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Abstract—Time-frequency (T-F) masking is an effective
method for stereo speech source separation. However, reliable
estimation of the T-F mask from sound mixtures is a challenging
task, especially when room reverberations are present in the
mixtures. In this paper, we proposed a new stereo speech
separation system where deep networks are used to generate soft
T-F mask for separation. More specifically, the deep network,
which is composed of two sparse autoencoders and a softmax
classifier, is used to estimate the orientations of the target and
interferers at each T-F unit, based on low-level features, such
as mixing vector (MV), interaural level and phase difference
(IPD/ILD). The deep network is trained by a greedy layer-wise
method using a dataset that was generated by convolving room
impulse responses (RIRs) with clean speech signals positioned in
different angles with respect to the sensors. With the trained deep
networks, the probability that each T-F unit belongs to the target
or interferer can be estimated based on the localization cues for
generating the soft mask. Experiments based on real binaural
RIRs and TIMIT dataset are provided to show the performance
of the proposed system for reverberant speech mixtures, as
compared with a model based T-F masking technique proposed
recently.

Index Terms—Deep learning; Deep networks; Source separa-
tion; Soft mask;

I. INTRODUCTION

Speech separation provides a useful front-end for hearing

aids and automatic speech recognition systems. Many meth-

ods have been applied to this problem, such as independent

component analysis (ICA) [1], [2], [3], beamforming [4], and

computation auditory scene analysis (CASA) [5], [6]. Time-

frequency (T-F) masking is an effective method for speech

source separation, where the mask can be derived from various

cues such as mixing vector (MV) [7], interaural phase and

level difference (IPD/ILD) [8] and their combination [9],

based on a Gaussian mixture model (GMM) whose parameters

are estimated iteratively using an expectation maximization

(EM) algorithm. These methods provide a nice probabilistic

framework for incorporating complementary information to

deal with the uncertainties in T-F assignment. However, the

performance of these algorithms is limited by the accuracy of

model-fitting especially when room reverberation is present.

In this paper, we present a new approach for T-F assignment

and mask estimation based on the emerging technique of deep

neural network [10]. The network is trained with the low-

level of features (i.e. MV and ILD/IPD) extracted from a

training set of observed signals. In the separation stage, the

trained network is used to estimate the orientation of the

target and interferers which is further exploited to derive the

source occupation probability (and thereby the mask) at each

T-F unit of the mixture. Our experimental results show that

the proposed method performs significantly better than the

GMM/EM based baseline method [9] in terms of both signal

to distortion ratio (SDR) and perceptual evaluation of speech

quality (PESQ).

The remainder of the paper is organized as follows. Section

II briefly discusses the related works. Section III outlines the

proposed system. Section IV discusses the low-level features to

be used as inputs to the network. Section V presents the details

about the deep network, including its structure, the training

method, and how it is used for separation. Section VI shows

the experiments using real RIRs and TIMIT data before the

conclusion is drawn in Section VII.

II. RELATION TO PRIOR WORK

Several recent works have explored the potential of using

deep neural networks for speech separation. In [11], Wang et

al. proposed a supervised learning approach to monaural seg-

regation of reverberant speech with the features called multi-

resolution cochleagram (MRCG) [12]. In [13], the features

extracted by gammatone filters are used to train the multilayer

perceptron and to generate a binary mask, where target speech

and noise sources from different locations are used as training

sets. The dataset and ground truth i.e. ideal binary mask (IBM)

for training are generated by Praat [14], [15], and the output

of the classifier i.e. the multi-layer perceptron is an estimated

IBM.

Our method is built on the work in [9] where GMM is used

to model the MV and IPD/ILD cues, and the EM algorithm

is used to estimate the model parameters and to derive the

T-F mask. Therefore, stereo source separation problem is also

considered here. Instead of using GMM and EM, however,

we use deep networks to estimate the source occupation

likelihood at each T-F point. More specifically, we use pre-

trained sparse autoencoder to extract high-level features (i.e.

spatial information of the sources) from the T-F representation

of the mixtures and use the softmax regression to generate the

soft mask. In addition, the data set that we used for deep
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networks training is composed of the observed speech signals

from different directions with respect to the sensors.

