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Abstract—Audio captioning aims at describing the content
of audio clips with human language. Due to the ambiguity of
audio content, different people may perceive the same audio clip
differently, resulting in caption disparities (i.e., the same audio
clip may be described by several captions with diverse semantics).
In the literature, the one-to-many strategy is often employed
to train the audio captioning models, where a related caption
is randomly selected as the optimization target for each audio
clip at each training iteration. However, we observe that this
can lead to significant variations during the optimization process
and adversely affect the performance of the model. In this paper,
we address this issue by proposing an audio captioning method,
named ACTUAL (Audio Captioning with capTion featUre spAce
reguLarization). ACTUAL involves a two-stage training process:
(i) in the first stage, we use contrastive learning to construct a
proxy feature space where the similarities between captions at the
audio level are explored, and (ii) in the second stage, the proxy
feature space is utilized as additional supervision to improve
the optimization of the model in a more stable direction. We
conduct extensive experiments to demonstrate the effectiveness
of the proposed ACTUAL method. The results show that proxy
caption embedding can significantly improve the performance of
the baseline model and the proposed ACTUAL method offers
competitive performance on two datasets compared to state-
of-the-art methods. The code is publicly available at https:
//github.com/PRIS-CV/Caption-Feature-Space-Regularization.

Index Terms—Audio captioning, Contrastive learning, Cross-
modal task, Caption consistency regularization

I. INTRODUCTION

AUDIO captioning is a cross-modal translation task that
requires extracting features from an audio clip and us-

ing a language model to describe the content of the audio
clip based on these features [1], [2], [3], [4], [5]. However,
unlike automatic speech recognition that transcribes speech
to text [6], the audio captioning task focuses on identifying
human-perceived information in general audio signals and
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A thin plastic is being 
rubbed.

The fire is crackling.

Fig. 1. Due to the ambiguity of audio content, people may have different
perceptions of the same audio clip.

expressing it with natural language. The generated caption
may include the descriptions for sound events, acoustic scenes,
and other high-level semantic information such as concepts,
physical properties, and high-level knowledge [2].

People can easily describe a visual object by its shape,
color, size, and its position relative to other objects in a visual
captioning task. However, describing an audio clip is a much
more complex process with three stages involved: (i) distin-
guishing between different sound events, (ii) understanding
each sound event with common knowledge, and (iii) inferring
the semantic information of the entire audio clip via analyzing
the relationship between sound events, speech in the audio, and
other content [7]. For example, given an audio clip containing
the sound of a car engine and a conversation about the driving
destination, we can speculate that this might be from an
acoustic scene with a passenger talking to the car driver.
However, various acoustic events may sound similar, which
may lead to ambiguities in perceiving and recognizing them.
As a result, the descriptions provided by different annotators
may be different for the same audio clip. This can result in
semantic disparity of audio captions [2]. As shown in Fig. 1,
some people may think that the sound of a crackling fire is
that of a plastic card being rubbed [8].

As a result, in commonly used audio captioning bench-
mark datasets (e.g., Clotho [2]), each audio clip is labelled
with multiple captions by different annotators. Previous audio
captioning models are often trained by one-to-many audio-
caption pairs, in which each audio clip is randomly paired
with one of the relevant captions in each training iteration [9],
[10], [11], [12], [13], [14], [15], [16], [17]. Nevertheless, due
to the semantic disparity of the captions associated with the
same audio clip, using randomly selected training targets may
lead to significant variations during the process for model
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optimization, which may degrade the model performance,
as we show in this work. This issue could be addressed
by using all the captions of the same audio simultaneously.
However, the input diversity and the model performance could
be compromised if the same audio is repeatedly used in the
training batch, due to the use of the auto-regressive models
in most existing audio captioning methods. More specifically,
this can lead to about 7.5% decrease in 𝑆𝑃𝐼𝐷𝐸𝑟 with our
baseline model on Clotho-V2. To our knowledge, previous
research in audio captioning has not addressed such a training
and optimization problem. Although additional objectives are
constructed for model training in [6] by leveraging sentence
embeddings, the aforementioned problem remains open since
the sentence embeddings contain the semantic information
only at the caption level.

In this work, we argue that the captions of the same audio
clip are only of semantic disparity, and they have latent similar-
ity inherent to each audio clip itself, which is beyond the level
of the captions. These similarities have been under-explored
in existing audio captioning methods, and this motivates us to
propose a proxy caption feature space regularization method,
named ACTUAL. Specifically, the proposed ACTUAL method
includes two training stages: (i) in the first stage, a proxy
caption feature space is learned by minimizing the distance
between different captions belonging to the same audio clip
and maximizing the distance between different captions of
different audio clips, and (ii) in the second stage, an audio
captioning model is trained with the previously built proxy
feature space as a regularization term, i.e., utilizing the proxy
feature space as an additional objective to mitigate the training
issue.

Our contributions are threefold:

1) A two-stage caption feature space regularization method,
i.e. ACTUAL, is proposed to mitigate the effect of caption
disparity on the audio captioning task.

2) Comparative experiments are conducted on multiple au-
dio captioning datasets, and the experimental results
demonstrate the effectiveness of our proposed method.

3) Extensive ablation and validation experiments demon-
strate that the proxy embedding improves the perfor-
mance of the model in generating word-diverse, gram-
matically correct, and meaningful captions.

The remainder of this paper is organized as follows. Related
work is described in Section II. We introduce the ACTUAL
method in Section III. Section IV describes the settings of the
experiment. Experimental results and discussions are given in
Section V. Finally, we conclude our work in Section VI.

II. RELATED WORK

The audio captioning task was first proposed in [1], which
employed audio data from the PSE commercial corpus and
its corresponding captions, and proposed a BiGRU [18] based
encoder-decoder model to generate audio captions. Due to the
success of the audio captioning task in DCASE 2020 and
DCASE 2021 [8], audio captioning has attracted increasing
attention, and several methods have been proposed.

Most of the existing research on audio captioning has
focused on an encoder-decoder framework. The encoder, pre-
trained on sound event detection or sound scene recognition
tasks, transforms the audio data into latent representations. The
decoder, trained from scratch, is a language model to generate
captions. Wang et al. [11] proposed a decoder with a temporal
attention mechanism that incorporates acoustic information for
each time step. Chen et al. [19] used the combination of a
pretrained encoder and a Transformer decoder which improves
the effectiveness of the latent representation in generating cap-
tions. Xu et al. [9] investigated the effect of local and global
information on the audio captioning task by comparing two
pretrained models. Weck et al. [20] investigated the influence
of four pretrained encoders on audio captioning performance
and motivated the use of large pretrained language models to
build better audio captioning methods.

Additional information has also been exploited to improve
audio captioning performance. The semantic attributes were
originally used in [21], where the AudioSet labels from the
most similar video clips were used as semantic attributes. Eren
and Sert [22] used an audio encoder to get audio embeddings
and a text encoder to get subject-verb embeddings, and then
combined and decoded these embeddings in the decoder. Koh
et al. [12] proposed a simple self-supervised learning objective
for text generation with constraints from additional audio
information. The visual information has also been exploited for
audio captioning in [23] and [24]. For example, Liu et al. [23]
introduced visual information into the audio captioning task to
improve the peformance of the model in accurately identifying
ambiguous sounds through the cross-modal attention mech-
anism. Boes et al. [24] employed multi-encoder transformer
systems to incorporate visual information for audio captioning.

Furthermore, to directly optimize the evaluation metrics
and solve the exposure bias problem, reinforcement learning
has also been introduced to audio captioning. Xu et al. [25]
explored reinforcement learning methods using self-critical
sequence training for audio captioning. Mei et al. [26]
proposed a reinforcement learning-based method that directly
optimizes the 𝐶𝐼𝐷𝐸𝑟 metric. Although reinforcement learning
improves model performance by optimizing non-differentiable
metrics, it can also lead to models generating syntactically
incorrect and incomplete captions, reducing the diversity and
salience of the model-generated captions. Mei et al. [27]
proposed a conditional generative adversarial network-based
audio captioning method to ensure the semantic relevance
and diversity of the generated captions. During the same
period, Xu et al. [28] used an adversarial training approach to
promote diversity in the generated texts while ensuring model
performance.

Contrastive learning has been utilized for audio captioning
by several researchers. Chen et al. [15] used cross-modal
contrastive learning to enhance the correspondence between
audio and text embeddings, enabling the extracted audio
features to contain both audio and text information. Similarly,
Liu et al. [14] utilized contrastive learning to improve the
quality and alignment of the generated captions by determining
whether the generated captions and audio clips were paired.

