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Evolving Multi-Resolution Pooling CNN for
Monaural Singing Voice Separation

Weitao Yuan
and Wenwu Wang

Abstract—Monaural singing voice separation (MSVS) is a
challenging task and has been extensively studied. Deep neu-
ral networks (DNNs) are current state-of-the-art methods for
MSYVS. However, they are often designed manually, which is time-
consuming and error-prone. They are also pre-defined, thus can-
not adapt their structures to the training data. To address these
issues, we first designed a multi-resolution convolutional neural
network (CNN) for MSVS called multi-resolution pooling CNN
(MRP-CNN), which uses various-sized pooling operators to extract
multi-resolution features. We then introduced Neural Architecture
Search (NAS) to extend the MRP-CNN to the evolving MRP-CNN
(E-MRP-CNN) to automatically search for effective MRP-CNN
structures using genetic algorithms optimized in terms of a single
objective taking into account only separation performance and
multiple objectives taking into account both separation perfor-
mance and model complexity. The E-MRP-CNN using the multi-
objective algorithm gives a set of Pareto-optimal solutions, each
providing a trade-off between separation performance and model
complexity. Evaluations on the MIR-1 K, DSD100, and MUSDB18
datasets were used to demonstrate the advantages of the E-MRP-
CNN over several recent baselines.

Index Terms—Evolving multi-resolution pooling CNN, genetic
algorithm, monaural singing voice separation, neural architecture
search.

1. INTRODUCTION

OPULAR music, which plays a central role in enter-
tainment industries, usually consists of two components:
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singing voice and music accompaniment [1]. Humans can eas-
ily hear/distinguish the singing voice from music accompani-
ment when listening to a popular song. This effortless task,
however, is very difficult for machines, which presents both
challenges and opportunities to advance audio-signal processing
techniques [1], [2]. Monaural singing voice separation (MSVS),
an important application of music source separation (MSS),
aims to separate the singing voice and background music ac-
companiment from a single-channel mixture signal. Research
on MSVS is useful in many areas such as automatic lyric recog-
nition/alignment, singer identification, and music-information
retrieval [2].

Many traditional methods are found to be effective for
MSVS [1]. Benefiting from these methods, recent data-driven
methods, especially deep neural networks (DNNs) [3], strongly
boost the performance of MSVS with the help of large-scale
data. The basic building blocks of a DNN for MSVS are mainly
a feed-forward network (FEFN) [4], recurrent neural network
(RNN) [5], convolutional neural network (CNN) [6], and at-
tention mechanism [7]. Among these building blocks, a CNN is
proven to be very effective in extracting vocal/music features for
MSVS, since efficient representations related to discriminative
features of vocal/music can be learned using convolutional filters
via sharing weights.

Music relies heavily on its multi-scale repetitions (e.g., from
very basic elements such as individual notes, timbre, or pitch,
to larger structure chords [8]) to build the logical structure [9].
These repetitions appearing at various musical levels also dis-
tinguish the music accompaniment from vocals which are less
redundant and mostly harmonic [1]. An important CNN for
MSVS is a multi-resolution CNN (MR-CNN) [10]-[13], which
can capture multi-resolution features by constructing various-
sized receptive fields (RFs) and has been found to be effective
in extracting multi-scale music features. MR-CNNs have been
widely used in many state-of-the-art (SOTA) MSVS methods.

In accordance with the implementation of multi-resolution
RFs, there are two types of MR-CNNs for MSVS/MSS. MR-
CNNs of the first type, such as stacked hourglass network
(SHN) [10] and U-net [11], are constructed in a cascade manner
with a fixed-size or single-resolution RF in each layer. The
input signal is repeatedly convolved and downsampled to form
multiple consecutive layers. In this case, different resolution
features can only be found in different layers; thus, the cascade
structure of these MR-CNNs should be deep enough to extract
effective multi-resolution features. In contrast, MR-CNNs of
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the second type, such as multi-resolution convolutional auto-
encoder (MRCAE) [12] and multi-resolution fully CNN (MR-
FCNN) [13], directly implement multi-resolution RFs in the
same layer using multiple sets of various-sized convolutional op-
erators; accordingly, multi-resolution features can be extracted
without deepening the cascade structure.

In spite of these achievements, several issues need to be
addressed for current MR-CNNGs:

1) Structure Limitations: MR-CNNs of the first type depend
on their cascade structure to extract multi-scale music features.
However, the optimization algorithm will become less effective
in capturing the dependencies across multiple layers [14]. MR-
CNN s of the second type are not affected by this issue, while to
extract global features, large convolutional filters should be used,
which results in low computational efficiency [15]. In addition,
since aminor linear shift in time-frequency (T-F) representations
(e.g., magnitude spectrogram) could cause significant distortions
on vocal and music perception [11], many methods use skip
connections to transmit low-level information between different
layers [10], [11]. However, such mechanisms have not been
implemented for the second type of MR-CNNS.

2) Manual Design: Current MR-CNN (or DNN) based MSVS
methods are designed manually. This manual design procedure
usually has the following shortcomings:

1) Manual design is often achieved empirically via trial and
error: An MR-CNN learns hierarchical feature extractors
from the data in an “end-to-end” fashion. In this case,
slight modifications to the neural structure may signif-
icantly affect separation performance. To find suitable
structures for MSVS, repetitive modifications and train-
ing&testing are required, which is time-consuming, error-
prone, and ineffective.

2) Domain knowledge may not be sufficient for neural struc-
ture design: For MSVS, domain knowledge may suggest
to use vertical and horizontal filters to extract timbral
features [16], [17]. However, when dealing with an actual
network, how to combine and deploy these filters cannot
be fully answered by domain knowledge.

3) Pre-designed structures cannot adapt themselves to the
training data: The data-driven optimization process en-
ables MR-CNNs to learn parameters of the convolutional
filters. However, the sizes of the pre-defined convolutional
operator, hyper-parameters, and structure of MR-CNNs
cannot adapt to the dataset during the training process. As
a result, the information learned from real data cannot be
used to improve the pre-designed structures.

To address these issues, we first designed a flexible and
effective MR-CNN for MSVS called the multi-resolution pool-
ing CNN (MRP-CNN). We then introduced neural architecture
search (NAS) to extend the MRP-CNN to the evolving frame-
work for MSVS; i.e., evolving MPR-CNN (E-MRP-CNN). The
contributions of our study are described below.

1) MRP-CNN: The MRP-CNN uses sets of average pooling
operators of various sizes at the same layer to obtain multi-
resolution features. All these pooling operators are embedded
in stacked convolutional networks made of small and fixed-
sized convolutional kernels. Compared with cascade MR-CNNs

(the first type), e.g. U-net and SHN, the MRP-CNN does not
need to optimize the deep cascade structure. Compared with
the second type of MR-CNN:gs, large pooling operators instead
of large convolutional filters are used to extract global fea-
tures, which reduces the number of trainable parameters and
leads to much better computational efficiency. Moreover, the
MRP-CNN has a flexible design and enables skip connections
(or similar connections) to be implemented between different
layers.

2) Automatic Neural Architecture Search: We introduce NAS
to the MRP-CNN to extend it to evolving MRP-CNN, i.e.,
E-MRP-CNN, for MSVS. The E-MRP-CNN can evolve its
structure using two genetic algorithms: single-objective and
multi-objective. The E-MRP-CNN using the single-objective
algorithm evolves its structure with the only objective of op-
timizing separation performance (hereafter, “single-objective
E-MRP-CNN”). However, it may select a very complex model
to optimize separation performance. The E-MRP-CNN using
the multi-objective algorithm is used to address the balance be-
tween separation performance and model complexity (hereafter,
“multi-objective E-MRP-CNN”). It provides a set of Pareto-
optimal MRP-CNN structures [18] for MSVS, each providing
a good balance between separation performance and model
complexity. The E-MRP-CNN can enhance current MR-CNNSs,
making DNN-based MSVS methods less dependent on domain
knowledge.

II. RELATED WORK

Deep networks for MSVS/MSS mainly use RNNs [19], [20]
and CNNs [6], [10], [11], [21], [22]. An RNN can effectively
model dependencies of temporal patterns and music struc-
ture [19], [20]. A CNN, which is effective for feature extraction
in the T-F domain, is usually constructed as a convolutional
encoder-decoder with skip connections, such as in U-net [11],
Wave-U-net [21], Exp-Wave-U-Net [22], and SHN [10]. A CNN
can be combined with other structures to improve MSVS/MSS
performance. For example, a CNN and RNN were combined
to improve MSS performance [23], and skip attention (SA)
inspired from Transformer [24] was introduced into the CNN
encoder-decoder structure [7]. Generative adversarial networks
(GANs) were used for (semi-supervised) MSVS [25], [26], and
the Chimera network based on deep clustering was designed
for singing voice separation [27]. Mapping functions of neural
networks were examined on the basis of the denoising autoen-
coder (DAE) model [28]. Nevertheless, all these networks are
designed manually.

