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ABSTRACT

Singing voice separation (SVS) and speaker identification (SI) are two
classic problems in speech signal processing. Deep neural networks
(DNNs) solve these two problems by extracting effective represen-
tations of the target signal from the input mixture. Since essential
features of a signal can be well reflected on its latent geometric struc-
ture of the feature distribution, a natural way to address SVS/SI is to
extract the geometry-aware and distribution-related features of the
target signal. To do this, this work introduces the concept of optimal
transport (OT) to SVS/SI and proposes an improved optimal transport
kernel embedding (iOTKE) to extract the target-distribution-related
features. The iOTKE learns an OT from the input signal to the target
signal on the basis of a reference set learned from all training data.
Thus it can maintain the feature diversity and preserve the latent
geometric structure of the distribution for the target signal. To further
improve the feature selection ability, we extend the proposed iOTKE
to a gated version, i.e., gated iOTKE (G-iOTKE), by incorporating
a lightweight gating mechanism. The gating mechanism controls
effective information flow and enables the proposed method to se-
lect important features for a specific input signal. We evaluated the
proposed G-iOTKE on SVS/SI. Experimental results showed that the
proposed method provided better results than other models.

Index Terms— Optimal transport, optimal transport kernel em-
bedding, gating mechanism, singing voice separation, speaker identi-
fication

1. INTRODUCTION

An important task in deep neural network (DNN) based singing
voice separation (SVS) [1–7] and speaker identification (SI) [8–10]
is to learn useful representations of the target vocal source/speaker
with effective neural layers. Successful representation learning relies
heavily on extracting and selecting the discriminative feature set
that follows the feature distribution of the target source/speaker. In
SVS/SI, the input signal (e.g., a mixture signal for SVS or noisy
speech for SI) is usually transformed into a two-dimensional (or
multi-channel) representation, which is a time-frequency feature set
with all features of the target signal and background interferences
mixed together. Therefore, it is very challenging to extract and select
the specific feature set that follows the underlying distribution of the
target signal.
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The feature extracting operations in most SVS/SI works are
achieved on the basis of matrix multiplication, such as Linear Unit
(LU), Gated LU (GLU) [11], and convolution operator. However,
these simple matrix multiplication operations may not effectively
preserve the feature distribution of the target source/speaker. In our
opinion, the SVS can be considered as a transport problem from the
mixture distribution to a mono-component vocal distribution and the
SI is a matching problem from the input distribution to that of the tar-
get speaker. Therefore, the key to solving SVS/SI is to find a suitable
and effective transport that can maintain the feature distribution of
the target signal after the transportation.

To address this task, we introduce optimal transport (OT) to
SVS/SI. The OT proposed in [12–15] defines an effective geometry-
aware Wasserstein distance. The OT method can measure the dif-
ference between two distributions by using the Euclidean distance
between their optimally transported representations. Based on OT,
optimal transport kernel embedding (OTKE), an effective geometric-
structure-aware feature aggregation method, was proposed in [16].
The OTKE presents a new weighted pooling operation to embed and
aggregate the features with respect to a trainable/learnable reference
set. The reference set, which enables an end-to-end training with
small computational cost, can learn the latent geometric structure
of the target distribution for a specific task. Since OT/OTKE can
measure the distance between different distributions, they can be
potentially used for SVS/SI to match the latent geometric structure
between the input and target feature sets and provide a more suitable
transport from the input features to the target features.

This work proposed an improved OTKE (iOTKE) for SVS/SI
and extended it to a gated version, i.e., gated iOTKE (G-iOTKE), by
applying a lightweight gating mechanism to iOTKE. The proposed
method solves the SVS/SI problem by finding a gated OT from the
input distribution to the target distribution. This is achieved by first
(i) learning and extracting the distribution-related feature set with
iOTKE and then (ii) selecting important and relevant features of a
specific input with the gating mechanism. Different from existing
OTKE [16–18] that aggregates large-size features into fixed and small-
size embeddings, the proposed iOTKE keeps the same size for input
and output feature sets so that there are enough trainable references to
learn the diversity of the target features. For feature selection, we use
a lightweight gating mechanism to control the information flow and
select relevant features, where the gating mechanism can enhance or
weaken a feature in accordance with a specific input. We apply the
proposed G-iOTKE to SVS and SI. Experimental results showed that
the proposed G-iOTKE can effectively improve the performance of
SVS/SI.

