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Abstract—This work proposes a simple but effective attention
mechanism, namely Skip Attention (SA), for monaural singing
voice separation (MSVS). First, the SA, embedded in the convo-
lutional encoder-decoder network (CEDN), realizes an attention-
driven and dependency modeling for the repetitive structures of
the music source. Second, the SA, replacing the popular skip
connection in the CEDN, effectively controls the flow of the low-
level (vocal and musical) features to the output and improves
the feature sensitivity and accuracy for MSVS. Finally, we
implement the proposed SA on the Stacked Hourglass Network
(SHN), namely Skip Attention SHN (SA-SHN). Quantitative and
qualitative evaluation results have shown that the proposed SA-
SHN achieves significant performance improvement on the MIR-
1K dataset (compared to the state-of-the-art SHN) and com-
petitive MSVS performance on the DSD100 dataset (compared
to the state-of-the-art DenseNet), even without using any data
augmentation methods.

Index Terms—SKip Attention, Stacked Hourglass Network,
Monaural Singing Voice Separation

I. INTRODUCTION

Music source separation (MSS) is one of the fundamental
research areas for music signal processing. Monaural singing
voice separation (MSVS) is an important examplar of MSS,
which aims to separate the singing voice (vocals) and the
background musical accompaniment from a single channel
mixture signal. The traditional largely unsupervised methods
provide effective frameworks for MSVS such as [1]. Recently,
the data-driven method, especially the Deep Neural Network
(DNN) based methods [2] [3], have emerged and provided
state-of-the-art performance for MSVS. There are generally
three basic structures to construct DNNs: Feed-Forward Net-
work (FFN) [4], Recurrent Neural Network (RNN) [5], and
Convolutional Neural Network (CNN) [6] [7]. Recently the
RNN and CNN have been combined to improve the MSS [8],
[9].

Since the CNN is effective for feature extraction in time-
frequency (T-F) domain, the state-of-the-art methods usually
employ the convolutional encoder-decoder networks (CEDNis)
for MSVS, e.g., the U-net [10] (a special type of fully
convolutional networks [11]) and the Stacked Hourglass
Network (SHN) [12]. In these CEDNS, the input spectrogram
is compressed (by the encoder) into a bottleneck layer to obtain
a lower dimensional descriptor and then the descriptor is re-
expanded to the size of the target spectrogram (by the decoder)
[10]. In addition, with the help of additional skip connections
(or similar structures), the CEDNSs can recreate fine and low-
level details for high-quality MSVS. However, in spite of their
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popularities, several issues need to be addressed to improve
the current CEDNS.

First, music relies heavily on its repetitions to build the
logical structure and meaning [13]. These repetitions made of
recurring elements may appear at various levels of the music,
e.g., from very basic elements (individual notes, timber, or
pitch) to larger structures (e.g., chords) [14]. These multi-
scale repetitions effectively distinguish the musical accompa-
niment from the vocals which are less redundant and mostly
harmonic [15]. Therefore, effectively modeling the repetitive
structures in the mixture signal would be a promising solution
for DNN based MSVS. Since the repetitive structures can be
observed as the similarities between different regions in the
T-F representations (e.g., magnitude spectrogram), the MSVS
methods need to attend to the different T-F regions in order
to capture the dependencies across different frequencies in the
mixture. However, the convolution operator that has a local
receptive field can only model the repeating patterns locally.
To deal with this problem, current CEDNs try to pass the
input (mixture) through multiple convolutional layers, to form
a cascade framework for MSVS. Unfortunately, according
to [16], the optimization algorithms used in these CEDNSs
are usually not effective in capturing the dependencies across
multiple layers, especially for those complicated repetitive
musical structures.

