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Abstract. Anomaly detection is the task of detecting outliers from nor-
mal data. Numerous methods have been proposed to address this prob-
lem, including recent methods based on generative adversarial network
(GAN). However, these methods are limited in capturing the long-range
information in data due to the limited receptive field obtained by the con-
volution operation. The long-range information is crucial for producing
distinctive representation for normal data belonging to different classes,
while the local information is important for distinguishing normal data
from abnormal data, if they belong to the same class. In this paper,
we propose a novel Transformer-based architecture for anomaly detec-
tion which has advantages in extracting features with global information
representing different classes as well as the local details useful for cap-
turing anomalies. In our design, we introduce self-attention mechanism
into the generator of GAN to extract global semantic information, and
also modify the skip-connection to capture local details in multi-scale
from input data. The experiments on CIFAR10 and STL10 show that
our method provides better performance on representing different classes
as compared with the state-of-the-art CNN-based GAN methods. Exper-
iments performed on MVTecAD and LBOT datasets show that the pro-
posed method offers state-of-the-art results, outperforming the baseline
method SAGAN by over 3% in terms of the AUC metric.

Keywords: Anomaly Detection · Transformer · Generative Advertise
Network

1 Introduction

Anomaly detection is an important field in computer vision. The detection of ab-
normal images plays an increasingly important role due to the growing demand
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in various applications, such as video surveillance, risk management and damage
detection [8, 14]. Current state of the art methods in this area are based on deep
learning methods such as Deep-anomaly [17] and ADCNN [10]. However, the
performance of these methods is limited by the lack of labelled data. On the
one hand, it is hard to collect abnormal images due to unbalanced distribution
of normal and abnormal data. On the other hand, abnormal data is difficult
to be defined clearly [15]. To solve these problems, a number of abnormal de-
tection methods have been proposed based on unsupervised learning which con-
sider anomaly detection as a one-class classification problem [20]. These methods
learn the feature distribution of normal data and the data whose distribution
is substantially different from the learned distribution in terms of a predefined
threshold is regarded as containing abnormal objects.

A recent method for anomaly detection is based on unsupervised learning
with generative adversarial network (GAN) [9]. The adversarial learning process
facilitates the generator to learn normal data distribution [6]. AnoGAN [19] is
the first GAN-based representation learning method for anomaly detection [16].
In EBGAN [25] and Fast-AnoGAN [18], a network is built to learn feature rep-
resentations in a latent space with an inverse of the generator. GANomaly [1]
introduced an encoder-decoder-encoder network for the generator to learn image
representations within the latent space of images. Skip-GANomaly [2] uses an
U-net structure as the generator to improve detection performance. SAGAN [12]
uses an attention module in skip connection to capture additional local infor-
mation. However, due to the limited receptive field induced by the convolution
operation, the aforementioned methods can only model local information but are
limited in capturing long-range information within the data, thus are ineffective
in detecting the abnormal information distributed both locally and globally.

The self-attention mechanism in transformer has been widely used in com-
puter vision tasks, offering state-of-the-art performance. The attention module
in a transformer can associate the input sequence to learn long range informa-
tion globally. ViT [7] firstly applied a transformer to computer vision tasks by
directly processing image as patch sequences. Swin Transformer [13] proposed
a method to calculate the attention in local windows to reduce its computa-
tional complexity. U-shaped transformers which are similar to SwinUnet [4] and
Uformer [23] have also been proposed. These models take advantage of the self-
attention mechanism in capturing long range dependency that CNN lacks for
representation learning.

In this paper, we propose a novel anomaly detection framework to address
the limitation of CNN in modelling the long-range information within the data
by leveraging the strength of the transformer model. We build our model based
on GAN, and introduce the self-attention mechanism to capture long-range in-
formation within the image data. The key idea of our framework is that we build
an Unet-Shaped Encoder-Decoder structure with Transformer-based blocks. A
limitation with the transformer model is that it may ignore local information
while learning long-range dependencies. To address this issue, we propose to
modify the skip-connection for capturing multi-scale information from local fea-
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tures. Experimental results show that our method outperforms state-of-the-art
anomaly detection methods on datasets such as CIFAR10 [11], and STL10 [22]
on outer-class task, LBOT [12] and MVTecAD [3] considering inter-class task,
additionally. The main contributions of this paper are summarized as follows:

– We propose a novel anomaly detection framework AnoTrans which combines
the Transformer-based module with existing GAN-based method to address
the limitation of the CNN encoder used in GAN-based method for modelling
the long range information within image data.