Over the past few years, NAS has achieved impressive
progress and begun to outperform human-designed deep models
in many research areas [29], [30]. As a classic search strat-
egy of NAS, the NeuroEvolution of Augmenting Topologies
(NEAT) [31] adopts a genetic algorithm to evolve neural net-
works and their weights. Recently, evolved Transformer [29]
developed on the basis of NAS has been applied to sequence-
to-sequence tasks, and reinforcement learning (RL)-based NAS
has been introduced to GANSs [32].
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Fig. 1.

To the best of our knowledge, NAS has not been explored
for MSVS/MSS. We used NAS for automatic architecture de-
sign and developed an evolving framework, i.e., E-MRP-CNN,
for MSVS. Since the neural structure for MSVS usually has
millions of weights, we use genetic algorithms to optimize the
neural structure and the gradient-based method to optimize the
weights [30], which is different from NEAT [31]. Compared with
RL-based NAS (e.g., [32]) which relies on an RNN controller
to generate candidate structures [33], the evolution guided NAS
only needs to apply genetic operations (mutation and crossover)
to create new structures, which is simpler and more efficient for
MSVS. Following previous studies [34] [35], we apply a clas-
sic multi-objective evolutionary algorithm, i.e., non-dominated
sorting genetic algorithm IT (NSGA-II) to implement the multi-
objective E-MRP-CNN when searching for effective MRP-CNN
structures for MSVS.

1. MRP-CNN

A. Proposed Framework

The MRP-CNN is composed of five stacked blocks, as shown
in Fig. 1(a). The number of blocks is chosen empirically. Each
block (indexed by i, 1 < ¢ < 5) works as a basic unit to
extract multi-resolution features, and five blocks form a stacked
structure. Skip connections (dotted lines in Fig. 1(a)) can be
optionally used between different blocks to improve separation
performance.

As shown in Fig. 1(b), each block consists of a convolution
group (CG) layer, multiple pooling layers (PLs, indexed by
7, 1 <5 <J), concatenation, and a post-convolution group
(PCG) layer. The j-th PL in the ¢-th block is composed of three
components: an average pooling operator of size T; ; x Fj ;,
PCG layer, and upsampling operation. Each PL (1 < 5 < J)is
responsible for extracting one specific resolution feature, and
the block, which has multiple PLs, can extract multi-resolution

(b) Block

(¢) Convolution

Structure of MRP-CNN.

features. The CG and PCG layers in each block have the same
structure. As shown in Fig. 1(c), both the CG and PCG layers
are made of two consecutive convolution layers with the same
size of 3 x 3 x C and a possible skip connection, where 3 x 3
represents the kernel size of the 2D convolutional operator and
C' is the channel number.

Using the hyper-parameters (e.g., T; ;, F; ;, C, etc.) and flex-
ible components (e.g., skip connection) of the basic MRP-CNN,
many different MRP-CNN structures can be induced. For exam-
ple, in each block, the number of PLs, i.e., J, can be adjusted
by the data-driven evolution process of the E-MRP-CNN. In
particular, when the size of the average pooling operator of one
PL is changed to T} ; = F; ; = 1 during the evolution process,
this PL will not be used in the current block. In addition, the
CG/PCG layer can have different channel numbers (different
C) and when C' = 0, the CG/PCG layer is turned into direct
connection, skip connections can be used optionally between
different blocks, and nonlinear activation functions can be dif-
ferent (e.g., rectified linear unit (ReLU) or sigmoid). Hence, the
MRP-CNN is flexible for MSVS.

B. Encoding Method

To evolve the MRP-CNN structures with genetic algorithms,
we first encode the MRP-CNN structure. The encoding process
is to assign each specific MRP-CNN structure a unique binary
code, i.e., the gene. The binary code makes it convenient for
a genetic algorithm to operate since all candidate MRP-CNN
structures can be produced by flipping the bit-value of the gene.
Genetic algorithms begin with a set of genes (MRP-CNN struc-
tures) called a population. In the evolving process, high fitness
genes are selected to produce their offspring (new MRP-CNN
structures). All possible MRP-CNN structures form a searching
space, enabling NAS to find suitable structures for MSVS.
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TABLE I
ENCODING METHOD OF MRP-CNN

TABLE II
CODE (GENE) OF EXAMPLE MRP-CNN STRUCTURE

To encode the MRP-CNN, we first divide the MRP-CNN
structure in Fig. 1 into the following four levels from low to
high:

Convolution-level C Pooling-level C Block-level C Full-level,

where Convolution-level represents convolutional layers (the
CG and PCG layers belong to this level), the Pooling-level,
Block-level, and Full-level correspond to a PL, block, and the
whole MRP-CNN structure, respectively. The whole MRP-CNN
structure is encoded in Table I, where all four levels are included.

1) Full-Level: The Full-level, i.e., the whole MRP-CNN
structure, is encoded by FC—-FS—B—-B—-B - B — B,
where FC encodes the channel number of the last PCG layer
in all blocks, i.e., C; j4+1 (see Fig. 1(b)), F'S encodes possible
skip connections between different blocks, B stands for block,
and “—” represents concatenation of codes.

The FC can be 32/64/128/256, as shown in Table I, where
we use 2 bits to represent four options: 00 (32), 01 (64), 11 (128),
10 (256), respectively. The same FC (one of the four options) is
used for all blocks in one MRP-CNN structure since the output
channels of different blocks should be the same to enable skip
connections.

The FS is encoded in form of “b-bb-bbb-bbbb” using 10 bits
(see the second row in Table I). The first bit ‘b’ stands for the skip
connection from the first block to the second block, the second
‘bb’ stands for skip connections from the first and second blocks
to the third block, and so on. The value of b determines if skip
connection exists (b = 1) or not (b = 0).

2) Block-Level: This level is important to extract multi-
resolution features. Each block is encoded as

B=CG-PL—-..-—PL-PCG.
—_——
J

3) Convolution-Level: The CG and PCG layers which have
the same structure (see Fig. 1(c)) are encoded differently. The
CG is encoded as

CG=C-S—-A-A,

where C encodes the channel number of convolutional layers in
the CG, i.e., C; o in Fig. 1(b), S stands for skip connection (S

FC 2bit: 00 (32), 01 (64), 11 (128), 10 (256) FC | 11 (128)
FS 10Dbit: b-bb-bbb-bbbb (b € {0, 1}) FS 0-00-000-0000
C 2bit: 00 (None), 01 (32), 11 (64), 10 (128) Blolks — | Block 1 Block 2 Block 3 Block 4 Block 5
S 1bit: 0 (No), 1 (Yes) C | 11(6% 11 (64) 11 (64) 11 (64) 11 (64)
lele! A Ibit: 0 (ReLU), 1 (Sigmoid) oG | S [ 1Y) | 1(Yes) | 1(Yes) | 1(Yes) | 1(Yes)
A Ibit: 0 (ReLU), 1 (Sigmoid) A | 0(ReLU) | 0 (ReLU) | 0 (ReLU) | 0 (ReLU) | 0 (ReLU)
PS | (2biox(2biD): 00 (1), 01 (#), 11 (16), 10 (64) A_ | 0(ReLl) | 0 (ReLU) | 0 (ReLU) | 0 (ReLU) | O (ReLU)
PC 2bit: 00 (16), 01 (32)’ 11 (64), 10 (128) PS [0011 (l><16)0011 (l><16)0011 (l><16)0011 (l><16)0011 (1><16)
PL ST Tbit: 0 (No), T (Yes) - PCS 1T (64) T (64) T (64) T (64) T (64)
.. . . 1 (Yes) 1 (Yes) 1 (Yes) 1 (Yes) 1 (Yes)
B PCG ﬁ }Eﬁj 8 Egzig } gigﬁgigg PCG|A| 0 (ReLU) | 0 (ReLU) | 0 (ReLU) | 0 (ReLU) | 0 (ReLU)
BT : J g Al 0 (ReLU) | 0 (ReLU) | 0 (ReLU) | 0 (ReLU) | 0 (ReLU)
PS [0000 (1x1)] 0000 (1x 1)] 0000 (1x 1)] 0000 (1x 1)| 0000 (1x 1)
. PC 11 (64) 11 (64) 11 (64) 11 (64) 11 (64)
S lb}t: 0 (No), 1 (Yes). X PL S| T (Yes) 1 (Yes) 1 (Yes) I (Yes) I (Yes)
PCG A 1bit: 0 (ReLU), 1 (Sigmoid) PCGIA| 0 (ReLU) | 0 (ReLU) | 0 (ReLU) | 0 (ReLU) | 0 (ReLU)
A 1bit: 0 (ReLU), 1 (Sigmoid) Al 0 (ReLU) | 0 (ReLU) | 0 (ReLU) | 0 (ReLU) | 0 (ReLU)
S 1 (Yes) 1 (Yes) 1 (Yes) 1 (Yes) 1 (Yes)
B pocl A | 0(ReLU) | 0 (ReLU) | 0 (ReLU) | 0 (ReLU) | 0 (ReLU)
A | 0 (ReLU) | 0 (ReLU) | 0 (ReLU) | 0 (ReLU) | 0 (ReLU)