Second, it is well known that even a minor linear shift in the
T-F representations could introduce significant distortions on
vocal and music perception [10]. Thus current CEDNs usually
have skip or similar connections to pass the low-level vocal and
musical features from the input to the output, to obtain high-
level precise details for the estimated sources. For example,
the U-Net uses skip connections between the convolutional
layers of the same resolution [10] and the SHN connects the
downsampling and the upsampling steps with a convolutional
layer [12]. Such direct connections, however, also allow the
input features to circumvent the screening of the bottleneck
layer, which is a necessary step to extract the essential singing
voice and music features through dimensionality reduction. As
a result, these direct (or skip) connections may weaken the
encoder-decoder bottleneck structure and degrade the separation
performance.

To address the above issues, this work proposes a Skip
Attention (SA) mechanism for MSVS by including a post-
processing layer in the CEDN to refine the multiresolution
encoder/decoder structure and control the information flow
between the encoding and decoding layers. First, the SA, as
a non-local operation in the multiresolution CEDN, can use
cues from all time-frequency regions to select the relevant
features from both the input and output of the CEDN and
hence efficiently model the multi-scale repetitive structures of
the music source. Second, the proposed SA also introduces
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Fig. 1. The Skip Attention (SA) mechanism for one layer in the CEDN.

an inter-attention mechanism to replace the direct or skip
connections between the input and the output in current CEDNs.
This mechanism allows the input and reconstructed output to
interact with each other and thus effectively controls the input
low-level (vocal and musical) information flow to the output:
each feature will be enhanced or suppressed through this inter-
attention. Thus, this inter-attention mechanism will selectively
allow the relevant low-level details of the vocal and music
sources to pass through, and meanwhile, keep the bottleneck
structure of CEDNs working effectively to extract essential
vocal or musical features.

One of the prior works related to this work is the Trans-
former [17], which includes the “encoder-decoder attention”
layers: the queries come from the decoder, and the keys and
values come from the encoder. Similar designs can be found
in [18]-[20] for machine translation. However, compared to
these works, the proposed SA utilizes a different “encoder-
decoder attention” mechanism: we use queries from the encoder,
and the keys and values are constructed by concatenating
both the outputs of the decoder and the inputs of the encoder.
This special mechanism is designed to achieve two goals: (i)
modeling the repetitive structures in the musical source; (ii)
controlling the flow of the input low-level (vocal and musical)
information to the output by attending to both the decoder
and encoder. Besides, instead of replacing the convolutional
structure with attention mechanisms as the transformer does,
we improve the bottleneck structure of the CEDNs by replacing
its skip connection with the SA (that is the reason why
we name the proposed mechanism as ‘skip’ attention). The
remainder of the paper is organized as follows. In Section II,
we describe the proposed SA mechanism and then demonstrate
its implementation by enhancing the SHN with the SA, namely
SA-SHN. Experimental results are provided in Section III and
the paper is concluded in Section IV.

II. THE PROPOSED METHOD
A. Skip Attention Mechanism

In an encoder-decoder structure shown in Fig. 1, we assume
that the input is an internal time-frequency feature En €
RN*Txd " and the reconstructed output is De € RN*Txd,
where N is the number of frequency bins, 7" is the number of
time frames, and d is the number of channels. To capture the
dependency across frequencies, we fix the h to compute the
attention matrix in frequency-channel. Specifically, for each h
(1 < h <T), the two inputs for SA are

E, = En[;, h,:] € RV*? D), = Del;, h,:] € RV*4. (1)
The specific steps for computing SA are:

Fig. 2. The SA driven Hourglass Network (denoted as SA-HN in Fig. 3),
where C}}, is the convolutional layers with filter size of mXxm and output
channels of n, the D is 2X2 max pooling, and U is 2Xx2 upsampling.
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Fig. 3. The SA-SHN: the initial step includes C$4C128C128C128(C256
where C}, is the convolutional layers with filter size of mxm and output
channels of n; the SA-HN represents the SA driven Hourglass Network in Fig.
2; s represents the number of separated sources; M;; (1 < ¢ < s) represents
the i-th source mask for the j-th layer; ... presents the second or more layer.