2. PROPOSED METHOD

Different sources/speakers in SVS/SI are usually characterized by
different features. Even so, the SVS/SI is proven to be quite challeng-
ing as the essential features that can be used to distinguish different



sources/speakers are hidden in the massive and redundant feature set
of the input mixture signal. To the best of our knowledge, essential
features of a signal can be well reflected on the geometric structure
of its latent distribution. Therefore, this work uses iOTKE to learn
the geometric structure of the target signal. To do this, we first learn
a geometry-aware and target-distribution-related feature set. This
feature set is explicitly used as a “reference set” to realize an optimal
feature transportation for a specific input signal.

2.1. Learning target-distribution-related features with iOTKE

Suppose the embedded feature set of the input feature xt in SVS/SI
is x0 = φ(xt) ∈ Rn×c, where φ is the learnable kernel for kernel
embedding (KE) in iOTKE, n represents the number of features and
c denotes the channel number for each feature. We apply Rectified
LU (ReLU) to x0 to preserve its positive values,

x = ReLU(x0), (1)
where x ∈ Rn×c+ (“+” means non-negative value) is the obtained
non-negative feature set. This above function ensures that the input
for iOTKE is a non-negative and sparse feature set, which is very
useful for general modelling of audio signals [19, 20].

The non-negative feature set x is optimally transported based
on a target-distribution-related feature set z ∈ Rn×c+ learned from
all training data, where z is the “reference set” and has the same
dimension as x. Specifically, to extract features related to the latent
geometric structure/distribution of the target signal, we optimally
transport x to z in accordance with a predefined cost matrix. Formally,
suppose p ∈ Rn+ and q ∈ Rn+ are two discrete distributions of the
mass on x and z, where pi ∈ R+ and qj ∈ R+ are the mass at xi ∈
Rc+ and zj ∈ Rc+, respectively. There are many different ways to
transport the mass from x to z, here we define a pairwise cost matrix
D = [di,j ] ∈ Rn×n+ to penalize different movements/transports,
where di,j represents the cost of moving from xi to zj . With these
notations, the OT between x and z can be defined as the solution for
the following optimization problem

min
X∈Rn×n

+

〈D, X〉 := Tr(DTX), (2)

subject to X1n = p, XT
1n = q,

where 〈D, X〉 denotes the inner product of D and X and Tr denotes
the trace of a matrix. The OT problem in Eq. (2) is computationally
expensive with cubical complexity, in practice, it can be approximated
by the following entropy regularized problem, which has a lower near-
quadratic computational complexity [21, 22]:

X?
γ (x, z) = arg min

X∈Rn×n
+

〈D, X〉 − γE(X), (3)

subject to X1n = p, XT
1n = q,

where E(X) = −
∑
i

∑
jh(Xij), γ ≥ 0, and

h(Xij) =

{
Xij logXij , if Xij > 0

0, otherwise
.

When γ = 0, the entropy regularized problem in Eq. (3) becomes the
problem in Eq. (2).

We solve Eq. (3) with the Sinkhorn algorithm [21]. The Sinkhorn
algorithm computes the OT from x to z using iterative matrix multi-
plications with the help of z, where z is unknown beforehand and will
be learned during the training process. Therefore, the learned feature
set can adapt to the training dataset and match the geometric structure
of target features better. The obtained solution of Eq. (3), denoted
by X?

γ (x, z), is then used to compute the optimal transported feature
OTγz (x),

OTγz (x) := X?
γ (x, z)

T
x. (4)

In this process, the embedded feature set x is transported to a new
feature set OTγz (x) using X?

γ (x, z), which is the solution of the opti-
mization problem in Eq. (3) computed with the learnable reference
set z. Since z is target-distribution-related, the obtained OTγz (x) is
target-distribution-related.

To further stabilize and reduce the training time of iOTKE, we
apply LayerNorm [23] to OTγz (x), i.e.,

xOT = LayerNorm(OTγz (x)), (5)
where xOT is the obtained features optimally transported from x in
accordance with the target-distribution-related feature set z.