€ {0,1}), and two consecutive bits A — A imply the activation
functions for the two-layer convolution operators, where A = 0
represents ReLU and A = 1 represents Sigmoid. The C can be
0/32/64/128. When C = 0, the CG turns into a direct connec-
tion, i.e., there is no convolution, activation, or skip connection.
In this case, the S — A — A will be ignored.

The code of the PCG layer is similar to that of the CG but
without the channel-number information, i.e.,

PCG=5S—-A—-A.

In accordance with Fig. 1(b), the PCG layer is used in both block
and PL. Thus the channel number of the PCG layer in block and
PL is determined by FC in Full-level and PC in Pooling-level
(see the following), respectively.

4) Pooling-Level: Each PL is encoded using

PL=PS - PC - PCQG,

where PS is the size of the pooling operator in a PL, PC is the
channel number of PCG (i.e., C; j of the j-th PL in the i-th block
in Fig. 1(b)). For the j-th PL in the i-th block, PS is defined as
[T ;, F; ;1, where T; ; is the downsampling size on the time axis
and F; ; on the frequency axis. When T; ; = F}; ; = 1, the j-th
PL will not appear in the ¢-th block, and the code PC — PCG
will be ignored. We use 2 bits to encode 75 ; and F; ; of PS. As
shown in Table I, four possible values are represented by 00 (1),
01 (4), 11 (16), and 10 (64). The PC is also encoded by 2 bits:
00 (16),01 (32), 11 (64), and 10 (128). The upsampling operator
in a PL is not encoded since it has no freedom but to upsample
the extracted features back to the same size as the input of the
current PL.

A simple example of an MRP-CNN structure is shown in
Table II, where all five blocks have two PLs. The PS of the
second PL is 0000 (T;2 = F;2 = 1), i.e., the PC and PCG
layers are ignored (shown in gray). This MRP-CNN structure
(or other MRP-CNN structures) can be used as a seed in the
E-MRP-CNN.
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IV. E-MRP-CNN

The E-MRP-CNN uses single-objective and multi-objective
algorithms to search for effective MRP-CNN structures for
MSVS. Both single/multi-objective E-MRP-CNNss start with an
initial population, which is made of a seed gene (a specific
MRP-CNN structure) and other genes (structures) randomly
mutated from this gene. After initialization, the single-objective
and multi-objective E-MRP-CNNs iteratively generate new off-
spring genes by applying genetic operations (crossover and
mutation) to randomly selected gene(s) from the current pop-
ulation. The new offspring genes are decoded to MRP-CNN
structures then trained and tested to compute the fitness. The
low-fitness genes will be removed. The computations of fitness
in the single-objective and multi-objective E-MRP-CNN are
different: the single-objective E-MRP-CNN takes into account
only separation performance while the multi-objective E-MRP-
CNN takes into account both separation performance and model
complexity.

A. Single-Objective E-MRP-CNN

The separation performance of MSVS is often evaluated
using three metrics: source-to-distortion ratio (SDR), source-to-
interferences ratio (SIR), and sources-to-artifacts ratio (SAR),
as used in the Blind Source Separation Evaluation (BSS Eval)
toolbox [36]. As a proof of concept, we choose SDR as the fitness
function to guide the evolution process of the single-objective
E-MRP-CNN because it is a global measure that taking into
account three goals: (i) rejection of interferences, (ii) absence of
forbidden distortions and “burbling” artifacts, and (iii) rejection
of sensor noise, as equally important [36]. In particular, since
each gene is only partially trained in the evolution process (to
accelerate computation), the global measure SDR would be more
suitable than SIR and SAR.

The single-objective E-MRP-CNN is presented in Algo-
rithm 1, where rows 1-4 show the initialization process and rows
5-12 show the evolution process.

1) Initialization Process:

¢ In the first step (row 1), we generate the initial population
of size n, including one seed gene and the other n — 1
genes randomly mutated from this seed. To do this, the n
bits of the seed gene are flipped to generate a new gene,
where np is a random number and 1 < n, < u (u is the
maximum flipping number). We repeat this process until
n — 1 different genes are obtained.

¢ Inthe second step (row 2), we divide the training dataset 7
into three subsets 7 — { Dy, Die, Do }, where the training
subset Z;,. is used for training, the testing subset Z is used
for computing the fitness, and the validation subset 7, is
used to decide when to stop the evolution.

o In the third step (rows 3-4), we compute the fitness of each
gene in the initial population. Specifically, the MRP-CNN
structure decoded from each gene is trained with %;,. for
only a few iterations (i.e., partial training). These partially
trained structures are tested on Z;., and we compute the
average SDR performance over all clips of Z;. as the fitness

Algorithm 1: Single-Objective E-MRP-CNN.

1:  Generate the initial population of size n from the seed
gene

2: Data preparation: training set Z — { %y, Die, Do }

3:  Compute SDR fitness of the initial population by
partially training each gene on Z,, and testing on %,

4: Remove low-fitness genes according to the population
limit Z

5: fori=1to N (maximum generation) do
6: Generate o. new genes by crossover with prob. p;
7 Generate o,,, new genes by mutation with prob. p,
8: Compute SDR fitness of new offspring using Z;,
and gte
9: Sort all genes (current+new) by SDR fitness
10: Remove low-fitness genes by population limit Z
11: break, if stopping criterion is satisfied
12: end for

of each gene. The low-fitness genes are removed according
to the population limit Z.

2) Evolution Process:

e In each iteration of evolution, we use crossover (row
6) and mutation (row 7) to generate new offspring. The
crossover recombines the information of two randomly
selected genes, where one gene is used as the baseline
and each bit within this gene has a probability (prob.) p;
to be exchanged with the corresponding bit of the other
gene. The mutation produces a new offspring by randomly
flipping each bit of one gene with prob. p,. We repeat
the crossover operation to create o, new offspring then
apply mutation to both the current generation (Z genes)
and o, new offspring generated by crossover to create
Om = Z + o, new offspring.

e The SDR fitnesses of all new offspring (o. + o, genes)
are computed (row 8). All populations including the new
offspring (o. + o0, genes) and the current populations (Z
genes) are sorted by fitness (row 9), and the low-fitness
genes are removed in accordance with Z (row 10).

e We check if the stopping criterion is satisfied with the
validation subset &, (row 11). Specifically, we test the
best-fitness gene of the current generation on &, to com-
pute its SDR. This SDR is then compared with those
of the best-fitness gene of several recent generations (S
generations). If there is no improvement in this value for
S generations, the evolution iteration will be stopped and
the earliest generation with no SDR improvement will be
the output.

The single-objective E-MRP-CNN evolves its structure to
improve separation performance. However, it may select a very
complex model to optimize this performance. In real applica-
tions (e.g., the embedded FPGA platform) [37], the computing
resources and on-chip memory are usually limited, in this case,
both model complexity and separation performance should be
considered.
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Algorithm 2: Multi-Objective E-MRP-CNN.