However, there is a common challenge in the aforemen-
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Fig. 2. The system overview of ACTUAL. The mainstream encoder-decoder audio captioning framework is in Block A, and Block B is the proposed caption
feature space regularization module. 𝑒𝑛𝑚 is extracted in the first stage which is described in Section III-B and then 𝑒𝑛𝑚 is used to regularize the training of
the caption generation model (described in Section III-C).

tioned methods, i.e. the training of the audio captioning
models may be negatively affected by the problem of caption
disparities, where for the same audio clip, the phrases and
semantics within the captions can be significantly different.
To mitigate this issue, we propose a novel caption feature
space regularization method. Our aim is to improve audio
captioning performance and reduce the negative influence of
caption disparities. In addition, contrastive learning used in
our method is performed only on the text modality which is
different from the contrastive learning approaches discussed
earlier.

III. PROPOSED METHOD

A. Overview of the Audio Captioning System

The current mainstream framework for audio captioning is
an end-to-end encoder-decoder network, as shown in Block A
of Fig. 2.

The data for training the network consists of a set of audio-
caption pairs (X𝑛,C𝑛), where X𝑛 ∈ R𝑇×𝐹 is the log mel-
spectrogram of the 𝑛-th audio clip in each batch, containing 𝑇

frames and 𝐹 mel-frequency bands. The set C𝑛 corresponds
to all the captions associated with the 𝑛-th audio clip within
each batch. In the training process, the existing methods often
randomly select one of the captions as the target objective
at each training iteration. We assume that randomly selected
caption from the set C𝑛 is c𝑛𝑚, where c𝑛𝑚 = (𝑐1

𝑛𝑚, . . . , 𝑐
𝐿
𝑛𝑚)

is the 𝑚-th caption and 𝐿 is the number of tokens. Thus the
input for each minibatch becomes {(X𝑛, c𝑛𝑚)}𝑁𝑛=1 and 𝑁 is
the batch size.

As depicted in Fig. 2, the audio encoder takes the log mel-
spectrogram X𝑛 of an audio clip as input and extracts its
latent representation Z𝑛 ∈ R𝑇 ′×𝐹′

, where 𝑇 ′ and 𝐹′ represent
the time and feature dimensions, respectively. The decoder
then takes the latent representation Z𝑛 as input and generates
the hidden states of tokens, denoted as H𝑛 ∈ R𝐿×𝐷 , which
contain 𝐿 vectors

{
ℎ𝑙𝑛

}𝐿
𝑙=1, where the dimension of ℎ𝑙𝑛 is 𝐷

and the number of vectors is equal to the token length of
the caption c𝑛𝑚. The vectors are then utilized to predict the
probability of the words over the vocabulary after passing

through the softmax layer. Hence, each vector ℎ𝑙𝑛 corresponds
to the token 𝑐𝑙𝑛𝑚 in the objective caption. The predicted words
are

{
𝑤𝑙
𝑛𝑚

}𝐿
𝑙=1.

The cross-entropy (CE) loss function is used by the decoder
for word-level classification as follows:

ℓ𝐶𝐸 (𝜃; c𝑛𝑚,X𝑛) = −
𝐿∑︁
𝑙=1

𝑐𝑙𝑛𝑚 · log 𝑝

(
𝑤𝑙
𝑛𝑚 | 𝜃,X𝑛

)
, (1)

where 𝜃 represents the parameters of the network.
For the audio captioning task, an audio clip is described

with multiple captions by different annotators. Each annotator
may perceive the audio clip in a different way, which may
lead to disparities in the semantics of the captions generated.
However, in the model training process, only one caption can
be randomly selected for each audio clip as the ground truth
for each training iteration. This strategy tends to make the
training process unstable, and thus potentially degrades the
performance of the model.

To solve the above problem, we propose a proxy feature
optimization method to regularize the training of the caption
generation model, and the key module is shown in Block B of
Fig. 2. The ACTUAL method is a two-stage audio captioning
model, in which the first stage uses contrastive learning to
generate the proxy caption embedding 𝑒𝑛𝑚 for the caption of
each audio clip (described in Section III-B) and then the proxy
embedding 𝑒𝑛𝑚 is used in the module to regularize the training
of the caption generation model (described in Section III-C).

B. The First Stage: Generation of the Proxy Caption Feature
Space

To reduce the effect of caption disparity on model training,
we use a contrastive learning method to reduce the distance
between captions in the proxy feature space that belong to the
same audio clip and increase the distance between captions
that belong to different audio clips.

As depicted in Fig. 3, 𝑁 × 𝑀 captions form a minibatch.
These captions are from 𝑁 different audio clips, and each clip
has 𝑀 captions. The symbol c𝑛𝑚 (1 ≤ 𝑛 ≤ 𝑁 , and 1 ≤ 𝑚 ≤
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Fig. 3. The overview diagram of the first stage. Different colors indicate caption embeddings from different audio clips. The colored areas are the positive
similarity and the grey areas are negative in the similarity matrix. In this figure, 𝑁 and 𝑀 are both three.

𝑀) represents the 𝑚-th caption corresponding to the 𝑛-th audio
clip.

We extract the word embeddings from the top layer of
the Bidirectional Encoder Representations from Transformer
(BERT) [29]. Then the word embeddings of each caption are
fed into the Long Short-Term Memory (LSTM) network to
enhance the index correlation. A linear layer is then placed
on top of the LSTM layer for feature mapping. The output
of the network is denoted as G ∈ R𝑁𝑀×𝐿×𝐷 , where 𝑁𝑀

is the number of captions in one batch, 𝐿 and 𝐷 represent
the token numbers and feature dimensions, respectively. The
proxy embeddings E ∈ R𝑁𝑀×𝐷 are obtained by the mean
pooling and max pooling operations on the output feature G:

E = Mean (G) + Max (G) , (2)

where E = {𝑒11, ..., 𝑒𝑛𝑚, ..., 𝑒𝑁𝑀 } represent all proxy caption
embeddings of a batch and 𝑒𝑛𝑚 ∈ R𝐷 (1 ≤ 𝑛 ≤ 𝑁 , and
1 ≤ 𝑚 ≤ 𝑀) is the proxy embedding of the 𝑚-th caption for
the 𝑛-th audio clip.

The centroid of the proxy embeddings from the 𝑘-th audio
clip [𝑒𝑘1, · · · , 𝑒𝑘𝑀 ] is denoted as 𝑑𝑘 . Inspired by [30], the
scaled cosine similarities between each proxy embedding 𝑒𝑛𝑚
and all the centroids 𝑑𝑘 are defined by the similarity matrix
S ∈ R𝑁𝑀×𝑁 (1 ≤ 𝑛, 𝑘 ≤ 𝑁 , and 1 ≤ 𝑚 ≤ 𝑀):

S𝑛𝑚,𝑘 =

{
𝑎 · cos (𝑒𝑛𝑚, 𝑑𝑘) + 𝑏 if 𝑘 ≠ 𝑛

𝑎 · cos
(
𝑒𝑛𝑚, 𝑑

(−𝑚)
𝑛

)
+ 𝑏 if 𝑘 = 𝑛

(3)

where 𝑎 and 𝑏 are learnable parameters, and the weight 𝑎 is
limited to positive values (𝑎 > 0). When calculating negative
similarity (i.e., 𝑘 ≠ 𝑛), the centroid 𝑑𝑘 is the vector obtained
by computing the mean of all proxy embeddings of the 𝑘-th
audio clip, as shown in

𝑑𝑘 =
1
𝑀

·
𝑀∑︁
𝑗=1

𝑒𝑘 𝑗 . (4)

In addition, when computing the positive similarity (i.e.,
𝑘 = 𝑛) between the proxy embedding 𝑒𝑛𝑚 and the centroid,
we compute the centroid 𝑑

(−𝑚)
𝑛 of the 𝑛-th audio clip to make

training stable and avoid the trivial results by excluding 𝑒𝑛𝑚:

𝑑
(−𝑚)
𝑛 =

1
𝑀 − 1

·
𝑀∑︁

𝑗=1, 𝑗≠𝑚
𝑒𝑛 𝑗 . (5)

During the training, the proxy embeddings of each audio
clip should be similar to its centroid, but far from the centroid
of other audio clips in the proxy feature space. As shown in
the similarity matrix in Fig. 3, the colored areas should have
large values, whereas grey areas should have small values. The
contrastive loss function is designed as

𝑙 (𝑒𝑛𝑚) = − log
(
exp

(
𝑆𝑛𝑚,𝑛

) )
+ log

(
𝑁∑︁

𝑘=1,𝑘≠𝑛
exp

(
𝑆𝑛𝑚,𝑘

))
= −𝑆𝑛𝑚,𝑛 + log

(
𝑁∑︁

𝑘=1,𝑘≠𝑛
exp

(
𝑆𝑛𝑚,𝑘

))
.

