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Abstract—Binaural features of interaural level difference and
interaural phase difference have proved to be very effective
in training deep neural networks (DNNs), to generate time-
frequency masks for target speech extraction in speech-speech
mixtures. However, effectiveness of binaural features is reduced
in more common speech-noise scenarios, since the noise may
over-shadow the speech in adverse conditions. In addition, the
reverberation also decreases the sparsity of binaural features and
therefore adds difficulties to the separation task. To address the
above limitations, we highlight the spectral difference between
speech and noise spectra and incorporate the log-power spectra
features to extend the DNN input. Tested on two different
reverberant rooms at different signal to noise ratios (SNR), our
proposed method shows advantages over the baseline method
using only binaural features in terms of signal to distortion ratio
(SDR) and Short-Time Perceptual Intelligibility (STOI).

I. INTRODUCTION

Source separation is a well-studied topic, with many existing
methods available such as independent component analysis
[1], computational auditory scene analysis [2], [3], and non-
negative matrix factorization [4]. More recently, Deep Neural
Networks (DNNs) [5] have shown the state-of-the-art perfor-
mance in source separation [6]–[8].

In this paper, we focus on the problem of source separation
from binaural recordings to mimic human listening, where a
target speech signal is embedded by interfering background
noise. The method proposed in [8], [9] extracts a target speech
signal from a competing speech signal, using a DNN trained
using binaural spatial cues of mixing vectors (MV), interaural
level difference (ILD) and interaural phase difference (IPD).
However, the above spatial cues become less effective for
speech-noise scenarios where the target speech is often masked
over by the background noise in adverse conditions. Moreover,
if the environment is not anechoic, e.g. a reverberant room,
performance of the existing method degrades radically.

To address the above limitations, extra information should
be exploited. Fortunately, speech sound and background envi-
ronment noise often bear very essential spectral difference by
nature, such as their spectral patterns. For instance, log-power
spectra (LPS) have been proved useful as DNN input to extract
target speeches corrupted by noise from monaural recordings
[10], [11], which provide complementary information to the
spatial cues. Therefore, here we explore the use of both
binaural features and LPS in the DNN based source separation.

We employed a similar DNN structure of softmax classifier,
which is performed in several frequency bands independently,
instead of the feed-forward regression model as used in [10],
[11]. Moreover, we propose to solve the separation problem in
more realistic environments such as reverberant rooms, instead
of separation from direct summation of speech and noise [10],
[11].

The remainder of the paper is organized as follows. Section
II introduces the proposed system, including the overall DNN
architecture employed, the low-level feature extraction for the
DNN input and output in the training stage, the system imple-
mentation and evaluation. Experimental results are presented
in Section III, where evaluations are performed and analyses
are given, followed by conclusions of our findings and insights
for future work in Section IV.

II. PROPOSED METHOD

A. System overview

The system shown in Figure 1, merges together the infor-
mation from several DNNs in order to get a series of soft-
masks, which are used to separate the speech source from
the audio mixture. Figure 1 shows how the system of DNNs
works. The short-time Fourier transform (STFT) on the left

Fig. 1: Diagram of the system architecture using deep neural
networks.

and right channels is calculated, in order to get the two
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spectrograms XL(m, f) and XR(m, f), where m = 1, · · · ,M
and f = 1, · · · , F are the time frame and frequency bin
indices respectively.

For each T-F bin, the low-level features (i.e. ILD, IPD, LPS)
are calculated. They will be explained in details in section
II-B. The low-level features are arranged into N blocks, each
one containing the information for a group of frequency bins.
Each of the N blocks, labelled n, includes K = 8 frequency
bins ((n − 1)K + 1, · · · , nK), where K = F/N and N is
the number of DNNs. In this way, each block contains the
information from a very specific set of frequencies. Each block
is used as the input of a different DNN, whose output is a
softmax classifier containing J values between 0 and 1, each
one associated with the probability of a certain Direction Of
Arrival (DOA).

After merging all the outputs, a probability mask like the
one in Figure 2 can be obtained. As explained in section II-D,
a series of soft-masks can be generated from the probability
mask, one for each test set j. The soft-masks are multiplied
element-wise by the mixture spectrograms and, after applying
the inverse STFT (ISTFT), the target source can be recovered,
as well as the interferer source.