III. SYSTEM OVERVIEW

Our proposed system consists of the following four stages:

(1) extraction of the low-level features (i.e. MV and ILD/IPD)

(details in Section IV); (2) training of the deep networks

(details in Section V); (3) estimation of the probabilities that

each T-F unit belongs to different sources and generation of

the soft mask (details in Section V); and (4) reconstruction of

the target signal from the soft mask and mixture signal. The

system architecture is shown in Figure 1.

Fig. 1. The architecture of the proposed system using deep neural network
based time-frequency masking for stereo source separation.

As shown in Figure 1, the inputs to the system are the stereo

(left and right) channel speech mixtures. We perform short-

time Fourier transform (STFT) for each channel, and obtain

the T-F representation of the input signals, XL(m, f) and

XR(m, f) where m = 1, · · · ,M and f = 1, · · · , F are the

time frame and frequency bin indices respectively. The low-

level features, i.e. MV and IPD/ILD, are then estimated at each

T-F unit (details in Section 4). Next, we group the low-level

features into N blocks (only along the frequency bins f ). The

block n includes K frequency bins ((n− 1)K + 1, · · · , nK),
where K = F

N . We build N deep networks with each corre-

sponding to one block and use them to estimate the direction of

arrivals (DOAs) of the sources. Through unsupervised learning

and the sparse autoencoder [16] in deep networks, high-level

features (coded positional information of the sources) are

extracted and used as inputs for the output layer (i.e. the

softmax regression) of the networks. The output of softmax

regression is a source occupation probability (i.e. the soft

mask) of each block (through the un-group operation, T-F

units in the same block are assigned with the same source

occupation probability) of the mixtures. Then the sources can

be recovered applying the softmask to the mixtures followed

by the inverse STFT (ISTFT).

The deep networks are pre-trained by using a greedy layer-

wise [17] training method based on a dataset containing

observed speech signals (sources convolved with RIRs) from

different directions with respect to the sensors.

The N deep networks in our proposed system have the same

architecture, and the details about the architecture and training

method can be found in Section V.

IV. THE FEATURES FOR CLASSIFICATION

The quality of speech separation can be improved using

combined features of IPD/ILD and MV [9]. These low-level

features are used to derive high-level features which are easy

to classify through the sparse autoencoder. The MV and the

IPD/ILD cues are derived from the mixtures. The MV [7] can

be derived as

z(m, f) =
W(f)x̃(m, f)

‖W(f)x̃(m, f)‖ (1)

with x̃(m, f) = [XL(m,f),XR(m,f)]T

‖[XL(m,f),XR(m,f)]T‖ , where W(f) is a

whitening matrix, with each row being one eigen vector of

E(x̃(m, f)x̃H(m, f)), the superscript H is Hermitian trans-

pose, and ‖•‖ is Frobenius norm. ILD and IPD are the phase

and amplitude difference between the left and right channel,

and calculated as follows [8].

α(m, f) = 20log10

(∣∣∣∣XL(m, f)

XR(m, f)

∣∣∣∣
)

(2)

φ(m, f) = ∠
(
XL(m, f)

XR(m, f)

)
(3)

where |•| takes the absolute value of its argument, and ∠(•)
finds the phase angle.

Concatenating the MV and ILD/IPD features, a fea-

ture vector can be obtained at each T-F unit, which

is ũ (m, f) =
[
zT (m, f) , α (m, f) , φ (m, f)

]T ∈ R
4.

Then we group all the feature vectors ũ (m, f) into

N blocks (only along the frequency bins). For each

block, we get a 4K-dimensional feature vector u(n,m) =[
ũT (m, (n− 1)K + 1) , · · · , ũT (m,nK)

]T ∈ R
4K , as the

input to the deep networks.

V. THE DEEP NETWORKS

This section discusses how the network used in Section III

is constructed and trained.