(6)

After the training involved in the first stage is completed,
we extract the proxy embedding of each caption and use the
proxy caption embeddings in the next stage.

C. The Second Stage: Regularization of the Caption Genera-
tion Training

As shown in Block B of Fig. 2, the proxy caption embedding
𝑒𝑛𝑚 is used in the constraint module to regularize the training
of the caption generation model.

We obtain the embedding 𝑒𝑛𝑚 of the predicted caption by
average and max pooling operations on the decoder latent
representation H𝑛 as follows

𝑒𝑛𝑚 = Mean(H𝑛) + Max(H𝑛), (7)

where 𝑒𝑛𝑚 ∈ R𝐷 is the embedding of the predicted caption.
In addition to the cross-entropy loss, we propose adding the

proxy regularization loss to reduce the effect of the caption
disparity as

ℓPC (𝜃; 𝑒𝑛𝑚,X𝑛) = 1 − cosine(𝑒𝑛𝑚, 𝑒𝑛𝑚). (8)

In this way, a small loss means 𝑒𝑛𝑚 has a high similarity
with the proxy caption embedding 𝑒𝑛𝑚 obtained in the first
stage. Accordingly, the final objective function is the weighted
sum of the cross entropy loss and the proxy regularization loss
as

ℓ(𝜃; 𝑒𝑛𝑚, c𝑛𝑚,Xn) = ℓCE (𝜃; c𝑛𝑚,X𝑛) + 𝜆 · ℓPC (𝜃; 𝑒𝑛𝑚,X𝑛),
(9)

where 𝜆 is a hyperparameter.
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TABLE I
ENCODER MODEL STRUCTURES OF THE PANN AND PRETRAIN-CNN

Model PANN Pretrain-CNN

Conv 1

(
3 × 3@64
BN, ReLU

)
× 2

Conv 2

(
3 × 3@128
BN, ReLU

)
× 2

Conv 3

(
3 × 3@256
BN, ReLU

)
× 2

Conv 4

(
3 × 3@512
BN, ReLU

)
× 2

Global Pooling Pooling With Lengths
Linear 1 FC@512, ReLU
Linear 2 FC@527, Sigmoid

IV. EXPERIMENTS SETTINGS

In this section, we introduce the structures of the encoder
and decoder, the performance metrics, the datasets, the base-
line models, ablation studies, and finally, the implementation
details of the ACTUAL.

A. Encoder

Previous work [9] has demonstrated that utilizing audio
features extracted by the pre-trained encoder model outper-
forms training the encoder from scratch in the audio captioning
task. Therefore, in this work, we use two pre-trained encoder
models, PANN1 and Pretrain-CNN2, to extract features. Their
model structures are shown in Table I.

PANN and Pretrain-CNN both have similar convolutional
neural networks (CNN) and are trained on AudioSet. The two
CNN encoders contain 4 convolutional blocks and each block
consists of 2 convolutional layers with a kernel size of 3 × 3.
Batch normalization (BN) and the ReLU activation function
are used to stabilize the training. In Table I, the number
after the “@” symbol indicates the channel number of feature
maps. The difference between the two pretrained models is
that PANN uses a global Mean-Max pooling operation, while
Pretrain-CNN performs a pooling operation based on the
actual length of the audio features and the padding part is
ignored. Specifically, we use the eight pretrained convolution
layers before the fully connected layer to extract the audio
features.

B. Decoder

The decoder uses the audio feature extracted from the
encoder to generate captions. In this work, we use two
different decoders, attention-based GRU [31] and the Trans-
former model [32], both of which have achieved excellent
performance in audio captioning tasks.

1) Attention-based GRU decoder: We utilize a unidirec-
tional single-layer GRU as the decoder to estimate the word
probabilities. The model structures are shown in Fig. 4.

1https://zenodo.org/record/3987831
2https://zenodo.org/record/5090473
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At each time step 𝑙, the content-aware attention [33] is
adapted to aggregate the audio feature Z and generate the
contextual audio embedding 𝑧𝑙 , as follows,

𝑎𝑙 = Softmax(𝑉 · Tanh(𝑊 · [𝑍; ℎ𝑙−1])), (10)

𝑧𝑙 = 𝑎𝑙 · Z, (11)

where 𝑉 and 𝑊 are learnable weight matrices, [·; ·] is the
concatenation operation, Softmax(·) and Tanh(·) represent the
Softmax and Tanh activation function, respectively. First, the
alignment operation is used to calculate the attention weight
𝑎𝑙 ∈ R1×𝑇 ′

on the audio feature Z and the hidden state ℎ𝑙−1.
Then the contextual audio embedding 𝑧𝑙 is calculated as a
weighted sum of the audio feature Z.

Finally, the input word 𝑤𝑙−1 generated from the previous
step and the audio embedding 𝑧𝑙 are concatenated to update
the hidden state ℎ𝑙:

ℎ𝑙 = GRU
( [
𝑤𝑙−1; 𝑧𝑙

]
, ℎ𝑙−1

)
. (12)

https://zenodo.org/record/3987831
https://zenodo.org/record/5090473
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2) Transformer decoder: We utilize a 2-layer standard
Transformer as the decoder. The model structure is shown in
Fig. 5.

At the time step 𝑙, the output of the previous step 𝑤𝑙−1 is fed
to the decoder as the input. First, the word embedding 𝑤𝑙−1

is fed into the masked multi-head attention layer to extract
the hidden features. Then the audio feature Z is concatenated
with the extracted hidden features as input to the second multi-
head attention layer. Finally, the output ℎ𝑙 of the decoder at
the current time step is obtained.

C. Metrics

Our work focuses on the training challenges caused by audio
ambiguity and thus uses traditional audio captioning metrics to
evaluate the performance which includes machine translation
metrics: 𝐵𝐿𝐸𝑈𝑛 [34], 𝑅𝑂𝑈𝐺𝐸𝐿 [35], 𝑀𝐸𝑇𝐸𝑂𝑅 [36] and
captioning metrics: 𝐶𝐼𝐷𝐸𝑟 [37], 𝑆𝑃𝐼𝐶𝐸 [38], 𝑆𝑃𝐼𝐷𝐸𝑟 [39].
The subscript 𝑛 in 𝐵𝐿𝐸𝑈 refers to 𝑛−gram.

The machine translation metrics are used to measure the
word accuracy and recall of the generated text compared to the
ground truth. The captioning metrics take into consideration
the scene graph contained within the generated caption as
well as the 𝑛-gram’s frequency-inverse document frequency
(TF-IDF). The semantic fidelity and syntactic fluency of the
generated captions are ensured by taking into account the
scene graph and the TF-IDF of 𝑛-gram. All the values of these
metrics are reported as percentages in this work.

D. Datasets

Experiments are conducted on benchmark audio captioning
datasets, Clotho [2]. In Clotho, each audio clip has five
captions describing its content. The annotator only uses the
audio signals for annotation, and no additional signal is
provided. There are two versions of the Clotho dataset, namely,
Clotho-V1 and Clotho-V2. For Clotho-V1, which contains the
development set and the evaluation set, we randomly select
90% of the samples in the development set as the training
set and the remaining 10% as the validation set for model
selection. For Clotho-V2, which includes the development set,
the validation set and the evaluation set, we use the whole
development set as the training set for model training, and the
validation set is utilized for model selection.

It should be noted that this work does not use the AudioCaps
dataset [21], although it is a larger dataset available for audio
captioning, in which the annotators are provided with the
labels and video information of the audio clip during the
annotation process. This manipulation introduces bias [40]
which could be harmful to the dataset, since annotators may
describe what they see, rather than what they hear [2].

E. Baseline Models

As with most audio captioning works, we use the encoder-
decoder models trained by maximum likelihood estimation
(MLE) as the baseline models. Four different combinations
of the encoder and decoder are applied as the backbone of
the baseline models. In order to accelerate the convergence of

the systems, the teacher forcing strategy [41] is utilized during
the training process. The standard cross-entropy is used as the
loss function.