2.2. Feature selection with lightweight gating mechanism

For a specific embedded feature x0, the features in the transported
feature set xOT may not all be necessary, since xOT is computed based
on the reference set z which is learned from all training data and
reflects the whole feature geometry/distribution of the training data.
Therefore, we should choose the most important features for x0 from
xOT.

To do this, we introduce a lightweight gating mechanism to
iOTKE. This gating mechanism, as defined in Eq. (6), computes an
element-wise Hadamard product between the input feature set x0 and
the activated features from xOT,

G-iOTKE(x0) = x0 ⊗ σ(xOT), (6)
where ⊗ is the Hadamard product and σ is the nonlinear activation
function used to activate the features. This gating mechanism, without
introducing any trainable parameters, can control effective informa-
tion flow by enhancing or weakening each feature in accordance with
the nonlinear activate function. Intuitively, it enables the proposed
G-iOTKE to select features that are important for distinguishing a
target signal in SVS/SI. Combining Eq. (1), Eq. (5) and Eq. (6), the
proposed G-iOTKE can be formulated as

G-iOTKE(x0) = x0 ⊗ σ(LayerNorm(OTγz (ReLU(x0)))). (7)

2.3. Comparison with existing methods

2.3.1. Comparison with standard OTKE

The iOTKE differs from the standard OTKE [16–18] in two ways.
First, different from the standard OTKE that uses weighted pool-

ing operations to aggregate large features into small ones, the ref-
erence feature set and the output feature set in G-iOTKE have the
same size as the input feature set. The rich reference features enable
G-iOTKE to learn the diversity of the training data which is helpful
in maintaining the geometric structure and distribution of the target
signal. Note that ensuring the same dimension of input and output
feature set is quite important for SVS. This is because in most SVS
frameworks, we need to predict and apply a soft or binary mask to
the time-frequency representation (e.g., magnitude spectrogram). In
this case, the output feature set should be the same size as the input
feature set. In particular, since the input and output feature sets are
of the same size, the proposed G-iOTKE can be widely applied to
many existing DNNs-based audio processing systems as an additional
sublayer and it is compatible with many neural structures (e.g., resid-
ual skip connection) to improve the performance and accelerate the
convergence of DNNs [24].

Second, we design a lightweight gating mechanism for the pro-
posed G-iOTKE. This gating mechanism is effective in improving
the performance of G-iOTKE. In addition, we incorporate ReLU and
LayerNorm to the G-iOTKE. These two operations are simple but
quite effective for feature extraction in SVS/SI. Compared with the
standard OTKE, the only increased parameters in G-iOTKE are the
bias and gain in LayerNorm, which are quite trivial.
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Fig. 1: Frameworks for SVS (left) and SI (right) experiments.

2.3.2. Comparison with GLU
The classic gating mechanism GLU [11] is achieved by two element-
wise linear transformations (see Eq. (10)). Compared with GLU, the
proposed G-iOTKE realizes better feature extracting (embedding)
without using two heavyweight linear projections. Accordingly, it
provides better embedding with far fewer parameters.

3. EVALUATIONS

We evaluated the proposed G-iOTKE for two signal processing ap-
plications: SVS and SI. To verify the effectiveness of G-iOTKE, we
compared it with eight other models, including two OTKE based mod-
els, two GLU based models, and four gated models. These compared
models are detailed as follows.

The OTKE based models are (i) the standard OTKE (denoted by
OTKE) and (ii) the standard OTKE with a ReLU function (OTKER)

OTKE(x0) = OTγz (x0), (8)
OTKER(x0) = OTγz (ReLU(x0)), (9)

where ReLU in OTKER ensures the non-negativity of the input dis-
tribution. Please note that these two OTKE models have input and
output features that are the same size, so that they can be fairly
compared with the proposed G-iOTKE.

The GLU based models are (i) the standard GLU (GLU) [11] and
(ii) the simplified GLU (GLUs):

GLU(x0) = (x0V + c)⊗ σ(x0W + b), (10)
GLUs(x0) = x0 ⊗ σ(x0W + b). (11)

where the standard GLU has two linear element-wise projections W
and V, and b and c are bias vectors. The simplified GLUs, as defined
in Eq. (11), uses only one linear projection.

