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ABSTRACT

A new variable step-size least-mean-square (VSSLMS) algorithm
is presented in this paper for applications in which the desired re-
sponse contains nonstationary noise with high variance. The step
size of the proposed VSSLMS algorithm is controlled by the nor-
malized square Euclidean norm of the averaged gradient vector, and
is henceforth referred to as the NSVSSLMS algorithm. As shown by
the analysis and simulation results, the proposed algorithm has both
fast convergence rate and robustness to high-variance noise signals,
and performs better than Greenburg's sum method, which is a robust
algorithm for applications with nonstationary noise.

Index Terms- Adaptive filters, variable step size LMS algo-
rithm

In this paper we propose a new variable step-size algorithm, a
NSVSSLMS algorithm, which is robust to high-variance noise sig-
nals. In this algorithm, the step size is controlled by a normalized
square Euclidean norm of the smoothed gradient vector. It will be
shown that the proposed algorithm performs better than Greenberg's
sum method for the scenario when the noise signal is nonstation-
ary. It can be deemed as a variable step-size version of Greenberg's
method.

The remainder of this paper is organized as follows: The pro-
posed algorithm is described in Section 2. The analysis of the pro-
posed algorithm in the context of stationary noise is introduced in
Section 3. A simulation that confirms the analysis and the advan-
tages of the proposed algorithm for nonstationary noise as compared
with Greenburg's method is shown in Section 4. Section 5 provides
conclusions.

1. INTRODUCTION

The LMS algorithm has been extensively used in many applications
as a consequence of its simplicity and robustness [1][2]. A key pa-
rameter in the design of LMS-based algorithms is the step size. It
is well known that the VSSLMS algorithms can improve the perfor-
mance of the LMS algorithm. In a summary of [2, p.255], several
variable step-size algorithms designed to enhance the performance
of the LMS algorithm have been given [3]-[6]. However, the algo-
rithms in [3],[5] are very sensitive to interference noise, while the
method in [4] needs the noise signal to be uncorrelated, and the
method proposed in [6] is only suitable for stationary and low-level
noise conditions; thus, they are limited in many applications. To the
best of our knowledge, no variable step-size LMS algorithm has been
proposed for a wide range of applications where the noise signal is
correlated, potentially high variance, such as speech signals.

As shown in [7], some normalization terms can be utilized to
modify the LMS algorithm, so as to overcome the interference of
nonstationary noise. One such modified LMS algorithm, namely the
sum method, is discussed by Greenburg in [7]. This algorithm can
be deemed as a fixed step-size algorithm with normalized gradient
vector which is designed to minimize the steady-state mean-square
error (MSE). However, it is based on a constant convergence rate.
Similar to the case of the LMS algorithm, a variable step-size algo-
rithm is also necessary to obtain both fast convergence rate and small
steady state MSE.

2. ALGORITHM FORMULATION

2.1. Preliminary

In this section we will briefly review Greenburg's sum method [7],
which is the foundation of the proposed algorithm. For the conve-
nience of presentation, we formulate the LMS algorithm within the
context of adaptive noise cancellation model, similar to the approach
in [7]. In this case, the primary signal d(n) can be formulated as fol-
lows:

d(n) = x (n)w0pt + t(n) (1)

where x(n) is the input reference vector, wopt is the optimal filter
vector, t(n) is the target signal, while is also the noise signal for the
LMS algorithm, n denotes the discrete-time index and (.)' denotes
the vector transpose operator. The output error of the system e(n)
is the difference between the primary signal and the output of the
adaptive filter:

e(n) = d(n) x_(n)w(n) (2)
where w(n) is the adaptive filter vector. The update equation of the
LMS algorithm is then given by [1]:

w(n + 1) = w(n) + pe(n)x(n) (3)

where ,u is the step size.
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In [7], a modified LMS algorithm named the sum method is
shown to be suitable for nonstationary input and target signals. The
update of the adaptive filter coefficients of this algorithm is as fol-
lows:

w(n+1) =w(n) 1ItsumeC(n)x(n) 4
{L[oI(n) +o1(n)]}

where /isum is the step size for this sum method, 42 (n) and o2 (n) are
time varying estimations of the output error signal variance and the
input signal variance respectively, and L is the adaptive filter length
[7]. As explained in [7], the step size in (4) is adjusted by the input
and output error variance automatically, which reduces the influence
brought by the fluctuation of the input and the target signals.