1) Linear projection: At first, the input query, key, and value
matrices for computing the skip attention are defined as Ej,
[Dy; Ep], and [Dy; Ey], respectively, where the semicolon
represents the vertical concatenation of matrices. Then we
apply the projection matrix W%, WX and WV € R%*4 to
the query, key and value respectively to compute their projected
versions, i.e.,

EY =E,W%cRVN* )
DS ER = [Dy; EAJWH € R?VX 3)
D) E}]= [Dn; EfJWY € RPVX 4)

2) Skip Attention: We use the projected query Eg to produce
a scaled dot-product attention matrix (denoted as V) over
the projected keys [D; EX],
E;?[DﬁEhK]T c RNx2N (5)

Vd

The attention matrix V, j; will be processed with masking
and softmax-function [17] (denoted as Softm in Eq. (6)) to
form the skip attention SAj for A,

SAj, = Softm (V) [D} s E} ] € RV*4, (6)
Intuitively, the nonlinear softm in SA;, operates on matrix
Vau,n, which includes two types of attention: (1) the inter-

attention between the input E; and output Dy; (2) the self-
attention of the input E,, that is,

Vatt, h —

1) (2)

QkT prT QKT pRpkT
Vi = Eh [Dh ’Eh ] _ [EhDh ’Eh Eh ] (7)
’ Vd Vd
According to Eq. (7), the operation softm (V) in Eq. (6)
considers the above two attentions as a whole and hence enables
SA;, to select suitable features from the feature combined
matrix [DX; EX] € R2V*4 (see Eq. (6)), where both the input
and the output features of the CEDN are included. As a result,
the SA layer, as a post-processing step in the CEDN, provides
a flexible mechanism for selecting features from the input, the
output, or both. While in the original CEDN, the input will be
added directly to the output via a skip connection, i.e., all the
input and output features are mixed together without effective
feature selection.
Finally, we apply the residue connection and layer normal-
ization [24] (denoted as LN in Eq. (8)) as follows,




TABLE I

QUANTITATIVE RESULTS FOR MSVS ON MIR-1K (IN DB).

Singing voice (Vocal)

Method GNSDR GSIR GSAR
MLRR [21] 3.85 5.63 10.70
DRNN [22] 7.45 13.08 9.68
ModGD [23] 7.50 13.73 9.45
U-Net [10] 743 11.79 10.42
SHN-4 [12] 10.60 15.92 12.69
SA-SHN-1 11.07 16.62 13.00
SA-SHN-2 11.31 17.16 13.11
SA-SHN-4 11.66 17.65 13.38

Musical accompaniment (Acc.)

Method GNSDR GSIR GSAR
MLRR [21] 4.19 7.80 8.22
U-Net [10] 7.45 11.43 10.41
SHN-4 [12] 9.99 14.52 12.47
SA-SHN-1 10.04 14.03 12.91
SA-SHN-2 10.28 14.42 13.00
SA-SHN-4 10.60 14.92 13.17

TABLE II

REPRESENTS THE SA-SHN-4.

STATISTICS OF MSVS PERFORMANCE ON MIR-1K (IN DB), WHERE SA-4

Vocal NSDR SDR SIR SAR
SHN-4 SA-4 | SHN-4 SA-4| SHN-4 SA-4 [ SHN-4 SA-4
Med. 10.71 11.89 10.79 12.00 16.08 17.88 12.58 13.51
MAD 1.99 1.87 2.04 1.88 294 2.63 1.57 1.63
Mean 10.58 11.66 10.67 11.74 15.87 17.61 12.71 13.40
SD 3.09 3.00 3.10 3.02 453 430 236 250
Acc. NSDR SDR SIR SAR
SHN-4 SA-4 | SHN-4 SA-4 | SHN-4 SA-4|SHN-4 SA-4
Med. 10.15 10.83 10.22  10.88 14.82 15.26 12.44  13.22
MAD 1.85 1.77 1.87 177 220 217 1.59 144
Mean 9.98 10.59 10.04 10.66 14.50 14.89 1248 13.19
SD 297 296 295 295 3.68 3.70 2.53 245
SA;, = LN(SA, + Ey). (8)

3) Addition: The normalized skip-attention S/z\&h and the
output of the decoder D, are added as the final output for h.