1:  Generate the initial population of size n from the seed
gene

2: Data preparation: training set Z — { %y, Die, Do}

3:  Compute SDR fitness and model complexity and then
perform fast non-dominated sorting and
crowded-comparison

4: Remove low-fitness genes according to the population
limit Z

5: for ¢ =1to N (maximum generation) do

6 Generate o, new genes by crossover with prob. p;

7: Generate o,,, new genes by mutation with prob. py
8
9

Compute SDR and Params for all new offspring

Sort all genes (current+new) using fast

non-dominated sorting and crowded-comparison
10: Remove low-fitness genes by population limit Z
11: end for

B. Multi-Objective E-MRP-CNN

The multi-objective E-MRP-CNN is designed to balance sep-
aration performance and model complexity. It approximates a
set of Pareto-optimal solutions [18], i.e., Pareto-optimal MRP-
CNN structures, for MSVS. Each solution (structure) is Pareto-
optimal, that is, no objective can be improved without degrading
the other objective, e.g., the separation performance cannot be
improved without increasing the model complexity.

There are generally two properties to design evolutionary
multi-objective optimization algorithms: convergence and di-
versity [38]. Convergence measures the distances of solutions
toward the Pareto front (i.e., Pareto-optimal front), which should
be as small as possible [38]. Diversity is the spread of solutions
along the Pareto front and should be as uniform as possible [38].
For MSVS, convergence encourages each evolved structure to
offer the best separation performance as possible under a certain
complexity, and diversity encourages the evolved structures to
be varied enough to handle different complexity levels.

Following previous studies [34] [35], we approximate the
Pareto-optimal solutions on the basis of NSGA-II [18], where
the fast non-dominated sorting is used to promote convergence
and the crowded-comparison operator is used to address di-
versity [18]. We use the gray code to encode the MRP-CNN
structures (see Table I), as it significantly reduces the searching
space and improves the searching efficiency for MSVS.

The multi-objective E-MRP-CNN is presented in Algo-
rithm 2, where rows 1-4 show the initialization process and
rows 5-11 show the evolution process. The first two steps in
initialization process (rows 1-2) are the same as those in the
single-objective E-MRP-CNN (note that the subset &, is not
used here). In the third step, we compute the fitness of each gene
in the initial population. Instead of considering SDR as the only
fitness, we compute both SDR and model complexity (measured
by the amount of parameters (Params)) for each gene then use
fast non-dominated sorting of NSGA-II [18] to calculate the
non-dominated levels of all genes. By sorting all these levels with

a crowded-comparison operator, low-fitness genes are removed
in accordance with Z (row 4).

In each iteration of evolution, we use crossover (row 6) and
mutation (row 7) to generate o. and 0,, (0, = 0. + Z) new
offspring, respectively. The SDRs and model complexities of all
0c + 0, new offspring are computed. Both the current popula-
tions (Z genes) and new offspring (0. + o,, genes) are sorted by
fast non-dominated sorting and the crowded-comparison opera-
tor of NSGA-II. We remove low-fitness genes in accordance with
Z. The multi-objective E-MRP-CNN stops when the maximum
iteration number is reached.

V. EXPERIMENT SETTING
A. Datasets

The E-MRP-CNN was evaluated on three datasets: MIR-
1K [39], DSD100 [40], and MUSDBI18 [41]. The original sam-
pling rate for MIR-1 K is 16 kHz and 44.1 kHz for DSD100
and MUSDB18. The MIR-1 K dataset contains a thousand song
clips extracted from 110 karaoke songs. For fair comparison, we
followed the evaluation conditions in previous studies [7], [10],
[42], [43]: 175 clips performed by one male singer ‘abjones’
and one female singer ‘amy’ were used for training, the other
825 clips performed by 17 singers were used for testing. On
DSD100, songs of the “Dev” subset were used for training, and
we followed previous studies [7], [10] to convert all sources
to monophonic then added three sources except for vocals
together to form the music accompaniment. The MUSDB18
dataset is distributed as stereo mixtures with multiple sound
objects sharing a track. In the MSVS task, all musical sources
except for vocals were taken as the music accompaniment. To
compare the E-MRP-CNN with Open-Unmix [44], we estimated
vocal and accompaniment respectively from the left-channel and
right-channel of the mixture signal in MUSDB18.

B. T-F Masking Framework

The E-MRP-CNN was evaluated using the T-F masking
framework in Fig. 2, where the separation module.! can be the
structures of the E-MRP-CNN or other compared structures.
The output of the separation module is fed to the convolution
layer, which is made of two 2D convolution filters (kernel size
of 1x1 and no activation function) to estimate the T-F masks
for vocal and accompaniment [10], [19], [20], [45]. This frame-
work was used in both the evolution (Evo) process and final
evaluation (Eva). For each situation, we have two scenarios:
training (Tra) and testing (Tes). For Evo, we trained the evolved
structures using %, (Evo&Tra) and tested the structures on Z;,
(Evo&Tes). For Eva, the final evolved structures were trained
using the full training set (Eva&Tra) and tested on the full testing
set (Eva&Tes).

It should be noted that the T-F masking framework was used
differently on the three datasets.

! Although it is advantageous to use an independent separation module for
each source, i.e., two separation modules for two sources, it is computationally
expensive according to a previous study [10] Hence, following that study, we
used only one separation module.
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layer

¢ For MIR-1 K and DSD100, the input time-domain mixture
signal was downsampled to 8 kHz to speed up computa-
tion [10] (see the black dashed line). The spectrogram of the
8-kHz mixture signal was computed via short-time Fourier
transform (STFT) using a window size of 1024 (0.128 s)
and hop size of 256 (0.032 s). The magnitude spectrogram
of the mixture was normalized by dividing by its maximum
value then split into blocks of size 512 x 64 (frequency x
frames) to form batches. The batches of the mixture were
fed to the separation module, and its output was fed to
the convolution layer to predict the masks (in batches).
The predicted masks were used in (i) the training process
(Evo&Tra and Eva&Tra) to compute the loss function and
(if) testing process (Evo&Tes and Eva&Tes) to output the
time-domain-estimated sources.

e For MUSDBI1S, we used the same procedures as above
for Evo&Tra and Evo&Tes. However in Eva&Tra and
Eva&Tes, to compare with Open-Unmix, we directly cal-
culated the spectrogram with STFT using the original 44.1-
kHz sampled mixture signal (see the blue dashed curve). In
this case, we set the window size of STFT to 5644 (0.128 s)
and hop size to 1411 (0.032 s). The obtained magnitude
spectrogram was cropped to the 8-kHz-band spectrogram?
then split into blocks of size 2822 x 64 (frequency x
frames) to form batches. The output 8-kHz-band masks
were expanded to full-band of 44.1 kHz using a dense layer.
This procedure is indicated with blue dashed lines in Fig. 2.

In the training process (Evo&Tra and Eva&Tra), the loss

function L1 ; norm [10], [46] was adopted for fair comparison.
Formally, given the mixture X, the i-th ground truth source Y,
and predicted mask M, for the i-th source (i = 1...s, s =2

2The standard Open-Unmix crops the input spectrogram to the 16-kHz-band
spectrogram, while to speed up the computation, the E-MRP-CNN crops the
input spectrogram to the 8-kHz-band spectrogram.

TABLE III
HYPER-PARAMETERS OF E-MRP-CNN

Scheme n uw N Z oc om p1 P2 Dy Die Dy S
Single 22 20 100 15 10 25 0.5 0.02 100/30/60 55/15/30 20/5/10 8
Multi. 37 20 100 25 10 35 0.5 0.02 100/30/60 55/15/30 - -

in MSVS), the loss function is defined as J =7, [[Y; —
X ® M, |11, where ® denotes the element-wise multiplication
of matrices. Note that when computing the loss function, the
magnitude spectrograms of the ground-truth vocal and accom-
paniment were also normalized by dividing by the maximum
value of their mixture’s magnitude spectrogram.

In the testing process (Evo&Tes and Eva&Tes), the predicted
masks for vocal and accompaniment were truncated to the range
of [0.0,1.0] and multiplied with the normalized spectrogram
of the mixture [10]. After de-normalization and batch com-
bination, the time-domain sources were obtained via inverse
STFT (ISTFT) followed by upsampling. For Eva&Tra, two
data augmentation operations, gain and sliding, were applied
to the original time-domain ground-truth sources to create new
mixtures. The gain operation multiplied the original source by
a random factor a (0.5 < a < 1.5), and the sliding operation
added a random delay d (0 s < d < 0.5 s) to the beginning of
the original source. The newly obtained ground-truth sources
were mixed to form new mixtures. The ratio of the augmented
data to the original data is 1:4.