A. Architecture of the Deep Network

The deep network we used is shown in Figure 2, which

is composed of one input layer, two hidden layers using

sparse autoencoders [16] and one output layer using softmax

classifier. We choose the sigmoid function as the activation

function, and the number of inputs equals the dimension of

the feature vectors calculated in Section IV. In order to extract

high-level features from low level ones, same as in [18], we

used two sparse autoencoders as the first and second hidden

layer of the proposed deep network. The two hidden layers are

composed of V neuron unit and 1 bias unit. For stereo speech

separation, the target direction/orientation is a natural choice of

the output of the network. We built a softmax classifier which

contains J ranges of directions as the output layer. The output

of each range (unit) sj gives the probability p (y = Qj |u) of

the orientation y of the current input block u belonging to

the rang of Qj , where j is the orientation index as shown in

Figure 3. Note that, we split the whole space to J ranges with

respect to the sensors and assume that target and interferers

154



Fig. 2. The architecture of the deep neural networks in our proposed system.

Fig. 3. The directions of arrivals of the sources are split to J ranges.

are at different ranges. Assuming that the position of the

target in the current input sample remains unchanged, we can

estimate the orientation (that gives the maximum probability)

and the number of sources according to the output vector of the

network (by using a predefined probability threshold, typically

chosen as 0.1), and thus obtain the soft mask from such spatial

information for separation. Each T-F unit in the same block is

assigned the same probability.

B. Training Method

Similar to [18], [19], the training of the deep network is

divided into two stages of pre-training and fine-tuning. In

the pre-training phase, an efficient way to obtain optimized

parameters for the deep network is to use greedy layer-wise

training [17] and the Limited-BFGS (L-BFGS) algorithm [20].

To do this, we train the networks layer by layer, and use

the output of each layer as the input for the next layer. The

unlabeled data which is composed of observed signals (not

speech mixtures, but the individual source convolved with

RIRs) are used to train the two sparse autoencoders, and the

outputs of sparse autoencoder are used to train the softmax

classifier. We use the orientation information of the unlabeled

data to build ground truth for the softmax classifier training.

If the individual source in the observed signals belongs to

rang j, we will set p(y = Qj |u) = 1 while others such as

p(y = Q1|u) are all set to zero. Through the supervised learn-

ing, we can get a nonlinear function set between the observed

signal and the probability - p(y = Qj |u), j = 1, · ··, J . In

greedy layer-wise training, the parameters of each layer are

trained individually while fixing the parameters of the other

layers of the network. After pre-training is completed, we can

get the set of network parameters as the initialized parameters

for the fine-tuning step. In this step, we use back-propagation

algorithm [21] and the same data set used in the pre-training

phase to obtain the global optimized parameters for the whole

deep networks.

VI. EXPERIMENTS

In this section, we evaluate our proposed system and com-

pare it with the GMM/EM baseline [9].

A. Experimental Setting

We use real BRIRs [22] and TIMIT dataset [23] to generate

the training set and test set. As shown in Table I, one advantage

of the BRIRs dataset is that they were measured in rooms with

different acoustic properties which facilitate the comparison of

the system over different conditions [9].

TABLE I
ROOM ACOUSTIC PROPERTIES

Room Type ITDG (ms) DRR (dB) T60 (s)

A Medium office 8.73 6.09 0.32
B Small class room 9.66 5.31 0.47
C Large lecture theatre 11.9 8.82 0.68
D Large seminar room 21.6 6.12 0.89

For each room, we randomly select 8 sentences from two

speakers from TIMIT, convolve each of these sentences with

BRIRs (from −90 ◦ to +90 ◦ with a step of 5 ◦), and use them

as the training set. Therefore, each signal in the training set is

a clean speech signal convolved with RIRs. For the test set, we

randomly select different speakers and 16 different sentences

(8 from female and 8 from male, one female and male speaker

from different dialect regions as target and another two as

interferers) which are then convolved with BRIRs as the

test dataset. The mixture for the test set were generated by

adding the reverberant target and interferer signals which is

equivalent to assuming superposition of their respective sound

fields [9]. Target and interferers were 1.5m away from the

dummy head and had a same height as the dummy head. Even

though all the sources (including both target and interferers)

at different azimuths are recovered in our proposed system,

the performance of the system is reported based on the

quality of the recovered target located at 0 ◦ azimuth, with the

interferers azimuth varied from −90 ◦ to +90 ◦ with a step

of 5 ◦), similar to [9]. The sampling rate was fs = 16kHz.