B. Skip Attention Stacked Hourglass Network

As an example, we use the proposed SA to enhance the
popular SHN [12], which is made of several stacked Hourglass
Networks (HNs). Specifically, within each HN, multiple SAs
are added as the post-processing layers for multiresolution
feature extraction (see Fig. 2). For a fair comparison, the
architecture of the SA-SHN shown in Fig. 3 follows the SHN,
where the input magnitude spectrogram is passed through the
initial convolutional layers and then fed to the four SA driven
Hourglass Networks to output masks for each source. In Fig. 3,
each layer (with the output mask M;; for the i-th source in the
j-th layer, 1 < ¢ < s) can be iterated (stacked) many times and
s is the number of sources to separate (e.g., s = 2 for MSVS).
The loss function L; ; norm in [12], [25] is adopted for a fair
comparison. Formally, given the magnitude X of the mixture,
the ¢-th ground truth source Y;, and the predicted mask for
the i-th source in the j-th module M,;, the loss function [12]
is defined as, J = >0, ZJD:1 Y; — X ® Mjjl1,1, where
©® denotes element-wise multiplication of the matrix and D is
the number of the SA driven Hourglass Networks.

III. EXPERIMENTS

We followed the experimental settings in [12] to evaluate
the proposed SA-SHN for MSVS and MSS. The input was
the magnitude spectrogram of the mixture calculated by Short-
Time Fourier Transform (STFT) with a window size of 1024
and a hop size of 256. The SA-SHN was trained to predict
soft masks for s sources. By multiplying the predicted masks
with the magnitude spectrogram of the mixture, the estimated
magnitude spectrogram of each source was obtained. The time
domain sources were obtained via inverse STFT applied to each

Fig. 4. Qualitative comparison of the proposed SA-SHN-4 and SHN-4 on the
song clip of khair_6_06 in MIR-1K dataset.

estimated magnitude spectrogram and the phase spectrogram
of the mixture.

The performance of different methods was evaluated on
two popular datasets: MIR-1K [26] and DSD100 [27]. For a
fair comparison on the MIR-1K, we followed the evaluation
conditions in [12], [21], [22]: 175 clips performed by one
male “abjones” and one female singer “amy” were used as the
training set and the other 825 clips performed by 17 singers
were used for testing. For MSVS on the DSD100, we followed
[12] to convert all sources to monophonic and then we added
three sources except for the vocals together to form the musical
components (Acc.) source.

Both the proposed SA-SHN and the baseline SHN were
trained using Adam optimizer [28] with an initial learning rate
of 10~* and a batch size of 1. We trained these two networks
with 60,000 iterations for the MIR-1K dataset and with 600,000
iterations for the DSD100 dataset, and the learning rate is
decreased to 2x 10> when 80% of the training is finished. This
set up is slightly different from the original set up in [12], where
a batch size of 4 and the iteration number of 15,000/150,000
for MIR-1K/DSD100 were used, which however gives a very
similar performance to that of our set up (see [12]). No data
augmentation was applied during training for both datasets as
in [12]. The computational efficiency of the SA-SHN is slightly
lower than the SHN, e.g., in four-layer case, the training/testing
took approximately 3 hours/15 minutes for the SHN and 5
hours/20 minutes for the SA-SHN on the MIR-1K dataset
using a single GPU (GeForce GTX 1080 Ti). For quantitative
evaluation, the separation performance was measured by BSS-
EVAL toolkit [29] with respect to three criteria, i.e., source-to-
distortion ratio (SDR), source-to-interferences ratio (SIR), and
sources-to-artifacts ratio (SAR). We also use Normalized SDR
(NSDR) [30], Global SIR (GSIR), Global SAR (GSAR), and
Global NSDR (GNSDR) [12], [22] to evaluate the results.

