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Multiple Acoustic Source Localization in
Microphone Array Networks

Jielong Yang , Xionghu Zhong, Weiguang Chen , and Wenwu Wang

Abstract—The problem of multiple acoustic source localization
using observations from a microphone array network is investi-
gated in this article. Multiple source signals are assumed to be
window-disjoint-orthogonal (WDO) on the time-frequency (TF)
domain and time delay of arrival (TDOA) measurements are
extracted at each TF bin. A Bayesian network model is then
proposed to jointly assign the measurements to different sources
and estimate the acoustic source locations. Considering that the
WDO assumption is usually violated under reverberant and noisy
environments, we construct a relational network by coding the
distance information between the distributed microphone arrays
such that adjacent arrays have higher probabilities of observing the
same acoustic source, which is able to mitigate the miss detection
issues in adverse environments. A Laplace approximate variational
inference method is introduced to estimate the hidden variables in
the proposed Bayesian network model. Both simulations and real
data experiments are performed. The results show that our pro-
posed method is able to achieve better source localization accuracy
than existing methods.

Index Terms—Acoustic Source Localization, Bayesian Network,
Laplace Approximate Variational Inference, Time-Frequency
Masking, Time-Delay of Arrival.

I. INTRODUCTION

ACOUSTIC source localization (ASL) in a room environ-
ment plays an important role in many speech and audio

applications such as multimedia, hearing aids, hands-free speech
communication, and teleconferencing systems as the location
information can be fed into a higher processing stage for high-
quality speech acquisition, enhancement of a specific speech
signal in the presence of other competing talkers, or directing
a camera towards the acoustic source [1]–[6]. However, it is
a difficult task to provide an accurate position estimate since
the received audio signal can be significantly distorted and its
statistical properties can be changed drastically due to room
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reverberation and noise. The difficulty is further increased when
multiple sources are simultaneously active in the localization
scene. Distributed acoustic sensor networks composed of a num-
ber of randomly deployed microphones or microphone arrays
have been increasingly attractive for ASL due to their higher
flexibility and scalability, and better spatial coverage compared
to a single microphone or microphone array.

In the past, methods based on time-delay of arrival (TDOA)
measurements are extensively employed and studied for ASL
[7]–[16] due to their simplicity and ease of access in many ap-
plications. TDOA measurements can be extracted, for example,
by employing the generalized cross-correlation (GCC) function
[17] or adaptive eigenvalue decomposition (AED) algorithm
[18]. Since each TDOA yields half a hyperholoid of two sheets
which, in the far field, can be approximated by an angular
segment, multiple TDOA measurements from distributed mi-
crophone arrays are usually employed to triangulate a target
position [19], [20]. Such a triangulation can be approximated
by either using a linear intersection (LI) algorithm [21] or an
extended Kalman filter (EKF) [13], [16]. In [22], the authors
consider the 2D source localization problem using TDOA at a
minimal element monitoring arrays in both Cartesian and polar
coordinate systems. However, in the presence of noise and room
reverberation, ghost peaks may present in the GCC function
and spurious TDOA measurements may be collected and the
subsequent triangulation methods can be seriously degraded. In
[23], a TDOA denoising method is proposed such that better
localization performance can be achieved by using TDOA mea-
surements. In [24], a TDOA outlier removal method is proposed
to enhance the localization accuracy. In [25], the authors show
the sufficient and necessary conditions of the uniqueness of
localizing a single acoustic source and propose a geometric
formulation to estimate the sound source using observations
from arbitrarily shaped microphone arrays. However, in [23],
[24] and [25], only one source is active at each time instance.

In a real conversation, multiple talkers can also be simultane-
ously active and, under such a scenario, the received signal is a
mixture of different speech sources. This significantly increases
the complexity of the ASL problem since: i) TDOAs for multiple
sources are no longer easily available; and ii) given the TDOA
measurements for multiple sources, the measurement-to-source
assignment is unknown.

Many methods are proposed to obtain TDOAs for multiple
sources. Knowing that traditional GCC methods may not yield
sharp peaks for TDOAs of multiple sources, a degenerate un-
mixing estimation technique (DUET) [26], [27] is introduced to
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extract the measurement set for multiple sources. In DUET, the
source signals are assumed to be window-disjoint-orthogonal
(WDO) in the time-frequency (TF) domain. Hence, the TF
spectrogram of sources can be considered as separated and the
phase difference of the arrived signal due to each source can be
extracted. Mandel et al. [28] also built a probabilistic models for
phase difference and attenuation ratio information and used an
expectation-maximization (EM) algorithm to find the TDOAs of
multiple sources. However, the EM algorithm needs a burn-in
period to converge to the final estimates. Other multi-source
TDOA estimation methods based on signal separation for local-
ization problem can also be found in [29]–[35].