The four gated models are defined as follows:
G0(x0) = x0 ⊗ z, (12)
G1(x0) = x0 ⊗ σ(OTγz (ReLU(x0))), (13)
G2(x0) = x0 ⊗ σ(LayerNorm(OTγz (x0))), (14)
G3(x0) = x0 ⊗ σ(OTγz (x0)), (15)

where z in Eq. (12) is a simple mask (filter) learned from the training
data. Thus the process of G0 can be considered as applying an
adaptive filtering operation to x0. The models defined in Eqs. (13)-
(15), as compared with Eq. (7), are variations of the proposed G-
iOTKE without using LayerNorm, or ReLU, or any of them.

We implemented the proposed G-iOTKE and other models in
two representative SVS [20] and SI [10] frameworks. As shown in

Table 1: The SVS performance of all models on MUSDB18, where
c is the channel numbers for each feature (i.e., frequency resolution).

Model SI-SDR-BM (dB)
c=400 c=800 c=1600

Baseline (B) 5.93 6.28 6.68
B+OTKE 1.91 2.41 2.71
B+OTKER 4.45 4.94 5.53
B+GLU 1.28 0.77 0.92
B+GLUs 0.28 0.49 0.50
B+G0 4.24 4.61 5.22
B+G1 6.14 6.81 7.41
B+G2 1.80 2.21 2.66
B+G3 1.70 2.33 2.50
B+G-iOTKE 6.15 6.85 7.31

Fig. 1, the G-iOTKE (or other compared models) is used as additional
sublayers in the baseline SVS framework (left) and the SI framework
(right). All models were compared under the same experimental
setting to enable a fair comparison.

3.1. Unsupervised representation learning for SVS

The baseline SVS framework we used was an unsupervised auto-
encoder model proposed in [20]. The encoder in this framework
consists of two one-dimensional strided convolutions with appropriate
zero-padding. We added the proposed G-iOTKE and other models
to the encoder of the baseline framework to verify their effectiveness
(see the left part in Fig. 1). These models are termed B (Baseline)+G-
iOTKE, B+OTKE/OTKER, B+GLU/GLUs, and B+G0/1/2/3.

The database we used was the MUSDB18 [25], which is made of
150 two-channel multi-tracks signals sampled at 44.1 kHz (100 for
training and 50 for testing). Each multi-track includes the vocal and
accompaniment sources. In accordance with [20], all models worked
in three frequency resolutions: c= 400/800/1600, where c is the
frequency resolution. The performances of all models were measured
by SI-SDR-BM, which computes the reconstruction error of vocal
upon a learned representation using informed binary masking (BM).
More details about this measurement can be found in [20].

3.1.1. Comparison of SVS performance
The SVS performances of all models are listed in Table 1. We can see
that the two OTKE based models (B+OTKE and B+OTKER) do not
improve the baseline model but degrade its performance. This result
suggests that simply introducing the OTKE to the baseline framework
is not useful to improve the SVS performance. It is also noticed
that the OTKER provided better performance than the OTKE, which
means that ensuring the non-negativity of the input distribution is
useful for SVS. When comparing the above two OTKE based models
with the proposed G-iOTKE, we can find that the proposed G-iOTKE
significantly improved the SVS performance, which means that the
gating mechanism is quite helpful in improving the SVS performance.

In addition, we can see that the GLU/GLUs and G2/3 had much
lower performance than the baseline model, that is, these models do
not work well in the baseline framework. As seen in Eqs. (14) and
(15), the G2 and G3 models did not use ReLU before OT, i.e., they do
not ensure the non-negativity of representations. Since the baseline
SVS framework tries to learn non-negative representations, the lack
of ReLU in G2 and G3 leads to performance degradation in these two
models.

In particular, we can see that the G1 model provided slightly
lower performance than the proposed G-iOTKE for c = 400/800,
and it had much better performance than G0/2/3, which indicates that
the ReLU and gating mechanism play essential roles in the proposed
G-iOTKE to improve the SVS performance. It is also noticed that
the G-iOTKE was slightly worse than G1 for c=1600, that is, the
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LayerNorm in G-iOTKE did not provide improvement for c=1600.
The reason might be that the learnable parameters in LayerNorm
(including the bias and gain) increase the risk of over-fitting for the
high resolution case of c=1600.