– We design a new method for fusing the global attention with the local at-
tention, which enables the global and local information to be captured si-
multaneously when performing anomaly detection.

– Experimental results on four datasets, CIFAR10, STL10, LBOT and MVTecAD,
respectively, demonstrate the superiority of our method over the state-of-the-
art CNN-based methods in anomaly detection.

2 Proposed Method

2.1 Model Overview

To enhance the feature representation with global information as well as the
local details, we propose AnoTran (Fig. 1) based on SAGAN [12], where an
attention module (i.e., CBAM [24]) is incorporated into the depth-wise CNN-
based encoder of GAN to enhance the latent representation of input images.
To introduce long-range dependency within the representation, we replace the
convolution block by the self-attention module as used in the encoder of the
transformer.

Fig. 1: The structure of our proposed model, where the attention block is used
to replace the convolution module. The left part is the logical composition of the
generator, and the right part is the overall network structure of our model.

In addition, we design a new skip attention connection, which introduces an
attention mechanism to modify skip connections in SAGAN. In our proposed at-
tention connection, the global dependencies captured by the Transformer-based
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module can be used to relate each local feature, so as to enhance the feature
representation of the input image. Moreover, we add a batch normalization in
the beginning of the input, which can mitigate the impact of the overall offset
of each batch of the input data, thus facilitate the generator to learn a better
representation for normal data.

As shown in Fig. 1, our model is composed of a generator and discriminator.
The generator is implemented by a U-shaped encoder-decoder structure which
will be described in detail in Section 2.2. The Transformer-based self attention
module is used to replace the convolution in the encoder of the generator, as dis-
cussed in Section 2.3. The improved skip connection module with self-attention
mechanism is introduced, as discussed in Section 2.4. The loss function used in
our model and the criteria for calculating the anomaly score will be described in
Sections 2.5 and 2.6, respectively. The discriminator which is the same as that
in SAGAN is used in our model to distinguish the label of the extracted latent
representation of the input image.

2.2 U-Shape Generator

To simulate the convolution operation, inspired by [13] and [4], we use a reshape
operation to change the dimension of the feature vector from the transformer.
Patch merging and expanding are applied to change the scales of the vector
obtained from the patch embedding of the input image. The operation retains
the same data as the input features, but with a new specified shape to achieve
the scale transformations.

In our model, the feature vector plays the same role as feature map in the
convolution network. The feature vector has three dimensions B×L×C, where
B is the batch size, L denotes the number of patches in this vector, and C
stands for the dimension of the features in each patch. In other words, L =
Wpatch × Hpatch. After patch merging, the number of patches is decreased to

L′, where L′ =
Wpatch

2 × Hpatch

2 . After the merging, the dimension of the feature
vector is increased to C ′ = 4C. Then, a linear layer is applied to project the
vector to the dimension of 2C. The workflow and data format can be seen in
Fig. 2.

Fig. 2: (a) Transformer-based module in Skip Attention Connection (SAC) which
provides multi-scale information through self-attention. (b) The workflow and
data format in the U-shape Generator.
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2.3 Swin Transformer Block

Transformer captures long-range dependency within image data while increasing
the number of tokens at the same time. When the images are represented in high-
resolution, the tokens may lead to high computational complexity. To reduce the
complexity, we introduce Swin Transformer [13] by replacing the conventional
multi-head self-attention module with shifted windows, and calculating the self-
attention within the local windows. The Swin Transformer blocks in our model
are computed as:

x̂l = W -MSA(LN(xl−1)) + xl−1 (1)

xl = MLP (LN(x̂l)) + x̂l (2)

x̂l+1 = SW -MSA(LN(xl)) + xl (3)

xl+1 = MLP (LN(x̂l+1)) + x̂l+1 (4)

where x̂l and xl represent the outputs of the Window Multihead Self-Attention
(i.e., W-MSA) and the MLP of the l-th block, respectively. x̂l+1 is output of the
Sift Window Multihead Self-Attention (i.e., SW-MSA).

2.4 Skip Attention Connection

The Transformer-based structure offers promising results, as demonstrated in
Section 3. However, we empirically found (in Table 5) that the Transformer-
based U-Generator is not effective in capturing some critical local information
in feature representation. Inspired by SAGAN [12] where the CBAM module is
incorporated into the skip connection to capture local information, we propose
a Skip Attention Connection (SAC) to further improve the performance of our
method.