C. Hyper-Parameters of E-MRP-CNN

Table IIT lists the hyper-parameters of the E-MRP-CNN.
Since the multi-objective E-MRP-CNN requires more diversity,
its Z and mutation number o,, were higher than those of the
single-objective E-MRP-CNN. The parameter n in both single-
objective and multi-objective E-MRP-CNNs were higher than
Z, which enabled us to remove poor genes and improve the
quality of the initial population. The parameter u is the maxi-
mum flipping number in mutation, i.e., v controls the flipping
percentage. As shown in Table II, each MRP-CNN structure can
be encoded with 142 bits. We keep w relatively small to this
value as we want to preserve most properties of the parent gene
when exploring new genes.

We set p; = 0.5 in crossover and p, = 0.02 in mutation.
Intuitively, crossover can be considered as combining genes
of parents, and mutation can be considered as exploring new
genes. The parameter p; was set much larger than p», because the
parents in crossover are selected from the previous generation,
soitisrelatively safe to combine their genes at a high probability.
In contrast, po was much smaller, that is, we only explore new
genes around the parent. Such a setting ensures that the newly
explored genes inherit most good properties from the parent to
maintain its performance.

The parameters %y, Z:., and 2, were set to 100/55/20,
30/15/5, 60/30/10 for MIR-1 K, DSD100, and MUSDBI8,
respectively. In the single-objective E-MRP-CNN, we use a
criterion, i.e., no improvement on SDR for S generations, to stop
the evolution. Since small S may stop the evolution too early, we
set S relatively high, i.e., S = 8, to ensure the completeness of
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(d) Single-objective E-MRP-CNN on MIR-1K

Fig. 3.

single-objective evolution. In the multi-objective E-MRP-CNN,
9, and S were not used.

D. Training and Testing Parameters

The Adam optimizer [47] was used to train the T-F masking
framework. In Evo&Tra, we aimed to compute the fitness of
each gene, so the T-F masking framework was only partially
trained with 1500 iterations for MIR-1 K and 3100 iterations for
DSD100 and MUSDB 18 using batch size of 2. In Eva&Tra, the
framework was fully trained with 63 000 iterations for MIR-1 K
and 630 000 iterations for DSD100 and MUSDB 18 using batch
size of 3. In Evo&Tes and Eva&Tes, we used batch size of 1.

In both Evo&Tra and Eva&Tra, two tricks were used:
(i) cosine decay learning rate and warm restart [48] and
(i1) learning rate warmup [49]. For (i), we set T7p=100 and
T,,=2 in Evo&Tra, and 7p=1000 (10 000) for MIR-1 K
(DSD100/MUSDB18) and T;,,=2 in Eva&Tra, where Tj, is the
length of the first decay period [48] and 7;,, is the multiplication
factor for decay-period length at every new warm restart [48].
The maximum learning rate for Evo&Tra and Eva&Tra was
3 x 1074, and the minimum learning rates for Evo&Tra and
Eva&Tra were 1 x 10~% and 1 x 10~°, respectively (more de-
tails can be found in [48]). For (ii), we scaled the learning rate
in the first 100 (1000) iterations for Evo&Tra (Eva&Tra) with
a factor 0.3 to avoid the maximum learning rate being too large
for some genes.

VI. EVOLUTION ANALYSIS OF E-MPR-CNN

We used the MRP-CNN structure in Table II as the seed
gene of the initial population for both single-objective and

(e) Single-objective E-MRP-CNN on DSD100

(f) Single-objective E-MRP-CNN on MUSDB18

Evolution process of single-objective and multi-objective E-MRP-CNNs on MIR-1 K, DSD100, and MUSDB18.

multi-objective E-MRP-CNNs. The evolved genes (structures)
of the E-MRP-CNN are represented in the form of “S/M-G-
Index-Dataset,” where S and M denote the single-objective and
multi-objective E-MRP-CNNS, respectively, G represents the
generation number, Index is the gene index in the G-th gener-
ation, and Dataset can be MIR (MIR-1 K), DSD (DSD100), or
MUS (MUSDB18). For the single-objective E-MRP-CNN, the
Index is the SDR ranking of a gene in the current generation. For
the multi-objective E-MRP-CNN, the Index is the gene index in
the current generation. For example, “S-25-2-MIR” represents
the structure with the second highest SDR performance in the
25th generation of the single-objective E-MRP-CNN on MIR-
1 K, and “M-99-2-DSD” represents the No. 2 evolved structure
in the 99th generation of the multi-objective E-MRP-CNN on
DSD100.

A. Trends and Results of Evolution

We recorded the dynamic evolution process of the E-MRP-
CNN on MIR-1 K, DSD100, and MUSDBI18, as shown in
Fig. 3. The vertical axis in each figure represents the model
complexity measured by the number of parameters (Params),
and the horizontal axis represents the fitness score measured by
SDR (SDR score). Each colored data point stands for a gene, i.e.,
an MRP-CNN structure. The genes of different generations are
distinguished by colors changing from red (initial generation) to
pink (highest generation). We set the highest evolution number
to 99. The single-objective E-MRP-CNN stopped evolving at the
16th generation on MIR-1 K, 31st generation on DSD100, and
17th generation on MUSDB18 when the SDR of the best gene
had no improvement for .S = 8 consecutive generations. For the
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multi-objective E-MRP-CNN, we observed the evolution pro-
cess of all 100 generations (i.e., 0<G<99) on the three datasets.
By comparing the top and bottom panels in Fig. 3, we can find
that the single-objective and multi-objective E-MRP-CNNs had
different evolution trends.

As shown in Figs. 3(a)-3(c), the genes in the multi-objective
E-MRP-CNN moved toward the Pareto front generation by
generation during the evolution process. More specifically, we
can see that the seed gene (represented with the black inverted
triangle) had a relatively high model complexity and low SDR
score. As the evolution proceeded, the new generations gradually
moved to the Pareto-optimal front. For example, the first 10
generations in Figs. 3(a)-3(c) (red and yellow points) spread
widely, the 10 to 40 generations (yellow and green points) started
to move to the lower-right boundary, and the higher generations,
e.g., 70 to 99 generations (blue and pink points), approximately
converged to the Pareto-optimal front. These results indicate
that better genes (in model complexity, in SDR, or in both) were
obtained during the evolution process. Finally, a set of structures
with better overall performance in model complexity and/or
SDR were obtained, which can deal with different complexity
requirements.

Compared with the multi-objective E-MRP-CNN, the model
complexity of genes in the single-objective E-MRP-CNN (see
Figs. 3(d)-3(f)) did not decrease during the evolution process
since model complexity was not considered in it. In particular,
we can see that the single-objective E-MRP-CNN, without the
constraint of model complexity, could steadily improve SDR
generation by generation. By comparing the single-objective and
multi-objective E-MRP-CNNSs on each dataset, we found that the
single-objective E-MRP-CNN could achieve a similar SDR as
the multi-objective E-MRP-CNN with much fewer generations.
For example, on MIR-1 K, the single-objective E-MRP-CNN
reached SDR = 11 dB using only 10 < G < 15 generations,
while this required at least 20 generations in the multi-objective
E-MRP-CNN. Nevertheless, the multi-objective E-MRP-CNN
had a lower model complexity than the single-objective E-MRP-
CNN at SDR = 11 dB. We also found that the single-objective
E-MRP-CNN behaved differently on the three datasets. On MIR-
1 K (Fig. 3(d)), model complexity significantly increased at a
high SDR score while this phenomenon was not observed on
DSD100 and MUSDBI18 (see Figs. 3(e)-3(f)).

We labelled some representative genes of the multi-objective
E-MRP-CNN in Figs. 3(a)-3(c), including the seed gene, gene of
early generation, and genes of the final generation (G = 99). Itis
clear that better genes (in model complexity, SDR, or both) were
obtained during the evolution process. For the single-objective
E-MRP-CNN, we intentionally continued the evolution process
for a few more generations. Typical genes including the seed
gene, gene of early generation, genes of the final generation,
and genes after the final generation (G = 29 for MIR-1 K, G
=49 for DSD100, and G = 25 for MUSDB18) are plotted. We
found from Fig. 3(d) that the gene after final generation, i.e.,
S-29-1-MIR, provided higher SDR performance than the best
gene of the final generation, i.e., S-16-1-MIR, on the testing
subset Z;.. This phenomenon is also found in Fig. 3(f). The
performance of these structures are evaluated in the next section.
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Fig.4. Comparison between random search and multi-objective E-MRP-CNN
on MUSDBI8.