F. Ablation Studies

The following ablation studies are conducted to evaluate the
efficacy of the proposed ACTUAL:

1) The effect of different proxy regularization loss function
choices ℓ𝑝𝑐: We evaluate multiple different proxy regulariza-
tion loss functions in an attempt to improve audio captioning
performance. The cosine embedding loss, L1 loss, and L2 loss
are selected to explore the impact of the loss function on the
model performance.

2) The contribution of the “mean+max” pooling method:
To investigate the effect of the pooling method on model
performance, we also design ablation experiments to compare
the “mean+max” pooling method with the individual mean
pooling and max pooling methods.

3) The effect of different combinations between hyperpa-
rameters 𝑀 and 𝜆: We also investigate the impact of the
hyperparameters on the performance of the model. In our
experiments, the number of captions 𝑀 used in the first stage
is selected as 2, 3, 4, and 5, respectively, while the proxy
regularization hyperparameter 𝜆 is chosen as 0.25, 0.5, 0.75,
and 1, respectively.

G. Implementation Details

For the first stage, we use a single-layer LSTM network
followed by a linear layer. The dimensions of the outputs of
the LSTM and linear layer are 1024 and 512, respectively.
We use the captions from the training set and the validation
set in the Clotho dataset for training and the captions from the
evaluation set for testing. When training the model, each batch
contains 𝑁 = 64 audio clips and 𝑀 = 3 captions (described
in Section V-B3) per audio clip. The average equal error
rate is used to evaluate the performance of the model, and
the model with the best performance on the validation set is
chosen to extract the proxy embeddings for the second stage.
The stochastic gradient descent (SGD) optimizer is used to
train the network. The learning rate is 0.01 and the number of
training epochs is 500. The scaling factors (𝑎,𝑏) are initialized
as (10,−5).

For the second stage, specAugment [42] and label smooth-
ing [43] are applied to prevent overfitting. 64-dimensional log-
Mel spectrogram (LMS) is extracted from audio as the input to
the encoder. As for the Pretrain-CNN encoder, the frameshift
of the LMS feature is 1024-points and the size of the Hann
window is 2048-points. While for the PANN encoder, all the
audio clips are resampled to 32 kHz and the LMS feature
has a frameshift of 512-points and a window size of 1024-
points. The output dimensions of the decoder are 512 and the
Transformer decoder has 4 heads. As for the GRU decoder,
the Adam optimizer is used to train the network, the initial
learning rate is 5×10−4 and the total number of training epochs
is 25. For the Transformer decoder, the initial learning rate is
5 × 10−3 and warm-up is used to increase the learning rate
linearly from the initial learning rate in the first five epochs,
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TABLE II
EXPERIMENTAL RESULTS ON THE CLOTHO EVALUATION SETS

Dataset Model Encoder Decoder BLEU1 BLEU4 ROUGE𝐿 METEOR CIDEr SPICE SPIDEr

C
lo

th
o-

V
1

Baseline
PANN

GRU 53.6 ± 0.71 13.8 ± 0.31 35.9 ± 0.12 16.3 ± 0.12 34.1 ± 0.70 11.0 ± 0.25 22.6 ± 0.45
Transformer 50.2 ± 0.74 11.9 ± 0.41 34.0 ± 0.26 16.0 ± 0.12 32.2 ± 0.49 10.7 ± 0.08 21.4 ± 0.29

Pretrain-CNN
GRU 54.3 ± 0.50 14.5 ± 0.17 36.2 ± 0.22 16.9 ± 0.08 36.5 ± 0.33 11.7 ± 0.12 24.1 ± 0.22

Transformer 50.1 ± 0.43 12.3 ± 0.45 34.6 ± 0.59 15.9 ± 0.26 31.5 ± 0.99 10.7 ± 0.33 21.1 ± 0.36

Our
PANN

GRU 55.2 ± 0.31 15.0 ± 0.36 36.7 ± 0.21 17.1 ± 0.05 36.9 ± 0.46 11.6 ± 0.05 24.2 ± 0.29
Transformer 51.3 ± 0.29 13.1 ± 0.37 34.9 ± 0.16 16.5 ± 0.14 33.3 ± 0.12 11.2 ± 0.05 22.3 ± 0.05

Pretrain-CNN
GRU 55.5 ± 0.21 15.5 ± 0.17 36.9 ± 0.00 17.1 ± 0.08 37.6 ± 0.08 11.7 ± 0.08 24.6 ± 0.05

Transformer 52.4 ± 0.24 13.3 ± 0.09 35.5 ± 0.09 16.6 ± 0.22 35.1 ± 0.33 11.4 ± 0.16 23.2 ± 0.12

C
lo

th
o-

V
2

Baseline
PANN

GRU 54.5 ± 0.22 14.9 ± 0.08 36.5 ± 0.08 17.0 ± 0.12 36.9 ± 0.50 11.5 ± 0.17 24.2 ± 0.24
Transformer 52.0 ± 0.62 12.9 ± 0.36 35.0 ± 0.45 16.8 ± 0.22 34.0 ± 0.76 11.3 ± 0.29 22.6 ± 0.52

Pretrain-CNN
GRU 55.2 ± 0.65 15.3 ± 0.29 37.1 ± 0.09 17.3 ± 0.08 38.7 ± 0.70 11.8 ± 0.05 25.2 ± 0.33

Transformer 51.7 ± 0.29 12.5 ± 0.17 34.9 ± 0.22 16.5 ± 0.24 33.6 ± 0.43 11.2 ± 0.21 22.4 ± 0.29

Our
PANN

GRU 55.8 ± 0.16 15.9 ± 0.12 37.4 ± 0.12 17.5 ± 0.09 39.7 ± 0.12 12.0 ± 0.09 25.9 ± 0.05
Transformer 55.9 ± 0.42 15.9 ± 0.14 37.5 ± 0.42 17.1 ± 0.12 37.3 ± 0.34 11.6 ± 0.25 24.4 ± 0.12

Pretrain-CNN
GRU 56.6 ± 0.24 16.1 ± 0.29 37.5 ± 0.19 17.6 ± 0.12 40.9 ± 0.23 12.1 ± 0.09 26.5 ± 0.12

Transformer 55.9 ± 0.24 15.9 ± 0.47 37.6 ± 0.37 17.2 ± 0.14 37.5 ± 0.17 11.5 ± 0.14 24.5 ± 0.05

the total number of training epochs is 30 and the learning rate
is reduced to 1/10 of its original value every 10 epochs. The
model is trained using the Adam optimizer with a batch size
of 32.

V. EXPERIMENTAL RESULTS AND DISCUSSION

This section shows the results followed by discussions
of comparative experiments3. In all tables, the bold font
represents the best result for each metric in each table. Since
the caption generation tasks usually have a high variance [44],
we repeat all the methods three times and report the mean
and standard deviation of the metrics (in the format of
“mean ± standard deviation”).

A. Comparison with baseline models and other methods

1) Comparison with baseline models: Table II shows the
results obtained by the proposed ACTUAL method and the
baseline models on the datasets: Clotho-V1 and Clotho-V2.
The baseline models are trained using the maximum likelihood
estimation algorithm, which is a commonly used training
method for the audio captioning task. To enable fair compar-
isons, we selected two pretrained encoders and two language
decoders for both the baseline and proposed models.

The results show that although both encoders have similar
model architectures, the models with the Pretrain-CNN en-
coder perform better than those with the PANN encoder. This
may be because the Pretrain-CNN encoder pooled the audio
embeddings based on their actual length, mitigating the impact
of some disturbances on caption generation, as opposed to
the PANN encoder, which employs global pooling to gather
audio features. The comparison between different decoders
shows that the GRU decoder achieves better performance in
almost all metrics on all the datasets. Finally, using the same

3In addition to the metrics of the tables, to better verify the statistical
significance of model performance margins, the results of student’s 𝑡-tests
between our methods and the other methods are shown in Appendix A.

encoder and decoder as those in the baseline models, the
proposed ACTUAL models achieve better results in all the
evaluation metrics as compared to the baseline models. The
performance improvements are statistically significant in most
metrics. Therefore, in the following experiments, we take the
model using Pretrain-CNN as its encoder and GRU as its
decoder.

2) Comparison with other methods: We introduce com-
parisons with the state-of-the-art methods on Clotho-V1 and
Clotho-V2 datasets. In this section, the methods do not con-
sider the influence of reinforcement learning, so the reinforce-
ment learning processes in other methods are not involved.
The two-sample Student’s t-tests are also conducted in the
experiments. Table III shows the comparison of the proposed
method with other methods whose results are taken from their
original papers. The results show that the proposed ACTUAL
method is competitive as compared to those methods.