3.1.2. Comparison of parameter amount
We compared the parameter amount of all models. As shown in Fig. 2,
the GLU based models (B+GLU and B+GLUs) had a much larger
parameter amount than other models, especially for c = 1600. This
is because they used two linear projections. The OTKE based models
(B+OTKE and B+OTKER) and the G0/1/3 based models (B+G0/1/3)
had the same parameter amount. The G2 based model (B+G2) had
the same parameter amount as G-iOTKE (B+G-iOTKE), as they both
used LayerNorm. However, since G2 did not use ReLU, its perfor-
mance was much lower than that of G-iOTKE. When comparing the
OTKE based models (B+OTKE and B+OTKER) with the proposed
G-iOTKE (B+G-iOTKE), we can see that the proposed G-iOTKE
only slightly increased the parameter amount.

3.2. Speaker identification (SI) on mobile devices

Speaker identification is a fundamental technology for many mobile-
device applications, such as automation, authentication, and secu-
rity [10]. These application scenarios require lightweight DNNs to
reduce the storage size. To address this issue, Nunes et al. pro-
posed a portable model for SI, called Additive Margin MobileNet1D
(AM-MobileNet1D) [10]. We adopted this model as the baseline SI
framework to evaluate different models (see the right part in Fig. 1).

The AM-MobileNet1D combines MobileNet1D [10, 26, 27] and
additive margin softmax (AM-Softmax) loss function [9, 28]. We
added the proposed G-iOTKE and other models to MobileNet1D and
kept all other components intact. The dataset we used was the well-
known TIMIT [29]. We followed the protocol and setting in [10] to
train all models. The performance of SI was measured by the Frame
Error Rate (FER) and the Classification Error Rate (CER) [10].

The FER and CER results of all models are listed in Table 2,
which also lists the results of some representative SI methods in [8,
16,30–32] for comparison (see the first seven rows). The baseline AM-
MobileNet1D provided lower FER than the existing SI methods [8,
16,30–32]. The OTKE based AM-MobileNet1D slightly degraded the
baseline AM-MobileNet1D for FER, whereas the OTKER slightly
improved the FER of the baseline AM-MobileNet1D. In contrast,
both GLU/GLUs could improve the baseline AM-MobileNet1D. The
G2 and G3 based AM-MobileNet1D also slightly improved the FER
compared with the baseline AM-MobileNet1D, whereas G0 and G1

had degraded performance. By comparing all FER results, we can
see that the G-iOTKE based AM-MobileNet1D achieved the best

Table 2: Speaker identification results on TIMIT.

Model FER(%) CER(%)
SincNet [8] 47.38 1.08
AM-SincNet [30] 28.09 0.36
AF-SincNet [31] 26.90 0.28
Ensemble-SincNet [31] 35.98 0.79
ALL-SincNet [31] 36.08 0.72
CL-SincNet [32] 37.36 1.08
MobileNet1D [16] 26.50 0.57
AM-MobileNet1D [16] 21.30 0.43
OTKE-AM-MobileNet1D 22.41 0.94
OTKER-AM-MobileNet1D 20.52 0.65
GLU-AM-MobileNet1D 20.05 0.58
GLUs-AM-MobileNet1D 20.97 0.58
G0-AM-MobileNet1D 22.61 0.65
G1-AM-MobileNet1D 21.64 0.79
G2-AM-MobileNet1D 20.59 0.65
G3-AM-MobileNet1D 21.03 0.58
G-iOTKE-AM-MobileNet1D 19.74 0.29
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Fig. 3: The evolution of FER for all models over the training epoch.

result for FER. For CER, none of the compared models, including
OTKE/OTKER, GLU/GLUs, and G0/G1/G2/G3 could improve the
baseline AM-MobileNet1D. The best CER result (0.28 dB) was
obtained by AF-SincNet [31]. The proposed G-iOTKE achieved
quite similar performance to this result. These results verified the
effectiveness of the proposed G-iOTKE.

Finally, we showed the FER evolution of all models over the
training epoch. As shown in Fig. 3, the proposed G-iOTKE had lower
FERs than other comparison models for most epochs.

