameters are set as follows. The sparsity penalty
coefficient is set to α = 0.1. The learning rate is set to 10−4.

The evaluation metric is the average normalized MSE
(NMSE), where NMSE,‖ x̂ − x ‖22 / ‖ x ‖22. In order to
facilitate the observation, we show the results in decibel as
10 log10(NMSE).

Fig. 4 shows that for either i.i.d. Gaussian A1 or A1 with
the condition number 15 or 100, the cascade sparse deep
networks have a much better performance both on convergence
speed and final accuracy. Especially for dimension from 250 to
1000, the CLISTA is 30 dB better than other single networks.
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Fig. 5. Screenshots from five image patches and the reconstruction results of six algorithms.

TABLE I
MSE COMPARISONS OF DIFFERENT ALGORITHMS (ROWS), DIFFERENT

DATA SET (COLUMNS). BOLD FONTS INDICATE THE BEST PERFORMANCE.

Berkeley Holidays VOC2012 Flower Scene
CoD 0.2320 0.4495 0.1117 0.1176 0.3674

FISTA 0.2838 0.2470 0.3402 0.2493 0.2516
LISTA 0.3126 0.2681 0.3923 0.3042 0.3061
LCoD 0.1227 0.0097 0.0402 0.1907 0.1975

CLISTA 0.0014 0.0012 0.0011 0.0009 0.0011
CLCoD 0.0024 0.0025 0.0025 0.0018 0.0017

TABLE II
MSE COMPARISONS OF DIFFERENT ALGORITHMS (ROWS), DIFFERENT

DATA SET (COLUMNS). BOLD FONTS INDICATE THE BEST PERFORMANCE.

Berkeley Holidays VOC2012 Flower Scene
CoD 0.7792 0.3073 0.0117 0.0292 0.6843

FISTA 0.2798 0.1961 0.2911 0.2689 0.2656
LISTA 0.3319 0.2409 0.3496 0.3109 0.3229
LCoD 0.7371 0.2583 0.0047 0.0298 0.6347

CLISTA 0.0021 0.0037 0.0024 0.0023 0.0018
CLCoD 0.0050 0.0070 0.0025 0.0049 0.0043

For dimension from 250 to 700, the state-of-the-art single
sparse network LAMP or LVAMP needs to use 10 more layers
than CLISTA or CLCoD to reach the same accuracy.

B. Experiment on Image Patches

In this set of experiments we compare the performance of
different methods on image sparse code prediction. We per-
form experiments on 5 image datasets, including (1) Berkeley
image (2) INRIA Holidays [15] (3) VOC2012 data [16] (4)
102 Category Flower [17] and (5) RGB-NIR Scene [18]. We
randomly select small blocks of 10× 10 pixels in each image
datasets, then we remove the patches whose standard deviation
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Fig. 6. Average MSE of six algorithms versus iteration numbers.

is smaller than 15 and preprocess each patch to remove its
mean and normalize its variance. We set sparse coefficient as
α = 0.5. We change the dimension of patches from 100 to
200 then to 400 and 100 to 150 then to 300.

1) Train the linear transformation matrix: For every image
patch, we can convert it to a vector y ∈ R100, then we train
the dictionary of basis vector A1 and A2. At beginning, we
initialize two dictionaries containing random i.i.d. Gaussian
elements and next we first train A1 as follows: 1) get a vector
from the training set Y d; 2) use A1 to calculate the optimal
intermediate code Y ∗d1 by the FISTA algorithm; 3) update
A1 through stochastic gradient A1 = A1 − 1

t dEqn.(10)/dA1

with j = 1 in Eqn.(10) and normalize the column of A1; 4)
iterate. Then we train A2 in the same way as for A1 except
the optimal intermediate code X∗d which is different in step
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Fig. 7. Average MSE of six algorithms versus iteration numbers.

2) and the value of j is different in step 3).
2) Train the cascade learned algorithm: After gaining A1,

A2, we train the CLISTA or CLCoD as follows: 1) get a
vector from training set Y d; 2) use A1 to calculate the optimal
immediate code Y ∗d1 by the FISTA algorithm; 3) use back-
propagation to train the first LISTA or LCoD network; 4) use
Y ∗d1 and A1 to calculate the optimal immediate code X∗d

by the FISTA algorithm; 5) use back-propagation to train the
second LISTA or LCoD network; 6) iterate.

Fig. 5 shows the optimal image patches and image patches
obtained by different algorithms. We can see empirically that
the image patches obtained by the cascade algorithm are closer
to the original image patches. Table I shows the performance
of different algorithms on different datasets when the iteration
number is 20 and the original dimension of x is 400. The MSE
of the cascade algorithm can reach 10−3, while other non-
cascade methods only to 10−1. Table II shows the performance
when the original dimension of x is 300. Both tables show that
the cascade algorithm can greatly improve the performance.
Figs 6 and 7 show as the number of iterations changes, the
error results from different algorithms on the Berkeley image
dataset. Figs 6 and 7 show the results for x dimension of 300
and 400 respectively. From them we can know that regardless
of the number of iterations, the cascading approach works
better than the non-cascade networks.

C. Analyze the Number of Deep Networks

As the error will accumulate between the networks, in order
to know the suitable number S, we perform an experiment
on the Berkeley dataset with CLISTA for the ratio of output
dimension and input dimension at 100 and 400 respectively.
We found that S = 6 is a suitable number for the cascade
deep networks to achieve good results.

V. CONCLUSION

In this paper, we have proposed a cascade deep learning al-
gorithm to deal with the linear inverse problem which involves
multiple linear transformations and the ratio of dimension
between original signal to output signal is large. Numerous
comparisons with state-of-the-art algorithms on both randomly

generated signals and image patches have shown that the
proposed algorithm achieves favorable performance in terms of
accuracy and convergence speed. In future work, we will apply
this model to other problems such as compressive sensing and
sparse coding.
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