For the Clotho-V1 dataset, ACTUAL achieves the best
results in the four metrics. According to the Student’s t-
tests, the ACTUAL model significantly outperforms the Fine-
tuned PreCNN Transformer [19] and the Temporal attention
model [11] in all the evaluation metrics. Although AT-CNN
outperforms our model in 𝐵𝐿𝐸𝑈1 and 𝐶𝐼𝐷𝐸𝑟 metrics, the
difference is not statistically significant. ACTUAL achieves
outstanding performance on the 𝑀𝐸𝑇𝐸𝑂𝑅, 𝑅𝑂𝑈𝐺𝐸𝐿 , and
𝑆𝑃𝐼𝐶𝐸 metrics. The 𝑀𝐸𝑇𝐸𝑂𝑅 metric shows that our model
is better in terms of aligning stemming and synonymy match-
ing than the state-of-the-art models. The 𝑅𝑂𝑈𝐺𝐸𝐿 metric
shows that our model can predict longer subsequences than
the state-of-the-art methods. The 𝑆𝑃𝐼𝐶𝐸 metric measures the
similarity of the scene graph between the generated captions
and the ground truth which means that the sentences generated
by our method have a higher semantic relevance. For the
Clotho-V2 dataset, ACTUAL achieved the best results in 4
metrics (𝑀𝐸𝑇𝐸𝑂𝑅, 𝐶𝐼𝐷𝐸𝑟 , 𝑆𝑃𝐼𝐶𝐸 , and 𝑆𝑃𝐼𝐷𝐸𝑟). The
performance on these captioning metrics shows that with
additional proxy embeddings, our proposed method is able
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TABLE III
EXPERIMENTAL RESULTS WITH THE LITERATURE ON THE CLOTHO-V1 AND CLOTHO-V2 EVALUATION SETS

Dataset Model BLEU1 BLEU4 ROUGE𝐿 METEOR CIDEr SPICE SPIDEr

C
lo

th
o-

V
1 AT-CNN [9] 55.6 15.9 36.8 16.9 37.7 11.5 24.6

Fine-tuned PreCNN Transformer [19] 53.4 15.1 35.6 16.0 34.6 10.8 22.7
Temporal attention model [11] 48.9 10.7 32.5 14.8 25.2 9.1 17.2

ACTUAL (Ours) 55.5 ± 0.21 15.5 ± 0.17 36.9 ± 0.00 17.1 ± 0.08 37.6 ± 0.08 11.7 ± 0.08 24.6 ± 0.05

C
lo

th
o-

V
2

AT-CNN [10] 56.5 15.5 37.4 17.4 39.9 11.9 25.9
Transformer+RNN-LM [13] 53.3 14.6 35.5 15.4 34.1 10.6 22.4

CL4AC [14] 55.3 14.3 37.4 16.8 36.8 11.5 24.2
TL + RLSSR [12] 55.1 16.8 37.3 16.5 38.0 11.1 24.6
CLIP-AAC [15] 57.2 16.9 37.9 17.1 40.7 11.9 26.3

EaseAC [45] 55.4 15.3 36.4 16.7 40.5 11.7 26.1
Prefix Tuning [46] 56.0 16.0 37.8 17.0 39.2 11.8 25.0

Stochastic Decoding [47] 55.5 15.7 37.4 17.0 36.7 11.8 24.2
MAAC∗[48] 57.6 ± 0.17 16.5 ± 0.21 37.7 ± 0.09 17.1 ± 0.09 40.0 ± 0.56 11.9 ± 0.09 26.0 ± 0.34

ACTUAL (Ours) 56.6 ± 0.24 16.1 ± 0.29 37.5 ± 0.19 17.6 ± 0.12 40.9 ± 0.23 12.1 ± 0.09 26.5 ± 0.12
∗ We re-implement the released code.

TABLE IV
THE COMPARISON OF DIFFERENT PROXY REGULARIZATION LOSS FUNCTIONS

Loss BLEU1 BLEU4 ROUGE𝐿 METEOR CIDEr SPICE SPIDEr

MAE 56.4 ± 0.33 15.9 ± 0.40 37.5 ± 0.17 17.3 ± 0.14 40.0 ± 0.19 11.9 ± 0.20 26.0 ± 0.10
MSE 56.4 ± 0.62 16.2 ± 0.13 37.4 ± 0.10 17.0 ± 0.15 39.9 ± 0.16 11.7 ± 0.02 25.8 ± 0.08

Cosine 56.6 ± 0.24 16.1 ± 0.29 37.5 ± 0.19 17.6 ± 0.12 40.9 ± 0.23 12.1 ± 0.09 26.5 ± 0.12

TABLE V
THE COMPARISON OF DIFFERENT POOLING APPROACHES

Loss BLEU1 BLEU4 ROUGE𝐿 METEOR CIDEr SPICE SPIDEr

Mean 56.7 ± 0.34 16.0 ± 0.19 37.4 ± 0.05 17.4 ± 0.09 40.2 ± 0.26 12.0 ± 0.20 26.1 ± 0.21
Max 55.4 ± 0.12 15.6 ± 0.34 37.4 ± 0.21 17.4 ± 0.16 39.1 ± 0.24 11.9 ± 0.06 25.5 ± 0.15

Mean+Max 56.6 ± 0.24 16.1 ± 0.29 37.5 ± 0.19 17.6 ± 0.12 40.9 ± 0.23 12.1 ± 0.09 26.5 ± 0.12

to generate texts that are more syntactically fluent, as well as
more accurate in describing the audio content.

B. Ablation studies and hyperparameter tuning

In this section, the results of the ablation studies are
discussed and analyzed on the Clotho-V2 dataset.

1) The effect of different proxy regularization loss function
choices ℓ𝑝𝑐: In order to improve audio captioning perfor-
mance, we also performed evaluations with the different loss
functions. The results are shown in Table IV. The Cosine loss
function achieves the best performance in almost all metrics,
whereas the MAE loss function achieves better results than the
MSE loss function except for the 𝐵𝐿𝑈𝐸4 metric. This suggests
that the Cosine embedding loss function is more appropriate
for incorporating the proxy feature constraint.

2) The contribution of the “mean+max” pooling method:
In Table V, we present the results by different pooling
approaches. The results indicate that the “mean+max” pool-
ing approach outperforms the individual pooling methods in
almost all the metrics. This is because the mean pooling
approach captures the overall context feature while the max
pooling approach identifies salient features. Combining both
pooling methods provides richer information and helps im-
prove the model’s performance.

TABLE VI
EXPERIMENTAL RESULTS FOR DIFFERENT COMBINATION BETWEEN

CAPTION NUMBERS 𝑀 AND HYPERPARAMETER 𝜆

𝜆

𝑀
2 3 4 5

0.25 25.4 ± 0.15 26.1 ± 0.07 25.6 ± 0.10 25.6 ± 0.31
0.5 25.7 ± 0.03 26.2 ± 0.16 25.9 ± 0.04 25.8 ± 0.04
0.75 25.7 ± 0.04 26.5 ± 0.12 26.2 ± 0.13 25.9 ± 0.37
1 25.6 ± 0.09 26.1 ± 0.16 26.1 ± 0.06 25.6 ± 0.08

3) The effect of different combinations between hyperpa-
rameters 𝑀 and 𝜆 : The experimental results of the 𝑆𝑃𝐼𝐷𝐸𝑟

metric are shown in Table VI4. Under the condition that
the number of captions 𝑀 is fixed, we can find that the
best performance is achieved in almost all cases when the
hyperparameter 𝜆 is 0.75, and the opposite is observed when
the hyperparameter is 0.25. With the fixed hyperparameter 𝜆,
the model obtains almost the best results when 𝑀 is 3.