4. CONCLUSIONS
This work introduced optimal transport (OT) to singing voice sepa-
ration (SVS) and speaker identification (SI) and proposed the gated
improved optimal transport kernel embedding (G-iOTKE) to learn
effective representations of the target signal. The proposed G-iOTKE
includes two steps: (1) learning target-distribution-related features
with iOTKE and (2) selecting features with a lightweight gating mech-
anism. The iOTKE extracts latent geometric-aware and distribution-
related features of a target signal with optimal transport on the basis
of a reference set learned from all training data. Therefore, the output
features of iOTKE can maintain the diversity of the input data and
preserve the original geometric structure of the target signal. For
a specific input signal, we use the gating mechanism to control the
information flow and select important features relevant to it. Experi-
mental results showed that the proposed G-iOTKE provided better
results in both SVS and SI experiments than other models. In the
future, we will compare the proposed G-iOTKE with more state of
the art SVS/SI methods.



5. REFERENCES

[1] Y. Li and D. Wang, “Separation of singing voice from music
accompaniment for monaural recordings,” IEEE/ACM Trans.
Audio, Speech Lang. Process., vol. 15, no. 4, pp. 1475–1487,
2007.

[2] Z. Rafii, A. Liutkus, F. Stöter, S. I. Mimilakis, D. FitzGerald,
and B. Pardo, “An overview of lead and accompaniment separa-
tion in music,” IEEE/ACM Trans. Audio, Speech Lang. Process.,
vol. 26, no. 8, pp. 1307–1335, 2018.

[3] Y. Zhang, Y. Liu, and D. Wang, “Complex ratio masking for
singing voice separation,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process., 2021, pp. 41–45.

[4] S. I. Mimilakis, K. Drossos, E. Cano, and G. Schuller, “Ex-
amining the mapping functions of denoising autoencoders in
singing voice separation,” IEEE/ACM Trans. Audio, Speech
Lang. Process., vol. 28, pp. 266–278, 2020.

[5] K. Schulze-Forster, C. S. J. Doire, G. Richard, and R. Badeau,
“Phoneme level lyrics alignment and text-informed singing voice
separation,” IEEE/ACM Trans. Audio Speech Lang. Process.,
vol. 29, pp. 2382–2395, 2021.

[6] X. Ni and J. Ren, “Fc-u2-net: A novel deep neural network
for singing voice separation,” IEEE/ACM Trans. Audio Speech
Lang. Process., vol. 30, pp. 489–494, 2022.

[7] S. Yuan, Z. Wang, U. Isik, R. Giri, J. Valin, M. M. Goodwin,
and A. Krishnaswamy, “Improved singing voice separation with
chromagram-based pitch-aware remixing,” in Proc. IEEE Int.
Conf. Acoust., Speech, Signal Process., 2022, pp. 111–115.

[8] M. Ravanelli and Y. Bengio, “Speaker recognition from raw
waveform with sincnet,” in Spoken Lang. Tech. Workshop, 2018,
pp. 1021–1028.

[9] J. A. C. Nunes, D. Macêdo, and C. Zanchettin, “Additive margin
sincnet for speaker recognition,” in Int. Joint Conf. on Neural
Netw., 2019, pp. 1–5.

[10] J. A. C. Nunes, D. Macedo, and C. Zanchettin, “Am-
mobilenet1d: A portable model for speaker recognition,” in
Int. Joint Conf. on Neural Netw., 2020, pp. 1–8.

[11] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier, “Language
modeling with gated convolutional networks,” in Proc. 34th Int.
Conf. Machine Learning, 2017, pp. 933–941.

[12] G. Peyré and M. Cuturi, “Computational optimal transport,”
Found. Trends Mach. Learn., vol. 11, no. 5-6, pp. 355–607,
2019.

[13] A. Rolet and V. Seguy, “Fast optimal transport regularized pro-
jection and application to coefficient shrinkage and filtering,”
Vis. Comput., pp. 1–15, 2021.

[14] M. A. Schmitz, M. Heitz, N. Bonneel, F. M. N. Mboula,
D. Coeurjolly, M. Cuturi, G. Peyré, and J. Starck, “Wasser-
stein dictionary learning: Optimal transport-based unsupervised
nonlinear dictionary learning,” SIAM J. Imaging Sci., vol. 11,
no. 1, pp. 643–678, 2018.