Next we will introduce the proposed new variable step size al-
gorithm.

2.2. Proposed NSVSSLMS algorithm

The proposed NSVSSLMS algorithm can be formulated as follows:

g(n) = /3g(n -1) + (1 -/3)x(n)e(n)

P gI(n) 11
IINSVSS(n) = {L[2 (n) + ox (n)]}

w(n + 1) = w(n) + INSVSS(n)e(n)x(n)

(5)

(6)

(7)
where g(n) is the smoothed gradient vector, P is a positive constant,
which can be easily chosen according to the analysis in the next sec-

tion, /INSVSS (n) is the time-varying step size, and 11.112 denotes the
2

squared Euclidean norm operator. The key step of this algorithm is
(6), which is motivated as follows.

To develop a VSSLMS algorithm, the most important thing is
to measure the proximity of the adaptive process to the desired so-

lution. An ideal measure of the adaptive process is the mean square

deviation (MSD), which is defined as E{ lwopt- w(n) 12}, where
E{ } represents statistical expectation. According to the formula-
tion in [6], with a stationary input signal, the squared norm of the
smoothed gradient vector which is formulated by (5) can track the
variance of the MSD; thus, it is a good measure of the proximity of
the adaptive process, and suitable to control the step size. The term
L[o2Q(n) + 42(n)] in (6) is motivated by [7]. The square of this
term, as a novel normalization for the step size, is designed to make
the steady-state excess mean-square error (EMSE) of the proposed
algorithm robust to the target signal.

It will be shown in the following analysis that the proposed al-
gorithm has robustness to the high variance of the target signal. Fur-
thermore, the parameter P in the proposed algorithm can be easily
determined according to the performance analysis in the next sec-

tion.

3. APPROXIMATE PERFORMANCE ANALYSIS OF THE
PROPOSED ALGORITHM

In this section we will give an approximate steady-state performance
analysis of the proposed NSVSSLMS algorithm. For the conve-

nience of analysis we make two assumptions:
A]. The input signal x(n) is a zero-mean stationary white sig-

nal. The target signal t(n) is also zero-mean stationary and inde-
pendent of the input signal x(n).

A2. At steady state the excess mean square error is much smaller
than the target signal variance, and therefore the error signal e(n)
is approximately equal to the target signal t(n).

Assumption A] is a general assumption for the analysis of the
VSSLMS algorithm. We are justified in assuming the noise is sta-
tionary on the basis that signals such as speech can be assumed sta-
tionary over a certain interval. Assumption A2 is true in the adaptive
noise canceller, if the step size is not very large. Using these assump-
tions simplifies the analysis and gives insight into the performance
of the algorithm.

Since the squared norm of the smoothed normalized gradient
vector Ig(n) 112 is the key term for the proposed algorithm, we will
give a steady-state performance analysis for this term first. From (5)
we have

(8)-(n) (I _1) ig(i
i=l

assuming g(O) = 0 and denoting g(i) = e(i)x(i). The expected
performance of the squared norm of the smoothed gradient vector
can then be obtained

(9)Etll(n) 1121} = (I _ /3)2EE C(i, j)
i=l j=1

where C(i, j) is defined as

C(i, j) = E{f -igT(jf)t3n-jg(j)}.