C. Additional experiments

1) Does the semantic disparity in captions affect model
performance?: To verify whether the disparity of captions

4The results for other metrics are provided in Table XVIII in Appendix B
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TABLE VII
EXPERIMENTAL RESULTS FOR DIFFERENT SEMANTIC DISPARITY DATASETS

Dataset Model BLEU1 BLEU4 ROUGE𝐿 METEOR CIDEr SPICE SPIDEr

Easy-Clotho-V2
Baseline 54.7 ± 0.12 14.5 ± 0.29 36.6 ± 0.14 17.0 ± 0.11 36.5 ± 0.05 11.7 ± 0.03 24.1 ± 0.01

ACTUAL (Ours) 55.3 ± 0.03 15.0 ± 0.15 37.1 ± 0.05 17.1 ± 0.12 38.5 ± 0.09 11.9 ± 0.12 25.2 ± 0.07

Hard-Clotho-V2
Baseline 52.8 ± 0.17 13.3 ± 0.13 35.1 ± 0.23 15.9 ± 0.17 31.3 ± 0.16 10.5 ± 0.07 20.9 ± 0.12

ACTUAL (Ours) 54.1 ± 0.21 14.5 ± 0.12 35.9 ± 0.28 16.1 ± 0.14 33.9 ± 0.51 10.7 ± 0.07 22.3 ± 0.28

TABLE VIII
EXPERIMENTAL RESULTS FOR DIFFERENT EMBEDDINGS

Types of Embeddings BLEU1 BLEU4 ROUGE𝐿 METEOR CIDEr SPICE SPIDEr

BERT 56.4 ± 0.33 15.3 ± 0.36 37.2 ± 0.12 17.5 ± 0.18 39.7 ± 0.45 11.9 ± 0.16 25.8 ± 0.18
Word2Vec 55.7 ± 0.34 15.3 ± 0.21 37.1 ± 0.27 17.5 ± 0.13 39.3 ± 0.33 12.1 ± 0.15 25.7 ± 0.19

Glove 55.9 ± 0.26 15.4 ± 0.17 37.3 ± 0.15 17.5 ± 0.20 39.1 ± 0.37 12.0 ± 0.13 25.5 ± 0.24
CLIP-Like 55.6 ± 0.21 15.8 ± 0.02 37.6 ± 0.15 17.6 ± 0.11 39.8 ± 0.07 12.1 ± 0.18 26.0 ± 0.12

Proxy embedding (Ours) 56.6 ± 0.24 16.1 ± 0.29 37.5 ± 0.19 17.6 ± 0.12 40.9 ± 0.23 12.1 ± 0.09 26.5 ± 0.12

hinders model training, we conduct the following experiment
on Clotho-V2. We use a pretrained BERT model to extract
all sentence embeddings of captions belonging to the same
audio and the mean of the cosine similarity between any two
embeddings is used to measure the disparity of the audio
clip. After that, all samples in the training set are ranked by
the disparity and then divided into two groups named Easy-
Clotho-V2 and Hard-Clotho-V2, respectively. Hard-Clotho-
V2 contains the audio-caption pairs with a higher semantic
disparity and vice versa.

The results are shown in Table VII. We can observe that
the performance of the Hard-Clotho-V2 dataset is significantly
worse than that of the Easy-Clotho-V2 dataset, which is
especially clear in the CIDER metric that measures semantic
relevance. This indicates that the semantic disparity of captions
can affect the performance of the model and reduce the
relevance between the generated sentences and the target
captions. Compared to the improvement on the Easy-Clotho-
V2 dataset, the proposed ACTUAL achieves higher perfor-
mance improvements in six of the seven metrics on the Hard-
Clotho-V2 dataset, suggesting that our method can alleviate
the problem caused by semantic disparity and improve model
performance.

2) Can any kind of embedding help model training?: In
this study, we employ four different embeddings to evaluate
the efficacy of the proposed proxy embedding. These include
the embeddings extracted by BERT [29], Word2Vec [49], and
GloVe [50], which are all large-scale pre-trained language
models, and CLIP [51], which is obtained by cross-modality
contrastive learning with the image encoder replaced by the
audio encoder in the first stage of our proposed model.

The experimental results, presented in Table VIII, demon-
strate that all the embeddings enhance the model’s perfor-
mance compared to the baseline system, owing to the addi-
tional supervision provided. Notably, CLIP-Like embeddings
outperform the large-scale pre-trained embedding in almost all
evaluation metrics, which indicates the contrastive learning-

Proxy Embeddings (Ours)Bert Embeddings

Fig. 6. Visualization of two different caption embeddings: BERT embeddings
(left) and our proxy embeddings (right). The points with the same color mean
the captions of the same audio.

based embeddings can improve the performance of the model
by capturing potential similarities between captions from the
same audio clip.

Our proxy embedding achieves the best results in almost
all the metrics, surpassing the performance of the CLIP-Like
embeddings. This is probably because our proposed proxy
embedding only needs alignment within the text modality, thus
avoiding the domain gap between the modalities. The results
show that the proposed proxy embedding effectively addresses
the issue with model training that arises from the semantic
disparity of audio captions.

To obtain some intuition about the performance of our
proposed proxy embedding, we perform a set of experiments
on the evaluation set of Clotho-V2 and visualize the clustering
results of the BERT embeddings and the proxy embeddings
in Fig. 6. From the experimental results, we can observe that
our proposed proxy embeddings perform better in maintaining
the compactness of the clusters while separating the captions
of other audio clips compared to the BERT embeddings.

3) Does the proxy feature space weaken word diversity
and grammatical correctness?: To verify whether the AC-
TUAL model sacrifices the word diversity and grammati-
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TABLE IX
THE COMPARISON OF PREDICTED CAPTIONS FOR DIFFERENT METHODS

Method Captions
Example 1 Example 2 Example 3

Reinforcement learning A person is tapping on a glass object
with a.

A siren emergency siren is sirens and
people are talking in the.

A water is running down into a stream
of a.

Baseline A person is tapping on a hard surface. Police sirens are blaring as a siren goes
off in the background.

Water is flowing in a small stream of
water.

ACTUAL (Ours) A person is tapping a glass against a
hard surface.

Sirens are blaring and people are talk-
ing in the background.

Water is flowing from a faucet into a
sink.

Ground Truth

• Glasses hit each other and a glass is
pulled across table.
• Glasses strike each other and a glass
is pulled across the table.
• Metals clank against each other as
metal is filed and pounded by fire.
• Someone opens a glass jar and pulls
a pen out and draws with it and returns
it to the bottle.
• Metals are clanking against each other
fire and metal filing and pounding.

• A vehicle travels by while a police
siren squeals and people talk.
• An ambulance blares its siren to try
to get around traffic.
• People are speaking in the distance, a
siren sounds, birds sing, and vehicles
are driving in distance.
• People speaking in distance, a siren
sounds, birds sing, and vehicles driv-
ing in distance.
• Vehicle travelling sound some other
police vehicle sound and people speak-
ing sound.

• A light and constant rainfall masks
everything happening.
• As time progresses water continu-
ously runs from a faucet hitting a dry
surface and resonating.
• Someone is filling up a swimming
pool with a hose.
• Water continuously runs from a
faucet hitting a dry surface and res-
onating as time progresses.
• Rain is pouring and water is running
through the roof gutters.

TABLE X
EXPERIMENTAL RESULTS OF WORD DIVERSITY

Method Vocabulary Distinct-1 Distinct-2

Reinforcement learning 285 ± 7.04 0.03 ± 0.00 0.07 ± 0.00
Baseline 558 ± 39.36 0.05 ± 0.00 0.13 ± 0.01

ACTUAL (Ours) 547 ± 32.74 0.05 ± 0.00 0.13 ± 0.01
Human 1854 0.16 0.54

cal correctness of the generated text for the improvement
of the evaluation metrics, as in the case of reinforcement
learning-based audio captioning algorithms, we also conducted
a validation experiment. Table IX illustrates some predicted
captions for different methods and Table X shows the diversity
of the generated captions. For the reinforcement learning
method in the above tables, we use a self-critical sequence
training algorithm to optimize the 𝐶𝐼𝐷𝐸𝑟 metric directly,
same as [25]. The metric “Vocabulary” is the vocabulary size
of the output captions, and the metric “Distinct-𝑛” is the ratio
of distinct n-grams to the total number of words generated by a
set of captions for the given audio clip, which are performance
metrics, often used for evaluating the diversity of captions.

From Table IX, it can be seen that: (i) the semantic
disparity of different captions in the same audio is quite
significant, such as whether the crisp crashing sound is metal
or glass, whether the sky is raining or someone is releasing
water into the swimming pool, (ii) the captions generated
by the reinforcement learning method are incomplete and
have grammatical errors, although it is used extensively to
improve the performance metrics in audio captioning. Even
though the baseline model has a large improvement over the
reinforcement learning method in sentence completeness and
grammar issues, the generated captions are generic but not
detailed, e.g. the baseline does not recognize the sound of
the metal or glass in Example 1 and does not distinguish
the foreground and background sounds in Example 2, and

(iii) our method can generate more meaningful captions while
maintaining grammatical accuracy than the other two methods.
This is because the proxy embedding provides additional
information to enrich the content of the generated sentences
and reduce the impact of semantic disparity on model training.
Table X demonstrates that the proposed ACTUAL method
delivers comparable results to the baseline system regarding
word diversity, with only a minor reduction in the “Vocab-
ulary” metric. In contrast, the reinforcement learning-based
approach leads to more significant degradation in diversity.
This shows that our method can maintain word diversity
despite the increase in the frequency of generic words, which
is however not the case for reinforcement learning.