CBAM is a mixed attention mechanism involving convolution operation which
can be limited in the receptive field. The work in [5] illustrates the benefit of
using positional encoding in a single multi-head self-attention layer. This in-
spired us to employ the SAC as the module in skip-connection to replace the
CBAM module. In the self-attention module, different heads can pay attention
to different pixels and areas in the image via the attention mechanism during
training. Thus, our improved skip-connection can capture the local information
to complement the Transformer-based structure, without being limited by the
convolution receptive field as in CBAM.

As shown in Fig. 2, we incorporate self-attention into the output of the
encoder in each layer to obtain a feature vector. The feature vector can focus on
pixels in different areas in multi-scale by self-attention blocks. The output of each
self-attention block will be sent to an MLP followed by a layer normalization.
Finally, the vector is passed through a GELU activation function and transferred
to the decoder. Therefore, our proposed skip connection block with self-attention
can offer multi-scale local information without using the transforms (e.g. reshape
operation and convolution) as performed in the CBAM module. Our empirical
results in Section 3 show that it performs better than the original CBAMmodule.
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2.5 Loss Function

The aim of our GAN-based anomaly detection method is to train the model on
normal data and correctly reconstruct the normal data on both image and latent
space. On the contrary, the model should fail to reconstruct the abnormal data
as if it is never trained on the abnormal data. Thus we use the loss from [2] in
our model as follows.

Adversarial Loss: Ladv is the standard loss used in GAN to optimize the
generator G and discriminator D in the adversarial process which ensures the
generated image from G to be as realistic as possible with the help of classifica-
tion result from D.

Ladv = Ex∼px
[logD(x)] + Ex∼px

[log(1−D(G(x))] (5)

where Ex∼px
[.] indicates expectation.

Contextual Loss: Contextual loss Lcon is defined as the error between the
generated image G(x) and the input image x, as follows:

Lcon = Ex∼px ||x−G(x)||1 (6)

where || · ||1 is an L1 norm. This loss helps the algorithm learn contextual infor-
mation from images.

Latent Loss: The latent loss aims to reduce the reconstruction loss in latent
representation. We choose the feature in the last layer of D to get the latent
representation. The latent loss Llat is formulated as:

Llat = Ex∼px
||f(x)− f(G(x))||2 (7)

where || · ||2 is an L2 norm, the f(x) and f(G(x)) are the latent representation
of the input image x and the generated image G(x), respectively. The final loss
function is shown as a weighted sum of the loss functions mentioned above.

L = λadvLadv + λconLcon + λlatLlat (8)

where λadv, λcon, and λlat are the weighting parameters chosen empirically in
our experiments.

2.6 Inference

Anomaly score is often used to determine whether a test image is an anomaly
or not. Image with a score higher than a predefined threshold is considered as
an anomaly. We use the method in SAGAN [12] and Skip-Anomaly [2] to obtain
the anomaly score as follows:

A(x) = λR(x) + (1− λ)L(x) (9)

where x represents the test image, A(x) is the raw anomaly score of x, R(x)
is the reconstruction score between x and the generated image x′, L(x) is the
difference between the latent representations of x and x′ which are obtained
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from the discriminator, and λ is the weight that controls the relative importance
of R(x) and L(x) in A(x). After calculating the raw anomaly score for all the
test images in the test set and denoting them as a vector A, we use the equation
below to normalize the scores to the range of [0, 1]. Thus, the final anomaly score
for an individual test image is obtained as:

A′(x) =
A(x)−min(A)

max(A)−min(A)
(10)

3 Experiment

We evaluate our model1 in a way of leave-one-class-out anomaly detection, with
datasets CIFAR10 [11], STL10 [22], LBOT [12] and MVTecAD [3]. We use
SAGAN2 and Skip-Anomaly as baseline methods in our comparison. The area
under the curve (AUC) of the receiver operating characteristic (ROC) is used as
the performance metric.

3.1 Dataset

(a) Examples on the left are from normal data, and
those on the right are abnormal data with red boxes
containing damaged or missing bolts.

(b) Examples in
MVTecAD with slight
abnormal part which can
be detected by SAC

Fig. 3: Examples in the dataset.