A. MIR-IK dataset

The quantitative evaluation results on MIR-1K dataset are
shown in Table I. We trained the SA-SHN (s=2 for MSVS)
with varying layer numbers from 1 to 4. In the following we
use SA-SHN-n to represent n layer SA-SHN and SHN-n to
represent n layer SHN. It can be seen in Table I that our SA-
SHN-1 (even with only one layer) significantly outperformed
the original SHN (the best previous method on the MIR-1K
dataset) for all layers and the other methods for all evaluation
criteria, except for GSIR for Acc.. When increasing the layer
numbers from 1 to 4, the performance of the proposed SA-SHN



Ground Truth: Vocal SHN-4: Vocal SA-SHN-4: Vocal TAB LE IV
MUSIC SOURCE SEPARATION PERFORMANCE ON DSD100 (IN DB).
Vocal SDR SIR SAR
SHN-4  SA-SHN-4 | SHN-4 SA-SHN-4 | SHN-4 SA-SHN-4
Med. 5.17 6.21 12.04 13.91 6.73 7.32
MAD 1.69 1.76 2.11 2.46 1.68 1.69
Mean 4.90 5.66 11.93 13.35 6.51 7.03
SD 3.01 3.10 4.28 4.51 2.18 2.29
T2 3 4 5 6 T2 3 4 5 6 T2 s 4 5 6 — SOR IR SAR
Sace sasHN.c:Acc Bass  SHNZ SASHN-4 [SHN-4 SA-SHN-4 [ SHN-4 SA-SHN=Z
Med. 1.88 1.89 5.14 5.29 6.50 6.83
MAD 3.24 3.01 3.58 3.84 2.14 1.81
Mean 2.46 2.57 6.07 6.12 6.67 6.84
SD 4.45 4.21 5.31 5.19 2.99 2.65
Dram SDR SIR SAR
SHN-4  SA-SHN-4 | SHN-4 SA-SHN-4 | SHN-4 SA-SHN-4
= Med. 4.24 4.33 10.33 10.74 6.11 6.21
23 405 6 MAD 2.11 2.20 2.16 227 2.46 2.21
Mean 4.10 4.23 10.15 10.29 6.19 6.30
Fig. 5. Qualitative comparison of the proposed SA-SHN-4 and SHN-4 on the SD 3.53 3.73 4.13 4.33 3.19 3.29
song clip of stool_I_04 in MIR-1K dataset. Other SDR SIR SAR
SHN-4  SA-SHN-4 | SHN-4  SA-SHN-4 | SHN-4 SA-SHN-4
TABLE III Med. 2.56 2.59 6.64 6.62 5.71 6.07
MEDIAN SDR VALUES (IN DB) FOR MSVS oN DSD100. MAD 115 1.47 1.81 2.26 1.01 1.17
Mean 1.70 2.00 6.07 5.95 5.20 5.81
Method Vocals Accompaniment (Acc.) SD 3.38 3.27 3.82 3.75 2.32 2.27
DeepNMF [32] 2.75 8.90
WRPCA [33] 3.92 9.45 TABLE V
NUG [34] 455 10.29 MEDIAN SDR FOR MSS oN DSD100 (IN DB).

BLEND ([35] 5.23 11.70 Method Bass Drums Other Vocals
MM-DenseNet [36] 6.00 12.10 dNMF [37] 091 1.87 2.43 7.56
SHN-4 (s = 2) [12] 5.64 12.15 DeepNMF [32] 1.88 2.11 2.64 2.75
SA-SHN-1 (s = 2) 5.72 12.26 BLEND ([35] 2.76 3.93 3.37 5.13
SA-SHN-2 (s = 2) 5.89 12.20 MM-DenseNet [36] 3.91 5.37 3.81 6.00
SA-SHN-3 (s = 2) 6.04 12.49 SHN-4 (s = 4) [12] 1.88 4.24 2.56 5.17
SA-SHN-4 (s = 2) 6.44 12.60 SA-SHN-4 (s = 4) 1.89 433 259 6.21

improved steadily and reached its highest performance with 4
layers.