The evolution process of the E-MRP-CNN is relatively time-
consuming. In our experiments, we use six GPUs in parallel for
evolution.? In the single-objective E-MRP-CNN, it took about
1.5 hours to perform one iteration on MIR-1 K and 2 hours on
DSD100and MUSDB 8. In the multi-objective E-MRP-CNN, it
took about 1 h to perform one iteration on MIR-1 K and 2 hours
on DSD100 and MUSDBI18. Nevertheless, it should be noted
that some evolved structures in the multi-objective E-MRP-CNN
can be trained much faster than SOTA methods on the full dataset
because they have lower model complexity. More details are
given in the following sections.

B. Comparison Between Random Search and Evolution

To verify the effectiveness of the E-MRP-CNN, we compared
the multiple-objective E-MRP-CNN with random search on
MUSDB18 using the same seed structure. As shown in Table III,
we had 37 genes in the initial population and 45 (o.+0,,) genes
in each iteration. We set the maximum generation to 50 and
thus 2287 structures were found. For fair comparison, we also
searched 2287 structures with random search using the same
seed structure. The performances of random search and the
multiple-objective E-MRP-CNN under the same partial training
and testing conditions are compared in Fig. 4.

We can see that most structures found by random search
had a model complexity of 2~3 M. Their SDR scores were
around 2~4 dB and 5~8 dB. Compared with random search,
the performance of evolved structures in the multi-objective E-
MRP-CNN improved generation by generation in the evolution
process. Some structures in high generations had a much higher
SDR score (>8 dB) and lower complexity (<2 M) than those in
random search. These results indicate that random search cannot
obtain the Pareto-optimal set as with the E-MRP-CNN, which
verifies the advantage of the E-MRP-CNN over random search.

VII. EVALUATION OF EVOLVED ARCHITECTURES

We evaluated typical evolved structures on the full MIR-1 K,
DSD100, and MUSDB18 datasets. Their performances were
analyzed with respect to separation performance, computational
efficiency, and separation performance vs. computational effi-
ciency.

3The six GPUs were two 1080Ti, one 2080Ti, one Titan RTX, one Titan V,
and one Titan XP.
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Fig. 5. Separation performance of E-MRP-CNN on MIR-1 K.

A. Separation Performance

Separation performance was measured using the BSS-EVAL
toolkit [36] with respect to three criteria: SDR, SIR, and SAR.
The normalized SDR (NSDR) [50] indicates the improvement
of SDR compared to the original mixture. To compare the E-
MRP-CNN with current methods, we computed Global NSDR
(GNSDR), Global SIR (GSIR), and Global SAR (GSAR) [10],
[42] on MIR-1 K; for DSD100, we plotted the SDR, SIR, and
SAR results with boxplots; for MUSDB 18, we plotted the SDR,
SIR, and SAR results as well as the source image-to-spatial
distortion ratio (ISR) result with boxplots.

The separation performances of the evolved structures on
MIR-1 K are shown in Fig. 5. We can see that the evolved
structures in both single-objective and multi-objective E-MRP-
CNNs achieved higher GNSDR, GSIR, and GSAR on the vocal
(Vocal) source and higher GSAR on the accompaniment (Acc)
source than the seed. The separation results for DSD100 are
shown in Fig. 6. For the Vocal source, most evolved structures in
the single-objective and multi-objective E-MRP-CNNSs outper-
formed the seed in three evaluation metrics. For the Acc source,
most evolved structures achieved higher SDR and SAR than the
seed. The separation results for MUSDB18 are shown in Fig. 7.
The evolved structures in the single-objective E-MRP-CNN
performed better in SDR and SIR for Vocal and ISR and SAR for
Acc. In the multi-objective E-MRP-CNN, the evolved structures
did not show clear separation improvements. The main reason
is that the multi-objective E-MRP-CNN compromises its sepa-
ration performance to lower model complexity.

As mentioned above, S-29-1-MIR (a structure of a later gener-
ation after the stopping criterion was satisfied) provided a higher
SDR than the final evolved S-16-1-MIR on the testing subset Z;,
(see Fig. 3(d)). This gene did not outperform S-16-1-MIR on
GNSDR in either Acc or Vocal on the full MIR-1 K dataset, as
shown in Fig. 5. Similarly, as shown in Fig. 7, S-25-1-MUS
did not outperform S-17-1-MUS on SDR in either Acc or
Vocal on the full MUSDB 18 dataset. These results verified the
effectiveness of our stopping criterion of the single-objective
E-MRP-CNN.
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Fig. 7. Separation performance of E-MRP-CNN on MUSDBI8.

To determine whether the separation improvements of single-
objective and multi-objective structures are statistically signif-
icant to the seed, we conducted a one-way analysis of vari-
ance (ANOVA)-based F-test [51] on MIR-1 K and a Kruskal-
Wallis [52] based H-test on DSD100 and MUSDB18. The one-
way ANOVA (for MIR-1 K) test can be used to compare means
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TABLE IV

817

STATISTICAL SIGNIFICANCE EVALUATION OF NSDR (FOrR MIR-1 K) AND SDR (FOR DSD 100 AND MUSDB18) OF SINGLE-OBJECTIVE AND MULTI-OBJECTIVE
E-MRP-CNN STRUCTURES AND SEED

MIR-1K (NSDR, mean) DSD100 (SDR, median) MUSDB18 (SDR, median)

Structure Acc Vocal Structure Acc Vocal Structure Acc Vocal

F-value| p-value | F-value | p-value H-value| p-value [H-value| p-value H-value| p-value [H-value [ p-value
S-8-1-MIR 0.19 0.67 18.38 [1.92e-05|S-16-1-DSD | 3.32 0.07 39.15 [3.93e-10|S-9-1-MUS 1.61 0.20 0.81 0.37
S-16-1-MIR | 5.18 0.02 19.42 [1.11e-05|S-31-1-DSD | 10.04 [1.53e-03| 18.11 |2.08e-05|S-17-1-MUS | 12.51 |4.05e-04| 6.85 |8.87¢-03
S-29-1-MIR | 4.13 0.04 16.81 [4.33e-05|S-49-1-DSD 2.88 0.09 16.49 [4.89¢-05|S-25-1-MUS 8.23 |4.12e-03| 11.58 |6.67e-04
M-50-2-MIR | 0.04 0.85 1.04 0.31 |M-25-4-DSD| 1.09 0.30 17.27 |3.24e-05|M-50-8-MUS | 2.68 0.10 4.10 0.04
M-99-2-MIR| 0.48 049 |1.21e-03| 0.97 [M-99-2-DSD| 25.51 [4.41e-07| 24.23 |8.56e-07|M-99-2-MUS| 37.59 [8.73e-10| 26.59 |2.52e-07
M-99-4-MIR| 1.53 0.22 1.37 0.24 |M-99-4-DSD| 0.17 0.68 0.14 0.71 |M-99-4-MUS| 4597 |1.20e-11| 37.88 |7.51e-10
M-99-5-MIR| 0.03 0.86 3.80 0.05 |M-99-6-DSD| 2.30 0.13 8.90 |2.86e-03 |M-99-6-MUS| 5.16 0.02 2.65 0.10
M-99-8-MIR| 0.38 0.54 20.04 [8.10e-06|M-99-7-DSD| 4.81 0.03 19.95 |7.95e-06|M-99-8-MUS| 13.66 [2.19¢-04| 6.04 0.01

of two or more samples (using the F distribution), and it tests
the null hypothesis that two groups have the same population
mean. The Kruskal-Wallis test (for DSD100 and MUSDB18)
can be seen technically as a comparison of the ranks of the data
points, rather than the data points themselves, and it tests the
null hypothesis that the population median of two groups are
equal. If the p-value is lower than 0.05 (5% significance level),
the null hypothesis is rejected, which means the given results
are statistically significant.

The ANOVA test was conducted using all 825 testing clips in
MIR-1 K. For DSD100 and MUSDB 18, the original audio tracks
were cut to a duration of 1.0 s, then all 8696 (DSD100) and 9633
(MUSDBI18) testing clips* were used for the Kruskal-Wallis
test. The evaluation results for NSDR on MIR-1 K and SDR
on DSD100 and MUSDBI18 are listed in Table IV. For both
Acc and Vocal, the p-values of all final evolved structures in the
single-objective E-MRP-CNN (i.e., S-16-1-MIR, S-31-1-DSD,
S-17-1-MUS) were smaller than 0.05, indicating that the sep-
aration improvements were statistically significant. Compared
with these structures, the structures in the early generation,
e.g., S-8-1-MIR and S-16-1-DSD, only achieved significant
improvement on the Vocal source. On MUSDBI18, the SDR
of S-9-1-MUS was lower than that of the seed on Acc (see
Fig. 7), while this discrepancy was not statistically significant,
as shown in Table IV. The structures in the multi-objective
E-MRP-CNN took into account both separation performance
and model complexity; thus, only a few structures had significant
separation improvements, e.g., M-99-7-DSD. It should be noted
that the statistical analysis results are affected by the effect size,
and the current results should be used for reference only.