When n approaches infinity, the term O3f in (10) approaches to
zero if i is finite. So when we calculate E{ -g(oc) 12}, the term
C(i, j) can be ignored when i or j are not infinite. The following
analysis will only consider this term at steady state, i.e., i and j are

both steady-state time indexes.
At first we consider C(i, j) when i = j. From assumption A2

we have
e(i) t(i). (1 1)

With (11), the gradient vector g(i) can also be approximately
written as

(12)g(i) t(i)x(i).
Substituting this into (10) we obtain

C(i, i) --E{ 2n-2iXT(j)X(j)t2 (j) }. (13)

With assumption A], (13) becomes

-
i2n-2i 2 2 (14)

where aQ2 and a42 are the variances of the target signal and input
signal respectively. When i 7? j, similar derivation can be performed
which yields

C(i,j) 0 when i #? j

Substituting (14) and (15) into (9) we have

E{||2(n-12(7-2 p2(-)C5

i=s

(15)

(16)

where s is the time index beyond which the system is assumed at
steady state. Equation (16) can be simplified as:

E{ Ig(oc) 1121} (I3 )L.t2
' (17)
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Now let's examine the steady-state performance of the proposed
algorithm. Since the term {L[o2 (n)+&2(n)]}2 changes very slowly
with stationary input and noise signals, we assume that it is a con-
stant during the iteration. Taking the expectation on both sides of
(6), we have

PE{ gI(n) 112}E{ PNSVSS(n)} {L[,(n) + o(n)1}2 (18)

Substituting (17) into (18) we have

E{ LNSVSS (00)}1-(1 + r3{L[&2(n) + t (n)]} (19)

As described by equation (16) in [7], the steady-state EMSE of
the LMS algorithm which is defined as E{[e(n) -t(n)]2} can be
formulated as

Jex,LMS (oc) /ILMSLxt2cT (20)2- /LMsLQ7x
If we assume that fLMS is very small so that ILMSLc 2A< 2, we have

Jex,LMS(o°) 2LLMSLuxut. (21)

Similarly, if we assume that at steady state the step size of the pro-
posed algorithm is very small, and IINsvss(oo)Lax A< 2, the EMSE
of the proposed algorithm can then be formulated as

122
Jex,NSVSS(OC) 2E{/INSvSS(oc)j}Lc7/ct (22)2

Substituting (19) into (22) we obtain the steady-state EMSE for the
proposed NSVSSLMS algorithm:

Jex,NSVSS(oO) P(1 rnL2utu x (23)
2(1 + r){L[o2(n) + 1(n)2}

Since o2 (n) o2, the following equation is obtained from (23)

lim Jex,NSVSS (oo)
<n2 00ot

P(1 )(J4
2(1 + f)

(24)

It can be clearly seen from (24) that the EMSE obtained by the
proposed algorithm will be independent of the target signal t(n)
when the variance of the target signal is very large. Although the
analysis is based on the assumption that the target signal is station-
ary, an approximate indication of its general performance is also ob-
tained. For some nonstationary target signals, such as speech, they
can be deemed as stationary over some short interval. When the
variance of some intervals of the target signal is much higher than
the input signal at steady state, the EMSE will be independent of the
variance of the target signal; thus, the proposed algorithm is robust
for applications with nonstationary target signals.

Now let's consider the choice of the parameter P. Note that (24)
also gives an upper bound of the steady state EMSE of the proposed
algorithm with the variation of the target variance. To choose this pa-
rameter, we first need to determine an upper bound value of Jex,NSVSS
according to the application. With this value and the variance of the
input signal, P can be determined directly according to (24):

p Jex,NSVSS,max2(1 + 3) (25)

where Jex,NSVSS, max is the upper bound value of the EMSE.

If the maximum short-interval variance of the nonstationary tar-
get signal can be obtained, a more accurate criterion for the choice
of P similar to (25) can be obtained according to (23). In practice,
since the target variance is not infinite, the parameter P can be a little
larger than the value obtained from (25).

In the next section, all the above analysis and discussion will
be supported by simulation in the context of a nonstationary target
signal.

4. SIMULATION

In this simulation, we will compare the performance between Green-
burg's method and the proposed algorithm within an adaptive noise
canceller model. The input signal x(n) is a pseudo-random, zero-
mean unit-variance Gaussian signal with a length of 100,000 sam-
ples. The target signal t(n) is the first 100, 000 samples of a speech
signal which is available from
http://www.voiptroubleshooter.com/open speech/american.html,
and the file name is "OSR us 000 0016 8k.wav". This target signal
is scaled to make the average SNR over the entire observation OdB.
The target signal and one representation of the input signal can be
seen in Fig. 1.