VI. CONCLUSION

In this paper, we have presented a two-stage audio cap-
tioning method called ACTUAL, by incorporating feature
space regularization. The first stage uses contrastive learning
to generate the proxy feature space and extract the proxy
embeddings of audio clips. The second stage uses the extracted
proxy embeddings to regularize the training of the caption
generation model and mitigate the effect of caption disparity.
Extensive experiments have shown that the inclusion of proxy
embedding can significantly improve the performance of the
model. Compared to the state-of-the-art models, the ACTUAL
method achieves competitive performance on the Clotho-V1
and Clotho-V2 datasets. The comparison experiments with
other embeddings extracted from large-scale datasets and the
validation experiments on word diversity and grammatical cor-
rectness demonstrate the effectiveness of the proxy embedding
and the ability of our approach in generating word-diverse
and grammatically correct captions. In future work, we will
consider including the audio similarity in the loss function to
construct a better proxy space, and developing novel methods
to improve diversity and accuracy of the generated captions.
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APPENDIX A
RESULTS OF STUDENT’S 𝑡-TESTS

To better verify the statistical significance of model per-
formance margins, the 𝑝-values of the Student’s t-tests for
the comparison experiment and the ablation experiment are
listed here as a supplement. Specifically, we conduct two-
sample Student’s t-tests with the null hypothesis that the means
of two populations are equal. With the significance level set
as 0.05, the performance margin is statistically significant
when its corresponding 𝑝-value is smaller than 0.05. And “

√
”

indicates the null hypothesis is rejected, and “×” means the
null hypothesis is accepted.

A. The Student’s t-tests of the comparison experiments
Table XI shows the results of Student’s t-tests compared to

the baseline system. We can find that our proposed methods
can obtain significant improvement in almost all metrics
compared to the baseline methods with the same combination
of encoder and decoder (i.e., outperform baseline methods with
𝑝-value smaller than 0.05)

Table XII shows the results of Student’s t-tests compared
to the SOTA methods on both datasets. We can find that
our proposed best model, which uses Pretrain-CNN as the
encoder and GRU as the decoder, also can achieve statistically
significant differences in most of the metrics with other
methods.

B. Significance test for ablation studies
Table XIII shows the results of Student’s t-tests with dif-

ferent proxy regularization loss functions compared with the
cosine loss function. The cosine loss function achieves the best
performance in almost all metrics combined in Table IV of
the manuscript. Significant improvements are obtained in the
𝐶𝐼𝐷𝐸𝑟 and 𝑆𝑃𝐼𝐷𝐸𝑟 metrics, and no significant gap in the
accuracy and recall metrics of the generated words (𝐵𝐿𝐸𝑈𝑛

and 𝑅𝑂𝑈𝐺𝐸𝐿).
Table XIV shows the results of Student’s t-tests with

different pooling methods compared with the “mean+max”
pooling function. We can see that the “mean+max” pooling
achieves significant improvements in 𝐶𝐼𝐷𝐸𝑟 and 𝑆𝑃𝐼𝐷𝐸𝑟

metrics compared to the mean pooling or max pooling,
which can significantly improve the semantic precision of
the generated captions, and the generated captions can better
describe the audio contents. In terms of machine translation
metrics (𝐵𝐿𝐸𝑈4,𝑅𝑂𝑈𝐺𝐸𝐿 ,𝑀𝐸𝑇𝐸𝑂𝑅), while “mean+max”
can achieve the best model performance, it is not sensitive to
the pooling methods.

As shown in Table VI in the manuscript, the model achieved
the best 𝑆𝑃𝐼𝐷𝐸𝑟 result with hyperparameter 𝜆 = 0.75 and
𝑀 = 3. Thus Table XV shows the results of Student’s t-tests
compared with other combinations. The model performance
under the combination (𝑀 = 3, 𝜆 = 0.75) is significantly
superior to the other combinations.

APPENDIX B
ADDITIONAL EXPERIMENTS

In order to consolidate the technical contribution and verify
the robustness of our method under other datasets in which

each audio clip has several captions, we also conduct com-
parative experiments under the MACS dataset. It is important
to note that MACS is not a standard benchmark dataset in
audio captioning tasks, and it is often used to pre-train audio
captioning models. Students are used to annotate the data
and it is not clearly stated how their work is recognized and
rewarded, additionally, the provision of audio labels during
the annotation process introduces the bias that may harm the
quality of the dataset. From the results in Table XVI, we
observe that our proposed ACTUAL model achieves superior
performance in all evaluation metrics compared to the baseline
model with the same encoder and decoder architecture.

Table XVII shows the results of our re-implemented MAAC
and our method on the MAAC backbone. We can see that our
method achieves the best performance on all the metrics under
the same backbone.

To verify the sensitivity of the model, we conduct experi-
ments for different combinations between caption numbers 𝑀

and hyperparameter 𝜆. The results are shown in Table XVIII.
Under the condition that the number of captions 𝑀 is fixed,
we can find that the best performance is achieved in almost
all cases when the hyperparameter 𝜆 is 0.75, and the opposite
conclusion is reached when the hyperparameter is 0.25. Also
with the hyperparameter 𝜆 fixed, the model almost obtains the
best results when 𝑀 is 3, and the model achieves poor results
on all evaluation metrics when 𝑀 is 2 or 5.

We also present the results of the end-to-end method in
Table XIX. In this method, both the Stage1 model and the
Stage2 model are optimized concurrently. However, we ob-
serve that the experimental results of the end-to-end method
are not good, and even inferior to the performance of the
baseline method in most of the metrics. Our proposed two-
stage approach achieves superior experimental performance
compared to an end-to-end approach that optimizes both
the proxy space and caption generation. This is primarily
attributed to the effectiveness of the well-trained proxy space
obtained in the first stage in addressing the training challenges
caused by audio ambiguity.

Both recurrent neural network (RNN) and self-attention
models have been widely employed in a range of tasks involv-
ing sequential data modeling, showing promising results. In
this study, we further explore the impact of different network
architectures in the first stage on system performance, as
depicted in Table XX. We can find that LSTM achieves the
best performance in five of the seven metrics compared to
self-attention and GRU.
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TABLE XI
THE SIGNIFICANT RESULTS COMPARED WITH THE BASELINE MODEL IN THE SAME STRUCTURE

Dataset Encoder Decoder BLEU1 BLEU4 ROUGE𝐿 METEOR CIDEr SPICE SPIDEr

Clotho-v1
PANN GRU

√ √ √ √ √ √ √

PANN Transformer × √ √ √ √ √ √

Pretrain-CNN GRU
√ √ √ √ √ × √

Pretrain-CNN Transformer
√ √ √ √ √ √ √

Clotho-v2

PANN GRU
√ √ √ √ √ √ √

PANN Transformer
√ √ √ × √ × √

Pretrain-CNN GRU
√ √ √ √ √ √ √

Pretrain-CNN Transformer
√ √ √ √ √ × √

TABLE XII
THE SIGNIFICANT RESULTS COMPARED WITH SOTA METHODS

Dataset Model BLEU1 BLEU4 ROUGE𝐿 METEOR CIDEr SPICE SPIDEr

C
lo

th
o-

V
1 AT-CNN [9] × √ √ √ × √ ×

Fine-tuned PreCNN Transformer [19]
√ √ √ √ √ √ √

Temporal attention model [11]
√ √ √ √ √ √ √

C
lo

th
o-

V
2

AT-CNN [10] × √ × × √ × √

Transformer+RNN-LM [13]
√ √ √ √ √ √ √

CL4AC [14]
√ √ × √ √ √ √

TL + RLSSR [12]
√ √ × √ √ √ √

CLIP-AAC [15]
√ √ × √ × × ×

EaseAC [45]
√ √ √ √ × √ √

Prefix Tuning [46]
√ × × √ √ √ √

Stochastic Decoding [47]
√ × × √ √ √ √

MAAC∗[48] × √ × √ √ √ √

∗ For fairness, we re-implement and compare in the same backbone (results are shown in Table XVII of Appendix B)