In addition to these results, some audio samples are also
available at https://tuxzz.org/emrpcnn-ckpt/, so that the reader
can listen to them for a qualitative comparison on separation
performance.

B. Computational Efficiency

Computational efficiency was calculated in theory and mea-
sured in a real hardware/software environment. The theoretical
efficiency was given by Params and FLOPs, where Params

4Since the standard BSS-EVAL toolbox uses 1.0-s segments to compute SDR
(https://sigsep.github.io/datasets/musdb.html), we followed this setting to run
the statistical tests.

denotes the number of trainable parameters of each structure
and FLOPs represents the floating-point operations for training
(inferring) using batch size of 1. In practice, two structures
with similar Params and FLOPs may have different computation
speeds; thus, computational efficiency was also measured in a
real hardware/software environment.> The real computational
efficiency in training and inferring was given in bat./s., that is,
number of batches per second.

The computational efficiency on the three datasets are plotted
in Fig. 8. We used the same seed gene for the three datasets;
however, the model complexity of the seed gene for MIR-1 K
and DSD100 was lower than that of MUSDB18. This is because
the block size (512 x 64) for MIR-1 K and DSD100 was smaller
than that of MUSDB 18 (2822 x 64). In particular, since a dense
layer was used for MUSDB18, the Params of MUSDB18 was
higher than those of MIR-1 K and DSD100.

On MIR-1K, the model complexity of the evolved struc-
tures in the single-objective E-MRP-CNN increased gener-
ation by generation and most structures had higher model
complexities than the seed. In the multi-objective E-MRP-
CNN, multiple structures were provided in one generation
with varying model complexities, e.g., M-99-2/4/5/8-MIR. Most
evolved structures had similar or even lower model complexi-
ties compared with the seed and those in the single-objective
E-MRP-CNN. On DSD100 and MUSDB18, the model com-
plexities of evolved structures in the single-objective E-MRP-
CNN increased slightly. In the multi-objective E-MRP-CNN,
most evolved structures on DSD100 (M-99-2/4/6-DSD) and
MUSDBI18 (M-99-2/4/6/8-MUS) had lower model complexi-
ties compared with the seed and those in the single-objective
E-MRP-CNN.

C. Separation Performance vs. Computational Efficiency

When comparing the single-objective E-MRP-CNN with the
seed, we found that the single-objective E-MRP-CNN could
achieve much better separation with a slightly higher model
complexity. For example, on MIR-1 K (see Figs. 5 and 8),
S-16-1-MIR, which had 0.63 dB GNSDR improvement on Vocal
with respect to the seed, only needed an additional cost of 4.43 M

5The GPU we used was 2080Ti, CPU was Intel Core i9 9900 K, and memory
was 4x16 G DDR4 (3200 MHz). In the Linux operating system, we used
TensorFlow 2.0 with CUDA 10.1 and cuDNN 7.6.
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Fig. 8.

Params and 274.73 G FLOPs. On DSD100 (see Figs. 6 and 8), the
single-objective E-MRP-CNN achieved much better separation
with similar or even lower model complexity to the seed, e.g.,
S-31-1-DSD. OnMUSDB18 (see Figs. 7 and 8), the final evolved
structure, i.e., S-17-1-MUS, achieved better separation than the
seed in most evaluation metrics while maintaining a similar
model complexity.

When comparing the multi-objective E-MRP-CNN with the
seed, we found that it could achieve better separation than the
seed with a lower model complexity. For example on DSD100,
M-99-6-DSD achieved 0.68 dB improvement in SDR on Vocal
with respect to the seed using only 25.3% Params and 16.7%
FLOPs of the seed. In the real environment, this structure was
also 2.77 times (Training) and 3.35 times (Inferring) faster than
the seed. Similar results were obtained on MIR-1 K, e.g., M-99-
5-MIR and M-50-2-MIR outperformed the seed in most evalua-
tion metrics with lower and similar model complexities. Differ-
ent from these results, the final evolved structures on MUSDB 18,
which significantly reduced model complexity, did not achieve
clear separation improvement compared with the seed.

By comparing Figs. 5-7 and Fig. 8, we can also see that
within the same generation of the multi-objective E-MRP-CNN,
the structures with higher model complexities usually provided
better separation, e.g. from M-99-2-MIR to M-99-8-MIR and
from M-99-2-DSD to M-99-7-DSD.

When comparing the single-objective E-MRP-CNN with the
multi-objective E-MRP-CNN, we found that the multi-objective
E-MRP-CNN could sometimes find more effective and efficient
structures (similar or lower model complexity but better separa-
tion performance) than the single-objective E-MRP-CNN. For
example, M-99-6-DSD had a higher SDR than S-31-1-DSD on
Acc but with only 27.4% Params and 18.5% FLOPs of S-31-
1-DSD. In the real environment, M-99-6-DSD was 2.61 times
(Training) and 3.05 times (Inferring) faster than S-31-1-DSD.
These observations suggest that the multi-objective E-MRP-
CNN can greatly reduce model complexity while maintaining

Computational efficiency of E-MRP-CNN on the three datasets.

acceptable separation. Such a phenomenon was also observed
on MIR-1 K, e.g., M-99-4-MIR, which had much higher com-
putational efficiency than S-16-1-MIR and had the same SDR
on Vocal.

VIII. COMPARATIVE EVALUATIONS
A. On MIR-1 K and DSD100 Datasets

We first compared the best structures in the single-objective
and multi-objective E-MRP-CNNs with several typical MR-
CNN-based MSVS methods: MR-FCNN [13], SHN [10], and
SA-SHN [7], on MIR-1 K and DSD100. The computational
efficiencies and separation performances are listed in Table V,
where we use SHN-n and SA-SHN-n to represent the n-layer
SHN and n-layer SA-SHN, respectively.

We can see that the MR-FCNN has an acceptable model com-
plexity, however, its separation performance was much lower
than those of the other methods on both datasets. On MIR-1 K,
the single-objective structure, i.e., S-16-1-MIR, achieved the
best separation in most metrics while maintaining a similar
model complexity as SHN and SA-SHN. The multi-objective
structure, i.e., M-99-5-MIR, which had much lower model
complexity than SHN and SA-SHN, achieved comparable sep-
aration performance to SHN and SA-SHN. On DSD100, both
the single-objective structure (S-31-1-DSD) and multi-objective
structure (M-99-7-DSD) achieved lower model complexities
than SHN and SA-SHN, and their separation performances
were better than most of the SHN and SA-SHN models.
The statistical results of the above methods are listed in Ta-
ble VI. Our structures achieved significant improvement on
MIR-1 K and DSD100 compared with most of the SHN and
SA-SHN models. These results verified the effectiveness of the
E-MRP-CNN.

We also compared the E-MRP-CNN with other MSVS meth-
ods on MIR-1 K and DSD100. Since the model complexity
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TABLE V
COMPARISON OF COMPUTATIONAL EFFICIENCY AND SEPARATION PERFORMANCE BETWEEN E-MRP-CNN AND CURRENT MR-CNN-BASED MSVS METHODS
(MR-FCNN, SHN-x*, AND SA-SHN-x)

819

Computational efficiency MIR-1K DSD100

Method Params | FLOPs | Training | Inferring Acc Vocal Acc (Median) Vocal (Median)