The primary signal d(n) is obtained as follows:

d(n) = x(n) * h(l) + t(n) (26)

where h(l) is the optimal filter obtained by

h(l) =e 0 r(l), I = 1 ...7100 (27)

where r(l) is drawn from a zero mean unit variance Gaussian se-
quence. One representation of h(l) can be seen in Fig. 2(a).

In this simulation the proposed algorithm will be compared to
Greenburg's method with different step sizes 0.1 and 0.02. The ini-
tial step sizes and adaptive filter vectors of the proposed algorithm
are set to zero. The parameter f for the proposed algorithm is set
to 0.999 to perform a sufficient smoothing operation. The parameter
P in the proposed algorithm is set to 80. The parameter sets for the
proposed algorithm are chosen to make its initial convergence rate
approximately equal to that of Greenburg's method with a step size
0.1. The estimates o2 (n) and 42 (n) used in Greenburg's algorithm
and the proposed algorithm are obtained by smoothing the input and
error signals as

&'(n) = 0.99&'(n -1) + (1 0.99)e2(n)

and

(28)

(29)
The initial values of oQ (n) and 4'(n) are set to zero and unit

respectively. The evolutions of the EMSE curves for all the exper-
iments are shown in Fig. 2(b). The results are obtained over 200
Monte Carlo trials of the same experiment.

It is clear seen in Fig. 2(b) that the proposed algorithm has a
EMSE convergence rate similar to that of Greenburg's method with
a parameter 0.1 at the early state of the process. The EMSE of both
methods converges to -20dB at about 3,000 samples. However, the
EMSE of Greenburg's method with parameter 0.1 fluctuates greatly
with the variation of the target signal energy. The performance of
Greenburg's method with parameter 0.02 has a small EMSE and
slight fluctuation of the EMSE, but the convergence rate is very slow.
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(a) One representation of the optimal filter h(l)
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Fig. 1: The noise signal (a) and one representation of the input signal
(b).

The proposed algorithm has a fast convergence rate which is simi-
lar to Greenburg's method with parameter 0.1, and a small EMSE
which is close to that of Greenburg's method with parameter 0.02.
Therefore, the proposed NSVSSLMS algorithm performs better than
Greenburg's method.

The theoretical upper bound of the EMSE of the proposed algo-
rithm according to (24) is also shown in Fig. 2(b). It can be seen that
over the interval 15, 000 to 20, 000, where the variance of the target
signal is high, the EMSE of the simulation results is very close to
this theoretical upper bound. Thus (24) can give a good upper bound
of the steady-state EMSE for the proposed algorithm, and we con-
clude that with a given upper bound of the steady-state EMSE, the
parameter P can be properly chosen according to (25).

Note that all the analysis and simulation are based on a white
input signal. When the input signal is correlated, the analysis re-
sults obtained from (19) and (23) are both incorrect, and smaller than
the pratical results. In this case, the parameter P should be chosen
smaller than the value obtained from (24). Finally, if both input and
noise signals are nonstationary signals, the smoothed gradient vec-
tor can not measure the proximity of the adaptive process, and the
proposed algorithm has no advantage as compared with Greenburg's
method. A new variable step-size approach is needed in such cases.

Fig. 2: One representation of the optimal filter (a) and the evolu-
tion curves of the EMSE for Greenburg's, Shin's, and the proposed
NSVSSLMS algorithms (b).
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5. CONCLUSIONS

A new VSSLMS algorithm, namely the NSVSSLMS algorithm, has
been presented in this paper. According to our analysis and sim-
ulation results, the proposed algorithm performs better than Green-
burg's sum method with stationary input and nonstationary noise sig-
nals. Simulations show that this algorithm can obtain both fast con-
vergence and small EMSE with robustness to nonstationary noise
signals. Future work will focus on the issues when both the input
signal and the noise signal are nonstationary.
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