CIFAR10: CIFAR10 is a benchmark dataset which consists of color images in
32x32 pixels from 10 classes. We choose one class of images as anomaly and the
other images as normal data. Then we train our model on the normal data and
test on both normal data and abnormal data.
STL10: STL10 is a dataset similar to CIFAR10. The difference between them is
that STL10 has less labeled training data than CIFAR10 in each class. In addi-
tion, image resolution in STL10 is 96×96 pixels. We train our model on STL10
in the same way as CIFAR10.
LBOT: The LBOT dataset is used in [12] which focuses on the inspection of
axle bolts. The dataset includes 5,000 image patches of the train axle bolt status
extracted by the 128×128 overlapping sliding window method. In training, we

1 https://github.com/SYLan2019/Transformer-Gan-Anomaly-Detection
2 https://github.com/SYLan2019/Skip-Attention-GAN
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define the missing or damaged bolts as anomalies. We split the LBOT dataset
into 4,000 training images and 1,000 test images. The training images are all
normal bolt images, and the 1,000 test images contain 500 normal bolt images
and 500 abnormal bolt images.
MVTecAD: MVTecAD is a benchmark anomaly detection method which fo-
cuses on industrial inspection. It contains 5000 images of fifteen different objects
and texture categories. The abnormal images in MVTecAD have partial differ-
ences from the normal ones in terms of details. We select the images in certain
classes as abnormal data and others as normal data.

3.2 Training Details

Our experiments are performed on an NVIDIA GeForce RTX 3090 GPU with
24Gb Memory. In the training process, the objective function is optimized by
Adam optimizer with momentum β1 = 0.5, β2 = 0.999 and initial learning rate
lr = 2 × 10−4. We set λ = 0.1 in Eq. 9 when calculating the anomaly score,
λadv = 1, λcon = 50 and λlat = 1 in Eq. 8 when calculating the loss function.
We use a patch size of 2 × 2 in the patch embedding with positional encoding
and a four-head self-attention. The window size in the windowed attention is set
to 2 with a shift size of 1. Data augmentation is applied to increase the amount
of training data.

Due to the instability of GAN, our Transformer-based model may not always
converge on the dataset. To alleviate this issue, we introduce a training strategy
where in each epoch, we would train the generator once but the discriminator
twice. This strategy can help the model to get a relatively strong discriminator
first, which helps guide the optimization of the generator in the right direction.
The loss function in Fig. 4 shows our model converges faster with this training
strategy.

Fig. 4: Convergence of the loss functions. The left plot shows the loss curve on
the CIFAR10 with cat as the abnormal class, while the right plot shows that our
training strategy can help the model converge faster.

3.3 Encoder of Our Transformer-based Structure

We tested two different self-attention modules of the transformer as our encoder
block, respectively, the self-attention module from classical ViT [7] and the win-
dow attention of Swin Transformer [13]. The results are shown in Table 1. It can
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be seen that the shifted windows in Swin Transformer reduce the complexity
on computation and also improve the performance over the ViT, as the Swin
Transformer performs the self-attention in parallel. In the following experiments,
we use the window attention module of Swin Transformer as the encoder in our
proposed method for its computational efficiency.

Table 1: The average AUC with different
transformer-based blocks

Module dataset Average AUC

self-attention of [7] CIFAR10 0.963
window attention of [13] CIFAR10 0.978

self-attention of [7] STL10 0.946
window attention of [13] STL10 0.982

Table 2: The AUC results on
the LBOT dataset.

Model AUC

GANomaly [1] 0.900
Skip-GANomaly [2] 0.840

SAGAN [12] 0.960
Proposed with SAC 0.996

Table 3: The AUC results on the CIFAR10 dataset.
Model frog bird cat deer dog horse ship truck Average

GANomaly [1] 0.512 0.523 0.466 0.467 0.502 0.387 0.534 0.579 0.496
Skip-GANomaly [2] 0.955 0.611 0.670 0.845 0.706 0.666 0.909 0.857 0.777

SAGAN [12] 0.996 0.957 0.951 0.998 0.975 0.891 0.990 0.980 0.967
Proposed with CBAM module 1.000 0.932 0.977 0.998 0.940 0.941 1.000 0.969 0.970

Proposed with SAC 1.000 0.944 0.960 0.999 0.968 0.949 0.999 0.990 0.976

3.4 Experimental Analysis

We compare our model with Skip-GAnomaly [2] and SAGAN on CIFAR10,
STL10, LBOT and MVTecAD datasets, using the AUC metric. In addition, we
evaluate our model with different skip-connection modules.