Fig. 2: The probability mask obtained from the output of the
DNNs system.

B. Low-level features
The low-level features used are the IPD, ILD and LPS [12]
[10]. They are used to derive high-level features which are
easy to classify. Unlike [8], [9], the MV feature is omitted
since it leads to negligible improvements. IPD and ILD are
the phase and the amplitude difference between the left and
the right channels and they are respectively given by [13]

ILD(m, f) = 20 log10

(∣∣∣∣XL(m, f)

XR(m, f)

∣∣∣∣) ,

IPD(m, f) = 6
(
XL(m, f)

XR(m, f)

)
.

The LPS is defined by

LPS(m, f) =
1

2

(
log
(∣∣XL(m, f)2

∣∣)+ log
(∣∣XR(m, f)2

∣∣)) .

By putting together the ILD, IPD and LPS vectors, one can
obtain, for each T-F unit

~x(m, f) = [ILD(m, f), IPD(m, f), LPS(m, f)]
T
.

Each ũ(m, f) is grouped into N blocks along the frequency
bins, which represents the input vector of each DNN

~x(n,m) =
[
~xT (m, (n− 1)K + 1), · · · , ~xT (m,nK)

]T
.

C. The DNNs structure

Figure 3 shows the structure of DNNs used.

Fig. 3: Structure of a DNN.

D. Soft-masks generation

The output of each DNN looks like the one shown in Figure
4, which is the case where the target and the interferer are
located respectively at 0◦ and −70◦, where the SNR between
speech and noise is 20 dB. The output represents the DOA
estimation, for a given group of frequency bins. By averaging
on the time frames belonging to the same test set, a vector
with J different values can be obtained. For a given test set j,
the T-F bins which belongs to the maximum DOA row of the
probability mask are copied to the target mask, while those
corresponding to the second highest value are copied to the
interferer mask. In the case in Figure 4, the most probable
rows correspond to the DOAs labelled 0◦ and −70◦, where
the speech and the noise are expected to be found. There are
several misplaced bins, which lead to a loss of information for
the two soft-masks.

E. Implementation

• Training. Given an unlabeled audio track convolved with
a Binaural Room Impulse Response (BRIR), the low-level
features can be calculated as in section II-B and are used
in the input layer. The speech tracks are generated by
convolving a certain number of sentences from the TIMIT
dataset [14] with the BRIRs captured in real echoic rooms
[15], which consists of several full band audio samples
recorded by a sensor placed around a half-circular grid, in



Fig. 4: Example of DNN output for test set j = 2. By
averaging over the time frame, two DOAs can be identified
as the most probable, −70◦ and 0◦.

Fig. 5: The experimental setup.

variable positions ranging from −90◦ to +90◦, with steps
of 10◦, as shown in Figure 5. White Gaussian noise with
SNR = 100 dB has been added to the audio recordings
in the training set.
A back-propagation algorithm is used in order to mini-
mize the cost-function and to find the global optimized
parameters for the whole deep network. The cost-function
used is the cross-entropy, given by

L = − 1

M

 M∑
m=1

J∑
j=1

1{y(m) = j} log eW
T
j x(m)∑J

l=1 e
WT

l x(m)

 .

where W stands for the DNN weights, x is the input data
and j indicates the labels.
The ground-truth for the softmax classifier is obtained
from the orientation information of the unlabeled data.
If the individual source in the observed signals belongs
to the DOA j, p(yj = j|~x(n,m)) = 1 otherwise p(yj 6=
j|~x(n,m)) = 0.

• Testing. Soft-masks can be generated with the set of
training parameters ( ~W,~b) and used to estimate the audio
sources from the mixtures.

III. EXPERIMENTS

A. Experimental setup

The binaural audio recordings were simulated by convolving
the target speech and the interferer with associated BRIRs, as
shown in Fig. 5. The BRIR dataset was recorded around a half-
circular grid, ranging from −90◦ to 90◦ with steps of 10◦, for
a total of J = 19 DOAs. For the training set, a total of 8
sentences, 4 for each gender and randomly selected dialects,
have been concatenated and convolved with the rooms BRIRs,
for a total of 26 s × 19 DOAs. The room characteristics can
be seen in Table I, where room ‘A’ is the least reverberant and
‘D’ the most reverberant.