[15] J. Solomon, F. de Goes, G. Peyré, M. Cuturi, A. Butscher,
A. Nguyen, T. Du, and L. J. Guibas, “Convolutional wasser-
stein distances: efficient optimal transportation on geometric
domains,” ACM Trans. Graph., vol. 34, no. 4, pp. 66:1–66:11,
2015.

[16] G. Mialon, D. Chen, A. d’Aspremont, and J. Mairal, “A train-
able optimal transport embedding for feature aggregation and
its relationship to attention,” in Proc. 9th Int. Conf. Learn. Rep-
resent., 2021.

[17] X. Wei, Y. Gong, F. Wang, X. Sun, and J. Sun, “Learning
canonical view representation for 3d shape recognition with
arbitrary views,” in Int. Conf. Comput. Vis., 2021, pp. 397–406.

[18] Y. Tian, J. Li, and T. Lee, “Transport-oriented feature aggrega-
tion for speaker embedding learning,” in Interspeech, 2022, pp.
316–320.

[19] P. Smaragdis and S. Venkataramani, “A neural network alter-
native to non-negative audio models,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., 2017, pp. 86–90.

[20] S. I. Mimilakis, K. Drossos, and G. Schuller, “Unsupervised in-
terpretable representation learning for singing voice separation,”
in Proc. 28th Eur. Signal Process. Conf., 2020, pp. 1412–1416.

[21] M. Cuturi, “Sinkhorn distances: Lightspeed computation of
optimal transport,” in Proc. Adv. Neural Inf. Process. Sys., 2013,
pp. 2292–2300.

[22] J. M. Altschuler, J. Weed, and P. Rigollet, “Near-linear time
approximation algorithms for optimal transport via sinkhorn
iteration,” in Proc. Adv. Neural Inf. Process. Sys., 2017, pp.
1964–1974.

[23] L. J. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,”
CoRR, vol. abs/1607.06450, 2016.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Comput. Vis. Pattern Recognit. (CVPR),
2016, pp. 770–778.

[25] Z. Rafii, A. Liutkus, F.-R. Stöter, S. I. Mimilakis, and R. Bittner,
“The MUSDB18 corpus for music separation,” Dec. 2017.
[Online]. Available: https://doi.org/10.5281/zenodo.1117372

[26] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,”
CoRR, vol. abs/1704.04861, 2017.

[27] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in
IEEE Conf. Compu. Vis. Pattern Recog., 2018, pp. 4510–4520.

[28] F. Wang, J. Cheng, W. Liu, and H. Liu, “Additive margin soft-
max for face verification,” IEEE Signal Process. Lett., vol. 25,
no. 7, pp. 926–930, 2018.

[29] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G.
Fiscus, and D. S. Pallett, “DARPA TIMIT acoustic-
phonetic continous speech corpus CD-ROM. NIST speech
disc 1-1.1,” p. 27403, 1993. [Online]. Available: https:
//ui.adsabs.harvard.edu/abs/1993STIN...9327403G

[30] J. A. Chagas Nunes, D. Macêdo, and C. Zanchettin, “Addi-
tive margin sincnet for speaker recognition,” in Int. Joint Conf.
Neural Netw., 2019, pp. 1–5.

[31] L. Chowdhury, H. Zunair, and N. Mohammed, “Robust deep
speaker recognition: Learning latent representation with joint
angular margin loss,” Appl. Sci., vol. 10, no. 21, 2020.

[32] L. Chowdhury, M. Kamal, N. Hasan, and N. Mohammed, “Cur-
ricular sincnet: Towards robust deep speaker recognition by
emphasizing hard samples in latent space,” in Int. Conf. Biomet-
rics Special Interest Group, 2021, pp. 1–4.

https://doi.org/10.5281/zenodo.1117372
https://ui.adsabs.harvard.edu/abs/1993STIN...9327403G
https://ui.adsabs.harvard.edu/abs/1993STIN...9327403G

	 Introduction
	 Proposed method
	 Learning target-distribution-related features with iOTKE
	 Feature selection with lightweight gating mechanism
	 Comparison with existing methods
	 Comparison with standard OTKE
	 Comparison with GLU


	 Evaluations
	 Unsupervised representation learning for SVS
	 Comparison of SVS performance
	 Comparison of parameter amount

	 Speaker identification (SI) on mobile devices

	 Conclusions
	 References