In Table II, we compare the separation performance for all
the song clips' obtained by the proposed SA-SHN-4 and the
SHN-4 in [12]. As suggested by [31], the mean (Mean) SDR
with its standard deviation (SD) alone were not sufficient to
measure the vocal performance, we thus adopted the median
(Med.) with its median absolute deviation (MAD) according
to [31], which were more robust against outliers. From Table
II, it can be seen that the proposed SA-SHN-4 was superior to
SHN-4 in most statistics.

Qualitative results of our SA-SHN-4 and the SHN-4 are
shown in Figs. 4-5. For the song clip khair_6_06 in Fig. 4,
SA-SHN-4 recovered much more original vocal harmonics
compared to the SHN-4. In particular, the vocal spectrogram
of the SHN-4 around 1~2 s and 4~6 s had lost a large amount
of harmonic details, while the proposed SA-SHN-4 recovered
most of these fine details. This phenomenon is attributed to the
SA, which successfully controls the essential low-level vocal
information to flow to the output. On the other hand, for Acc.
spectrogram in Fig. 5 (the song clip of stool_I_04), we can see
that the Acc. obtained by SHN-4 around 5~6.5 s missed one
important frequency component around 1000 Hz, while the
SA-SHN-4 almost recaptured all the frequency components of
the ground truth Acc. around 5~6.5 s, including the frequency
component around 1000 Hz, which verified the effectiveness
of the proposed SA.

B. DSDI100 dataset

For the MSVS task on DSD100, we set s=2 to evaluate the
proposed SA-SHN-1 to SA-SHN-4. In order to compare with
the previous reported MSVS methods, we compared SDRs for
all songs in the DSD100 dataset and then computed median

'We took each song clip as one unit without considering its length to
compute NSDR/SDR/SIR/SAR for both the SA-SHN and SHN.

values, which are listed in Table III. Compared with the state-of-
the-art MM-DenseNet [36], the original SHN-4 only achieved
0.05 dB improvement for Acc. and it was 0.36 dB lower than
MM-DenseNet for Vocals. In contrast, the proposed SA-SHN-4
achieved much better performance, with 0.44 dB improvement
for Vocals and 0.50 dB for Acc. as compared to the state-of-
the-art MM-DenseNet.

For the MSS task on DSD100, we set s=4 to evaluate the
proposed method (SA-SHN-4) and compare it with the SHN-4.
It can be seen from Table IV that the proposed SA-SHN-4 was
superior to SHN-4 in most metrics. We also compare our SA-
SHN-4 with some other methods, shown in Table V, where the
SHN-4 gave the second-best performance for Drums and Vocals
and a poor performance for Bass and Other. The proposed
SA-SHN-4 greatly improved the separation performance of
SHN-4 for Vocals (1.04 dB gain), and slightly improvement
for other sources (0.09 dB for Drums, 0.03 dB for Other and
0.01 dB for Bass). Besides, the vocal separation performance
of the proposed SA-SHN-4 is 0.21 dB higher than that of the
state-of-the-art MM-DenseNet [36]. This seems to suggest that
the proposed method is more effective for repetitive music and
harmonic vocals, but less effective for non-repetitive sounds,
such as bass and drums.

IV. CONCLUSION

In this paper, we proposed a novel skip attention (SA)
mechanism for MSVS. The proposed SA implements an
attention-driven and dependency modeling for the repetitive
structures of music sources. In addition, it effectively controls
the flow of the low-level (vocal and musical) features in
the encoder-decoder structure, which not only can improve
the bottleneck structure to extract more essential vocal or
musical features but also retrieve those fine and low-level
details for high-quality source estimation. Experimental results
have shown the effectiveness of the proposed SA-SHN on two
different datasets.
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