Room Type ITDG(ms) DRR(dB) T60(s)
A Medium office 8.73 6.09 0.32
D Large seminar room 21.6 6.12 0.89

TABLE I: Room acoustic properties.

Both the target and interferer are located 1.5 m away from
the dummy head and had the same height as the dummy head.
In the experimental setup, the target is fixed at 0◦ or −90◦
while the interferer is located into the different azimuthal
positions. The speech-noise mixtures are built in a similar
way as the training set, 10 sentences for each gender and
randomly selected dialects are concatenated and convolved
with the BRIRs, which correspond to J = 19 azimuthal
positions. Different kind of noise from a database of 100 types
of noise used in [16] has been used as the interferer, which is
equivalent to assuming superposition of their respective sound
fields. [12]
The audio files are sampled at fs = 16kHz while, regarding
the STFT settings, the Hann window is set to 2048 (128ms)
samples with 75% overlap between the neighboring windows
for the STFT. The number of DNNs is N = 128.
The number of low-level features is 3, so there are K×3 = 24
neurons for the input layers. The DNNs need exactly J = 19
neurons for the output layer, each one corresponding to the
number of slices in which the space is subdivided. While in
the training phase the output layer is preset to the ground-
truth, during the testing stage it has to be estimated given
the testing inputs. Two hidden layers have been used, with
V = 1024 units each, this has shown to achieve the best
optimization. Each of the N DNNs is trained in 700 epochs,
with a batch size of 400. Each DNN is trained by using the
back-propagation algorithm.

B. DOA detection

Figure 6 represents the estimated DOAs as a function of the
test set j, for several SNRs. In the upper row the speech target
has been placed at 0◦ while in the lower row the target speech
is fixed at −90◦. Each bin represents the probability that the
DOA for the target speech or the interferer noise is estimated
correctly, the sum of the probabilities along each test set is
normalized to 1. Figures 6 (a) and (b) are, respectively, the



(a) SNR = 20 dB, training room = ‘A’,
testing room = ‘A’, target speech at 0◦.

(b) SNR = 10 dB, training room = ‘A’,
testing room = ‘A’, target speech at 0◦.

(c) SNR = 0 dB, training room = ‘A’,
testing room = ‘A’, target speech at 0◦.

(d) SNR = 20 dB, training room = ‘A’,
testing room = ‘A’, target speech at −90◦.

(e) SNR = 10 dB, training room = ‘A’,
testing room = ‘A’, target speech at −90◦.

(f) SNR = 0 dB, training room = ‘A’,
testing room = ‘A’, target speech at −90◦.

Fig. 6: Estimated DOA as a function of the test set j, interferer position at different DOAs, for the case with ILD+IPD+LPS.

cases of SNR = 20 dB and 10 dB and show that the probability
of the target DOA is much higher than the interferer. The
estimated DOA of the target speech is 0◦ (i.e. in the center),
which agrees with the experimental setup. In Figure 6 (c), the
0 dB case, the interferer probability becomes similar to the
target probability, causing ambiguity in the target soft-mask
and it is harder to separate the source as compared to the
other DOA angles. The same observation can be made for
Figures 6 (d), (e) and (f), where the target speech is placed at
−90◦.
All the plots in Figure 6 show how certain bins along the
target DOAs are detected, this is due to a not optimal speech
recognition, which the DNNs interpret as misplaced bins. By
comparing the values on the grey-scale of Figure 6 (a) and
Figure 7, which correspond to the SNR = 20 dB case, it can
be noticed how the additional LPS feature helps generating
a slightly higher probability of ∼ 0.1 for the target speech
DOA and, at the same time, it reduces the probability to get
misplaced bins from the other directions. This would lead to
a better estimation of the target DOAs and, consequently, to
a better soft-mask.

Fig. 7: Estimated DOA vs test set j, ILD+IPD, SNR = 20
dB, training room = ‘A’, testing room = ‘A’, target at 0◦.