We used a Hann window of 2048 (128ms) samples with 75%

overlap between the neighboring windows for the STFT. The

frequency grouping parameters K and N are set to 16 and

128. Hence, we use 128 deep networks to generate the soft

mask, with each deep network corresponding to a block. For

each deep network, the input layer includes 64 units and the

output layer includes J = 37 ranges (correspond −90 ◦ to

+90 ◦ with a step of 5 ◦). For the two hidden layers, we use

V = 256 units for both two hidden layers. With the real

BRIRs and TIMIT data, we generated 875 T-F units for each

orientation (totally 32375 T-F units for 37 orientations) for
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training. The learning parameters are set as follows, the weight

decay parameter λ = 1× 10−4, the weight of sparsity penalty

term β = 3, the sparsity parameter ρ = 0.3. The maximum

number of iterations is set to 400. The ground truth for the

softmax classifier training is a 37×M matrix, and M is the

number of time frames. The 37-dimensional vector in the

ground truth represents the orientation of the current sample.

The parameters for the softmax training are set as follows.

The weight decay parameter λ = 1× 10−4, and the maximum

number of iterations is set to 200. In the fine-tuning phase, the

weight decay parameter λ = 3× 10−3. For speech separation

performance evaluation, we considered SDR [24] and PESQ

[25].

B. Experimental Results

We fix the target (random selected speakers) at the azimuth

0 ◦, and the interferer (random selected speakers, different

from the target) at the different azimuth −90 ◦ to +90 ◦ (except

0 ◦) with a step of 5 ◦.

Fig. 4. SDRs comparison between the proposed system and the baseline
method for rooms A, B, C, and D.

Fig. 5. SDRs and PESQs performance comparison among the four rooms.

Fig. 6. A separation example for room D, including the amplitude spectrogram
of the mixture signals, original target source signals, separated target source
signals and soft mask for separation.

Figure 4 presents the SDRs of the separated signals with dif-

ferent DOAs of the interferer and different rooms. Compared

with the baseline, we obtain at least 2 dB improvement in room

B and D, when the interfering speech is placed far away from

the target source. However, we obtain similar performance to

the baseline in room A and C. It can be seen that with different

reverberation times (T60s) and direction to reverberation ratios

(DRRs), the proposed system performs generally more robust

than the baseline method, and the performance of the proposed

system does not decrease as much as the baseline method when

the level of room reverberation increases. Figure 5 presents

the SDRs and PESQs performance comparison for the four

rooms. Similar to [9], it can be seen that, the separation quality

depends on the acoustic parameters T60 and DRR.

Figure 6 shows a separation example for room D, including

the amplitude spectrogram of the mixture signals (Figure 6a),

original target source signals (Figure 6b), separated target

source signals (Figure 6d), and the soft mask for separation

(Figure 6c) (the interferer was located at +15 ◦).

VII. CONCLUSION

We proposed a new localization based stereo speech separa-

tion system using deep networks. Compared with GMM/EM

based algorithm in [9], the deep networks based technique

provide better results in SRD and PESQ.

ACKNOWLEDGMENT

This study was performed when the first author was an

academic visitor in the Center for Video Speech and Signal

Processing, University of Surrey, and he wishes to thank

Qingju Liu, Philip JB Jackson and Atiyeh Alinaghi for provid-

ing help for issues related to the algorithm in [9]. This research

was supported partially by the Natural Science Basis Research

Plan in Shaanxi Province of China (Program No.2014JQ8355).

156



REFERENCES

[1] P. Comon and C. Jutten, Handbook of Blind Source Separation: Inde-
pendent Component Analysis and Applications. New York: Academic
Press, 2010.

[2] A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Anal-
ysis. New York: John Wiley & Sons, 2004, vol. 46.

[3] A. Hyvärinen and E. Oja, “Independent component analysis: algorithms
and applications,” Neural Networks, vol. 13, no. 4, pp. 411–430, 2000.

[4] B. D. Van Veen and K. M. Buckley, “Beamforming: A versatile approach
to spatial filtering,” IEEE ASSP Magazine, vol. 5, no. 2, pp. 4–24, 1988.