[M] [G] [bat./s] [bat./s] GNSDR [ GSIR [ GSAR | GNSDR [ GSIR [ GSAR SDR SIR SAR SDR [ SIR [ SAR
MR-FCNN 0.56 36.56 9.03 18.59 8.65 | 11.65| 12.35 | 9.66 | 1572 | 11.40 | 11.28 | 1648 | 13.59 | 4.76 | 12.43 | 5.83
SHN-1 9.06 168.29 29.94 87.70 9.85 | 13.66 | 12.85 | 10.88 | 16.63 | 12.71 | 12.11 | 17.78 | 14.20 | 5.42 | 13.46 | 6.66
SHN-2 17.46 | 292.87 16.70 49.19 9.94 | 13.67 | 12.96 | 11.10 | 17.13 | 12.82 | 12.01 | 17.95 | 14.43 | 5.67 | 13.80 | 6.76
SHN-4 34.18 | 537.66 8.84 26.09 9.97 | 13.65 | 13.08 | 11.13 | 17.09 | 12.89 | 12.17 | 17.63 | 14.61 | 5.85 | 14.29 | 7.07
SA-SHN-1 9.85 197.29 14.41 40.08 10.12 | 13.78 | 13.25 | 11.32 | 17.15 | 13.10 | 12.17 | 17.71 | 14.73 | 591 | 14.76 | 7.17
SA-SHN-2 19.03 | 350.87 7.56 20.95 10.34 | 13.99 | 1346 | 11.71 | 17.58 | 13.44 | 12.33 | 18.06 | 14.73 | 6.11 | 14.79 | 7.27
SA-SHN-4 37.33 | 653.67 3.87 10.70 10.53 | 14.54 | 13.38 | 11.75 | 17.87 | 13.40 | 12.63 | 18.04 | 14.90 | 6.24 | 15.14 | 7.31
S-16-1-MIR 6.76 404.45 13.89 38.72 10.55 | 14.18 | 13.65 | 11.89 | 17.80 | 13.60 - - - - - -
M-99-5-MIR 242 130.66 31.58 94.34 10.25 | 13.94 | 13.38 | 11.54 | 17.39 | 13.28 - - - - - -
S-31-1-DSD 2.15 116.94 33.62 102.16 - - - - - - 12.60 | 18.48 | 14.72 | 6.15 | 14.76 | 7.36
M-99-7-DSD 3.18 151.41 27.83 82.70 - - - - - - 12.64 | 18.33 | 14.83 | 6.42 | 14.79 | 7.51

TABLE VI

STATISTICAL SIGNIFICANCE EVALUATION OF NSDR AND SDR BETWEEN E-MRP-CNN AND MR-FCNN, SHN-%, AND SA-SHN-+ ON MIR-1 K AND DSD100

MIR-1K (NSDR) DSD100 (SDR)
Method S-16-1-MIR M-99-5-MIR S-31-1-DSD M-99-7-DSD
Acc Vocal Acc Vocal Acc Vocal Acc Vocal

F-value][ p-value |F-value[ p-value |F-value[ p-value |F-value[ p-value [H-value[ p-value [H-value| p-value [H-value[ p-value [H-value[ p-value
MR-FCNN| 190.33 |4.69e-41|244.01 |2.11e-51| 132.09 | 1.83e-29| 175.33 [3.79¢e-38| 398.47 |1.19¢-88| 147.08 |7.54e-34| 361.78 |1.15e-80| 150.12 |1.63e-34
SHN-1 23.60 |1.30e-06| 49.57 |2.80e-12| 7.52 |6.18e-03| 21.40 [4.02¢-06| 54.69 |[1.41e-13| 39.70 [2.96e-10| 41.52 |1.17e-10| 42.07 |8.82¢-11
SHN-2 18.26 |2.03e-05| 29.80 |5.52e-08| 4.62 0.03 9.24 (2.41e-03| 34.23 (4.89¢-09| 11.81 |5.90e-04| 23.98 |9.75e-07| 13.37 |2.56e-04
SHN-4 16.29 |5.69¢-05| 27.50 |1.77e-07| 3.74 0.05 8.00 |4.72e-03| 22.00 |2.73e-06| 2.00 0.16 13.97 |1.86e-04| 2.75 0.10
SA-SHN-1| 8.84 [2.98e-03| 15.44 |8.86e-05| 0.78 0.38 2.19 0.14 18.26 |1.93e-05| 0.01 0.92 11.01 |9.06e-04| 0.14 0.71
SA-SHN-2| 2.19 0.14 1.58 0.21 0.36 0.55 1.51 0.22 14.00 |1.83e-04| 0.15 0.70 7.74 |5.40e-03| 0.01 0.91
SA-SHN-4| 0.01 0.91 0.90 0.34 3.76 0.05 2.35 0.13 0.05 0.82 17.04 |3.67e-05| 1.40 0.24 14.40 |1.47e-04

TABLE VII B. On MUSDBIS8 Dataset

COMPARISON BETWEEN E-MRP-CNN AND OTHER MSVS METHODS ON
MIR-1 K, WHERE “~” MEANS THAT CORRESPONDING RESULTS
WERE NOT PROVIDED WITH

Method Vocal Acc
GNSDR | GSIR | GSAR | GNSDR | GSIR | GSAR
MLRR [43] 3.85 5.63 10.70 4.19 7.80 8.22
DRNN [42] 7.45 13.08 9.68 - - -
ModGD [53] 7.50 13.73 9.45 - - -
U-Net [11] 7.43 11.79 | 10.42 7.45 1143 | 10.41
S-16-1-MIR 11.89 17.80 | 13.60 10.55 14.18 | 13.65
M-99-5-MIR 11.54 17.39 | 13.28 10.25 13.94 | 13.38
TABLE VIII
COMPARISON OF MEDIAN SDR VALUES BETWEEN E-MRP-CNN AND OTHER
MSVS METHODS ON DSD100
Method Vocal Acc
DeepNMF [54] 2.75 8.90
wRPCA [55] 3.92 9.45
NUG [56] 4.55 10.29
BLEND [57] 5.23 11.70
MM-DenseNet [58] 6.00 12.10
S-31-1-DSD 6.15 12.60
M-99-7-DSD 6.42 12.64

was not reported in these compared methods, we only discuss
separation performance. As shown in Tables VII-VIII, the E-
MRP-CNN gave superior performance compared with these
methods.

We compared the E-MRP-CNN with Open-Unmix [44] on
MUSDBI18. Since the E-MRP-CNN is a monaural separation
method, we estimated vocal and accompaniment respectively
from the left-channel and right-channel of the mixture signal
in MUSDBI18. Different from Open-Unmix, which cropped the
input spectrogram to 16 kHz for separation, the E-MRP-CNN
cropped the input spectrogram to 8 kHz to speed up computation.
In addition, the Open-Unmix used stronger data augmentation
methods compared with our simple augmentation methods (gain
and sliding). It also used normalization and input/output scalar
to improve performance, which we did not use.

The results of the E-MRP-CNN and Open-Unmix (mono)
are compared in Table IX, where the results of standard Open-
Unmix (stereo), i.e., using stereo mixture for separation, are
reported for reference. The E-MRP-CNN had lower Params
but much higher FLOPs than Open-Unmix (mono). In the real
environment, Open-Unmix (mono) had similar training and
inferring speed as M-99-6-MUS. For separation performance,
the E-MRP-CNN achieved better results than Open-Unmix
(mono) and Open-Unmix (stereo) in SDR/SIR/SAR for Vocal
and SDR/ISR/SAR for Acc.

We also conducted a statistical significance evaluation on the
E-MRP-CNN and Open-Unmix, as shown in Table X. For both
Vocal and Acc, all p-values were smaller than 0.05, suggesting
that the E-MRP-CNN achieved significant improvement in sep-
aration performance compared with Open-Unmix (mono and
stereo).
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TABLE IX
COMPARISON BETWEEN E-MRP-CNN AND OPEN-UNMIX ON MUSDB18
Computational efficiency Separation performance
Method Params FLOPs Training Inferring Vocal Acc
[M] [G] [bat./s] [bat./s] SDR ISR SIR SAR SDR ISR SIR SAR
Open-Unmix (mono) 7.07 1.20 45.52 146.70 5.57 14.07 12.19 5.98 11.66 19.06 19.62 12.54
Open-Unmix (stereo) 8.89 0.76 118.86 348.25 5.57 14.37 12.48 5.72 11.88 18.95 20.43 12.29
S-17-1-MUS 6.26 266.96 16.19 48.71 6.36 13.61 13.40 6.32 12.99 | 23.00 16.18 14.41
M-99-6-MUS 431 41.00 47.69 159.11 637 | 1208 | 13.68 | 6.05 | 1274 | 2249 | 1573 | 14.07
TABLE X [4] A.J. R. Simpson, G. Roma, and M. D. Plumbley, “Deep karaoke: Ex-
KRUSKAL-WALLIS-BASED STATISTICAL SIGNIFICANCE EVALUATION OF SDR tracting vocals from musical mixtures using a convolutional deep neural
BETWEEN E-MRP-CNN AND OPEN-UNMIX (MONO AND STEREO) network,” in Proc. 12th Int. Conf. Latent Var. Anal. Signal Separation,
2015, pp. 429-436.
Acc Vocal [S] P. Huang, M. Kim, M. Hasegawa-Johnson, and P. Smaragdis, “Joint opti-
Method H-value [ p-value | H-value [ p-value mization of masks and deep recurrent neural networks for monaural source
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