Table 3 shows our results on CIFAR10. Our model with modified CBAM
performs better than all the CNN-based models in average score. With SAC,
the proposed method performs even better. Table 4 shows the results on STL10
in which we can see that SAGAN performs better than the CBAM module on
96×96 images. However, the model with SAC offers the best performance which
shows that our proposed SAC can adapt to the resolution change better than
the CBAM module.

Table 4: The AUC results on STL10.
Model bird car cat deer dog horse monkey ship truck Average

SAGAN [12] 0.929 1.000 0.963 0.996 0.859 0.947 0.979 0.999 0.998 0.963
Skip-GANomaly [2] 0.588 0.902 0.556 0.664 0.581 0.726 0.590 0.568 0.770 0.661

Proposed with CBAM module 0.916 0.999 0.937 0.991 0.821 0.922 0.938 0.993 0.997 0.951
Proposed with SAC 0.966 1.000 0.985 0.998 0.942 0.975 0.980 0.999 0.997 0.984

The experimental results on both CIFAR10 and STL10 show that our pro-
posed method performs better in detecting a certain class as an anomaly. This
can be attributed to the long-term dependencies within the image that help
obtain a more accurate feature representation, in which local details are asso-
ciated with global information. In addition, the results on MVTecAD (which
is mainly used for local texture anomalies) are also greatly improved as com-
pared to SAGAN, further demonstrating that our Transformer-based method
outperforms CNN-based methods.
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Table 5: The AUC results on MVTecAD dataset.
Model bottle capsule carpet grid leather nut pill screw brush transistor wood zipper Average
SAGAN 0.873 0.951 0.966 0.918 0.984 0.922 0.806 0.991 0.824 0.832 0.931 0.742 0.896

Skip-GANomaly 0.882 0.869 0.964 0.966 0.955 0.954 0.862 0.976 0.900 0.956 0.930 0.898 0.926
Proposed 1.000 0.988 0.959 0.945 0.928 0.991 0.994 0.992 0.999 0.984 0.769 1.000 0.962

Proposed with SAC 1.000 0.978 0.974 0.938 0.991 0.965 1.000 0.986 0.981 0.989 0.970 1.000 0.981

Table 5 shows the results on the MVTecAD dataset. From this table, we
can see that our proposed Transformer-based method gives better performance
than the SAGAN due to its effectiveness in capturing the long range dependency
in image data. However, the table also shows our proposed method with pure
skip connection gives relatively low accuracy in some types (such as wood in
Table 5). By inspecting the images in these images, we found that the defects
in them are so small that the standard skip connection may miss the subtle
details. In contrast, with the skip connection method described in Section 2.4, the
results can be significantly improved on MVTecAD. Experiments on MVTecAD
and LBOT datasets show that the proposed method outperforms the baseline
SAGAN by over 3% in terms of AUC metric (e.g. see details in Table 2 and
Table 5).

Fig. 5: The heat-map from attention features in our proposed model AnoTrans
and SAGAN.

We also train the model with skip attention connection on LBOT, which
is a real anomaly dataset. The results are shown in Table 2. We can see that
the proposed model with transformer has a stronger representation ability than
the convolution model. Fig. 5 visualizes the attention features on LBOT using
Grad-Cam [21]. We can observe that our Transformer-based method has a wider
horizon on image detection. Compared to the SAGAN which focuses on the local
area when detecting anomalies, our method picks the abnormal area at a larger
scale through the long-range dependency. The result shows that a wider horizon
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with long-range dependency can produce a better representation and locate the
anomaly more precisely considering the semantic of the whole image.

4 Conclusion

In this paper, we have presented a Transformer-based method for anomaly detec-
tion from images. The experiments show that the proposed method outperforms
the CNN-based methods in capturing long-range dependency, and the limited
receptive field of CNN can be effectively mitigated by the self-attention mech-
anism of the transformer. In addition, using the modified skip connection with
self-attention in our Transformer-based encoder can further improve the per-
formance, due to the advantage of skip connection in exploiting the multi-scale
information. Compared with the state-of-the-art CNN-based anomaly detection
methods, our method achieves better results on four datasets evaluated. In the
future, we will further study representation enhancement in anomaly detection
from images.
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