[5] D. Wang and G. J. Brown, Computational Auditory Scene Analysis:
Principles, Algorithms, and Applications. New York: Wiley-IEEE Press,
2006.

[6] G. J. Brown and D. Wang, “Separation of speech by computational
auditory scene analysis,” in Speech Enhancement. Berlin Heidelberg:
Springer, 2005, pp. 371–402.

[7] H. Sawada, S. Araki, and S. Makino, “Underdetermined convolutive
blind source separation via frequency bin-wise clustering and permu-
tation alignment,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 19, no. 3, pp. 516–527, 2011.

[8] M. I. Mandel, R. J. Weiss, and D. P. Ellis, “Model-based expectation-
maximization source separation and localization,” IEEE Transactions on
Audio, Speech, and Language Processing, vol. 18, no. 2, pp. 382–394,
2010.

[9] A. Alinaghi, P. Jackson, Q. Liu, and W. Wang, “Joint mixing vector and
binaural model based stereo source separation,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing, vol. 22, no. 9, pp. 1434–
1448, Sept 2014.

[10] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kingsbury, “Deep neural
networks for acoustic modeling in speech recognition: The shared views
of four research groups,” IEEE Signal Processing Magazine, vol. 29,
no. 6, pp. 82–97, Nov 2012.

[11] Z. Jin and D. Wang, “A supervised learning approach to monaural
segregation of reverberant speech,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 17, no. 4, pp. 625–638, May 2009.

[12] J. Chen, Y. Wang, and D. Wang, “A feature study for classification-based
speech separation at very low signal-to-noise ratio,” in Proceedings of
the IEEE International Conference on Acoustics, Speech and Signal
Processing, May 2014, pp. 7039–7043.

[13] Y. Jiang, D. Wang, R. Liu, and Z. Feng, “Binaural classification for
reverberant speech segregation using deep neural networks,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 22,
no. 12, pp. 2112–2121, Dec 2014.

[14] P. Boersma and D. Weenink, “Praat: doing phonetics by computer
(version 5.3.51) [computer program]. retrieved 2 june 2013,” 2009.
[Online]. Available: http://www.praat.org/

[15] P. Boersma, “Praat, a system for doing phonetics by computer,” Glot
International, vol. 5, no. 9/10, pp. 341–345, 2002.

[16] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 35, no. 8, pp. 1798–1828, Aug 2013.

[17] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-
wise training of deep networks,” Advances In Neural Information
Processing Systems, vol. 19, p. 153, 2007.

[18] D. Yu and L. Deng, “Deep learning and its applications to signal
and information processing [exploratory dsp],” IEEE Signal Processing
Magazine, vol. 28, no. 1, pp. 145–154, Jan 2011.

[19] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior,
P. Tucker, K. Yang, Q. V. Le et al., “Large scale distributed deep
networks,” in Advances in Neural Information Processing Systems, 2012,
pp. 1223–1231.

[20] D. C. Liu and J. Nocedal, “On the limited memory bfgs method for
large scale optimization,” Mathematical Programming, vol. 45, no. 1-3,
pp. 503–528, 1989.

[21] Y. Chauvin and D. E. Rumelhart, Backpropagation: Theory, Architec-
tures, and Applications. London: Psychology Press, 1995.

[22] C. Hummersone, “A psychoacoustic engineering approach to machine
sound source separation in reverberant environments,” Ph.D. dissertation,
University of Surrey, 2011.

[23] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, and D. S. Pallett,
“DARPA TIMIT acoustic-phonetic continous speech corpus CD-ROM.
NIST speech disc 1-1.1,” NASA STI/Recon Technical Report N, vol. 93,
p. 27403, 1993.

[24] E. Vincent, R. Gribonval, and C. Fevotte, “Performance measurement
in blind audio source separation,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 14, no. 4, pp. 1462–1469, July 2006.

[25] L. Di Persia, D. Milone, H. L. Rufiner, and M. Yanagida, “Perceptual
evaluation of blind source separation for robust speech recognition,”
Signal Processing, vol. 88, no. 10, pp. 2578–2583, 2008.

157