C. SDRs evaluation

Different kinds of noise at different levels of SNRs have
been tested for the intereferer source. Here the results for the 0
dB and 10 dB SNR cases will be presented, respectively when
the target is located at 0◦ and −90◦. The test noises chosen for
the presented results are looped several times in order to reach



(a) SNR = 0 dB, training room = ‘A’,
testing room = ‘A’, target speech at 0◦.

(b) SNR = 0 dB, training room = ‘A’,
testing room = ‘D’, target speech at 0◦.

(c) SNR = 10 dB, training room = ‘A’,
testing room = ‘A’, target speech at −90◦.

(d) SNR = 10 dB, training room = ‘A’,
testing room = ‘D’, target speech at −90◦.

Fig. 8: SDRs comparisons as a function of the DOA.

the same length of the speech recording. Figure 8 shows the
SDRs plot for the noise in the case in which the same room,
labelled ‘A’, is used for training and the DNNs are applied
for separating the speech-noise mixtures in reverberant rooms
labelled ‘A’ and ‘D’, where the latter is more challenging.
The points and the bars indicate, respectively, the average
values and the standard deviations for each DOA. In Figures
8 (a) and (c), it can be observed that in the case in which the
DNNs are trained with the proposed method, which consists
in using the ILD, IPD and LPS and tested in room ‘A’, that
the SDRs range from ∼ 8 dB to ∼ 16 dB and ∼ 9 dB to
∼ 15 dB, respectively if the target is fixed at 0◦ and −90◦. In
comparison, if the DNNs are trained with the method proposed
by Yu et al. [8], [9], using only the binaural low-level features
ILD and IPD, the SDRs are on average ∼ 3 dB lower. The
training and test sets are the same in both cases. Figures 8 (b)
and (d) show the case of testing using room ‘D’, which has
a longer reverberation time. Using the LPS feature increases
the SDRs up to ∼ 1 dB for testing room ‘A’ only for certain
DOAs. When the testing room is ‘D’, the proposed method has
a slightly worse performance. However, in Figures 8 (a) and
(d), it can be observed how at +10◦, the SDR is negative when
training with the method by Yu et al., while it is positive when

the additional LPS feature is introduced. This is due to the fact
that the DNNs system may sometimes interpret the target as
the interferer and vice-versa, due to a poor DOA estimation
and the proposed method helps to correctly classifying the two
audio sources. The lower SDRs in Fig. 8 (c) and (d) compared
to Fig. 8 (a) and (b) can be explained by considering that the
target contribution arriving at the far-side ear is attenuated as
compared to that of the near-side ear, resulting in less effective
binaural features. Figures 9 (a) and (b) show the STOI (Short-
Time Perceptual Intelligibility) [17] for the separated speech
in room ‘A’ and ‘D’, when the target is placed at 0◦. The
evaluation over the two cases with and without LPS gives
comparable intelligibility scores.

IV. CONCLUSIONS AND FUTURE WORK

We have presented the results of a system of DNNs, trained
with different low-level features and applied to a mixture
of speech and noise to restore the original speech. The
binaural features, the ILD and the IPD, already tested in
[18] for the case of speech-speech separation, can also be
applied to the case of noisy speech mixtures to achieve good
separation results in terms of SDR. The LPS can be a useful
additional feature when the testing room has a relatively short



(a) SNR = 0 dB, training room = ‘A’,
testing room = ‘A’, target speech at 0◦.

(b) SNR = 0 dB, training room = ‘A’,
testing room = ‘D’, target speech at 0◦.

Fig. 9: STOIs comparisons as a function of the DOA.

reverberation time while, for more reverberant rooms, the
improvement is small or negligible. A possible explanation
could be that the early reflections are more correlated with
the direct signal, so the LPS seems to be more effective where
the reflections are less, unless the reverb for speech and noise
are different. To summarize the results, the method presented
in this paper performs better than the baseline method, which
consists in training with binaural features only [8], [9], with
improvements up to 3 dB for room with short reverberation
times and less significant improvements for rooms with longer
reverberation times. One more advantage of this method is the
fact that, compared to other works such as [10] [11], where
a large amount of varied training data has been used, good
separation results can be achieved by training with a small
amount of training data. These works indicate that inserting
a significant amount of noise information in the training data
may allow the DNNs to learn how to better recognize the
noise. Further work will be carried out to improve the DOAs
estimation and consider training with different rooms.
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