TABLE XIII
THE RESULTS OF STUDENT’S t-TESTS COMPARED WITH DIFFERENT PROXY REGULARIZATION LOSS FUNCTION

Loss BLEU1 BLEU4 ROUGE𝐿 METEOR CIDEr SPICE SPIDEr

MAE × × × × √ × √

MSE × × × √ √ √ √

TABLE XIV
THE RESULTS OF STUDENT’S t-TESTS COMPARED WITH DIFFERENT POOLING METHOD

Pooling BLEU1 BLEU4 ROUGE𝐿 METEOR CIDEr SPICE SPIDEr

Mean × × × × √ × √

Max
√ × × × √ √ √

TABLE XV
THE RESULTS OF STUDENT’S t-TESTS COMPARED WITH DIFFERENT COMBINATION BETWEEN CAPTION NUMBERS 𝑀 AND HYPERPARAMETER 𝜆

𝜆

𝑀
2 3 4 5

0.25
√ √ √ √

0.5
√ √ √ √

0.75
√ − √ √

1
√ √ √ √
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TABLE XVI
EXPERIMENTAL RESULTS ON THE MACS EVALUATION SETS

Dataset Model Encoder Decoder BLEU1 BLEU4 ROUGE𝐿 METEOR CIDEr SPICE SPIDEr

M
A

C
S

Baseline
PANN

GRU 67.8 ± 0.49 18.9 ± 0.36 42.6 ± 0.86 20.9 ± 0.36 31.9 ± 0.58 14.8 ± 0.18 23.3 ± 0.23
Transformer 64.6 ± 0.42 18.2 ± 0.26 42.5 ± 0.15 21.8 ± 0.19 31.5 ± 0.94 14.9 ± 0.23 23.2 ± 0.40

Pretrain-CNN
GRU 67.8 ± 0.49 19.8 ± 0.64 42.8 ± 0.55 21.6 ± 0.22 32.1 ± 0.68 15.0 ± 0.29 23.5 ± 0.28

Transformer 64.9 ± 0.32 18.8 ± 0.57 42.5 ± 0.34 22.0 ± 0.41 31.6 ± 0.79 15.0 ± 0.41 23.3 ± 0.35

Our
PANN

GRU 69.1 ± 0.33 20.2 ± 0.12 43.9 ± 0.38 21.4 ± 0.28 35.6 ± 0.38 15.5 ± 0.16 25.6 ± 0.26
Transformer 67.0 ± 0.38 19.4 ± 0.24 43.6 ± 0.13 22.1 ± 0.10 35.1 ± 0.25 15.3 ± 0.02 25.2 ± 0.13

Pretrain-CNN
GRU 70.1 ± 0.25 21.8 ± 0.15 44.3 ± 0.18 22.0 ± 0.09 36.4 ± 0.19 15.5 ± 0.17 26.0 ± 0.16

Transformer 66.9 ± 0.20 20.3 ± 0.21 43.8 ± 0.14 22.5 ± 0.21 35.0 ± 0.49 15.4 ± 0.30 25.2 ± 0.38

TABLE XVII
RESULTS OF THE COMPARISON EXPERIMENT

Method BLEU1 BLEU4 ROUGE𝐿 METEOR CIDEr SPICE SPIDEr

MAAC 57.6 ± 0.17 16.5 ± 0.21 37.7 ± 0.09 17.1 ± 0.09 40.0 ± 0.56 11.9 ± 0.09 26.0 ± 0.34
MAAC+ACTUAL 57.7 ± 0.33 17.1 ± 0.16 38.0 ± 0.21 17.4 ± 0.05 41.2 ± 0.22 12.2 ± 0.08 26.7 ± 0.16

TABLE XVIII
EXPERIMENTAL RESULTS FOR DIFFERENT COMBINATION BETWEEN CAPTION NUMBERS 𝑀 AND HYPERPARAMETER 𝜆

M 𝜆 BLEU1 BLEU4 ROUGE𝐿 METEOR CIDEr SPICE SPIDEr

2

0.25 55.8 ± 0.38 15.5 ± 0.27 37.1 ± 0.33 17.3 ± 0.18 39.0 ± 0.20 11.8 ± 0.14 25.4 ± 0.15
0.5 56.5 ± 0.15 15.7 ± 0.25 37.2 ± 0.20 17.3 ± 0.11 39.4 ± 0.23 11.9 ± 0.27 25.7 ± 0.03
0.75 56.4 ± 0.12 15.7 ± 0.34 37.3 ± 0.17 17.3 ± 0.07 39.6 ± 0.21 11.9 ± 0.14 25.7 ± 0.04

1 56.7 ± 0.21 15.6 ± 0.35 37.3 ± 0.26 17.2 ± 0.08 39.5 ± 0.23 11.8 ± 0.05 25.6 ± 0.09

3

0.25 55.9 ± 0.24 15.7 ± 0.35 37.3 ± 0.14 17.4 ± 0.06 40.3 ± 0.14 11.9 ± 0.09 26.1 ± 0.07
0.5 56.5 ± 0.27 15.8 ± 0.26 37.4 ± 0.15 17.7 ± 0.05 40.4 ± 0.27 12.0 ± 0.08 26.2 ± 0.16
0.75 56.6 ± 0.24 16.1 ± 0.29 37.5 ± 0.19 17.6 ± 0.12 40.9 ± 0.23 12.1 ± 0.09 26.5 ± 0.12

1 56.7 ± 0.32 16.0 ± 0.23 37.6 ± 0.18 17.5 ± 0.05 40.2 ± 0.25 12.0 ± 0.11 26.1 ± 0.16

4

0.25 55.9 ± 0.15 15.5 ± 0.04 37.3 ± 0.22 17.5 ± 0.05 39.3 ± 0.22 12.0 ± 0.02 25.6 ± 0.10
0.5 56.5 ± 0.21 15.8 ± 0.24 37.4 ± 0.26 17.5 ± 0.04 40.0 ± 0.13 11.8 ± 0.08 25.9 ± 0.04
0.75 56.8 ± 0.23 16.0 ± 0.08 37.5 ± 0.13 17.5 ± 0.06 40.2 ± 0.21 12.1 ± 0.06 26.2 ± 0.13

1 56.3 ± 0.37 15.8 ± 0.15 37.6 ± 0.19 17.5 ± 0.04 40.2 ± 0.07 12.0 ± 0.07 26.1 ± 0.06

5

0.25 55.7 ± 0.27 15.4 ± 0.27 37.2 ± 0.42 17.4 ± 0.06 39.2 ± 0.59 12.0 ± 0.02 25.6 ± 0.31
0.5 55.9 ± 0.48 15.7 ± 0.41 37.4 ± 0.16 17.5 ± 0.12 39.6 ± 0.07 12.0 ± 0.04 25.8 ± 0.04
0.75 56.4 ± 0.41 15.7 ± 0.17 37.4 ± 0.19 17.5 ± 0.17 39.7 ± 0.57 12.0 ± 0.18 25.9 ± 0.37

1 55.7 ± 0.44 15.6 ± 0.16 37.3 ± 0.18 17.5 ± 0.07 39.2 ± 0.19 12.0 ± 0.03 25.6 ± 0.08

TABLE XIX
EXPERIMENTAL RESULTS FOR DIFFERENT METHOD

Method BLEU1 BLEU4 ROUGE𝐿 METEOR CIDEr SPICE SPIDEr

End-to-End 55.6 ± 0.22 15.8 ± 0.16 37.0 ± 0.23 16.8 ± 0.12 36.2 ± 0.30 11.3 ± 0.11 23.7 ± 0.18
Baseline 55.2 ± 0.65 15.3 ± 0.29 37.1 ± 0.09 17.3 ± 0.08 38.7 ± 0.70 11.8 ± 0.05 25.2 ± 0.33

Ours 56.6 ± 0.24 16.1 ± 0.29 37.5 ± 0.19 17.6 ± 0.12 40.9 ± 0.23 12.1 ± 0.09 26.5 ± 0.12

TABLE XX
EXPERIMENTAL RESULTS FOR DIFFERENT MODEL

Model BLEU1 BLEU4 ROUGE𝐿 METEOR CIDEr SPICE SPIDEr

LSTM 55.7 ± 0.44 15.6 ± 0.16 37.3 ± 0.18 17.5 ± 0.07 39.2 ± 0.19 12.0 ± 0.03 25.6 ± 0.08
Self-Attention 56.1 ± 0.35 15.9 ± 0.22 37.2 ± 0.06 17.1 ± 0.13 39.1 ± 0.06 11.7 ± 0.09 25.4 ± 0.03

GRU 55.9 ± 0.13 15.9 ± 0.35 37.0 ± 0.23 17.0 ± 0.07 38.7 ± 0.10 11.7 ± 0.20 25.2 ± 0.10
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