Various source localization and data association methods are
also studied in the literature. In [36], [37], grid-based meth-
ods are proposed to localize multiple sound sources using the
DOA estimates of each microphone array. In [38], a versatile
blind signal processing framework is proposed, which provides
a unified treatment of both blind signal separation problem
and multichannel blind deconvolution problem. Blind signal
separation is used in [39] to extract DOA measurements and
an intersection point selection scheme is introduced to locate
multiple sources. However, the method does not consider miss
detection issue. In [40], a method called Acoustic Simultaneous
Localization and Mapping (aSLAM) is proposed to simulta-
neously map the 3D positions of multiple sound sources and
to passively localize a moving observer. In this method, the
observer’s spatio-temporal diversity is used to probabilistically
triangulate the source positions. In [41], a multi-view soundfield
imaging method is proposed, which generalize the previous
method from a single array to multiple arrays. In [42], the
authors develop a two stage method and the method uses DOA
estimates of microphone arrays to first estimate association
features that describe how the frequency components of the
captured signals are distributed to the sources, then both DOA
estimates and association features are used to localize sound
sources. In [43], the authors regard the data association problem
as a measurement set partition task, which is further transformed
into a generalized multidimensional assignment problem. The
methods in [42], [43] deal with both the source localization and
the missed detection problem. However, all these methods in
the literature do not consider the location relationships between
microphone arrays.

In the presence of noise and reverberation, and in particular,
when the source is located at far-field, signal to noise ratio
(SNR) and signal to reverberation ratio (SRR) can be low and
the spectrogram is usually smeared and blurred. The WDO
assumption is thus violated. However, it is observed from Fig. 1
that adjacent microphones are highly likely to be able to detect
the same source, and vice versa. Hence, the information of
distance between each pair of sources is essentially impor-
tant to measurement-to-source association. In this work, such
information is coded and exploited such that adjacent arrays
have higher detection probabilities to the same acoustic source,
which is able to mitigate the miss detection issue in the presence
of reverberation. A relational network-based Bayesian network
model is constructed and a Laplace approximate variational
inference method is then introduced to estimate the hidden

Fig. 1. Illustration of the localization scene using a microphone array network.

variables indicating the measurement-to-source associations and
the corresponding source positions.

It is worth mentioning that several source localization meth-
ods focusing on the DOA estimation rather than estimation
of the exact Cartesian (x, y) positions of the sources have
been developed. In [44]–[47], dynamic sources are considered
and a random finite set based Bayesian filtering approach was
presented to track the sources. In [48], binaural cues, interal
time difference and intensity difference were extracted from
a microphone pair, and these observations are compared with
predicted reference values obtained from simulations using
prior knowledge of a catalogue head-related transfer functions
(HRTFs). These reference values are obtained based on the
binaural response of a KEMAR dummy head. The target space
is modeled as a set of subspaces and switches among them with
predefined jump probabilities. In [49], a distributed algorithm
is proposed to estimate DOAs of multiple speech sources. In
[50], an independent component analysis based approach was
introduced to demix the speech mixtures from multiple sources
and a probability hypothesis density filter was employed to track
the DOAs of the sources.

The main contributions of this paper are: i) We develop a
Bayesian-network-based learning method to jointly associate
the TDOAs from each spectrogram bin to different sources and
estimate the source locations; ii) our method considers both the
missed detection problem and the data association problem; and
iii) our method incorporates the distance information among
arrays to improve the localization performance. The rest of this
paper is organized as follows: in Section II, the DUET-based
TDOA measurement extraction is introduced and ASL frame-
work is formulated; in Section III, the inference algorithm is
presented; the performance of the proposed approach is studied
in Section IV. Finally, conclusions are drawn and directions
for future work are discussed in Section V. A list of notations
is summarized in below to illustrate the meaning of variables
and symbols in the measurement extraction and localization
algorithms.

Notations: We use boldfaced characters to represent vec-
tors and matrices. Suppose that A is a matrix, then A(m, ·),
A(·,m), and A(m,n) denote its m-th row, m-th column,
and (m,n)-th element, respectively. The vector (x1, . . . , xN )
is abbreviated as (xi)

N
i=1, or (xi)i if i is running over
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the vector index. We use Cat(p1, . . . , pK), Dir( αKs
, . . . , α

Ks
),

Unif(a, b), Unif(1, . . . , R), Be(g0, h0) and N
(
M, V

)
to

represent the categorical distribution with category probabilities
p1, . . . , pK , the Dirichlet distribution with concentration pa-
rameters α

Ks
, . . . , α

Ks
, the uniform distribution over the interval

(a, b), the uniform distribution over the discrete set {1, . . . , R},
the beta distribution with shape parameters (g0, h0), and the
normal distribution with mean M and covariance V, respec-
tively. We use Γ(·) and Ψ(·) to denote the gamma function and
digamma function, respectively. The notation ∼ means equal-
ity in distribution. The notation p(y | x) denotes a conditional
probability density function of a random variable y conditioned
on x. E is the expectation operator and Eq is expectation with
respect to the probability distribution q. We use I(a, b) and
I(a > b) to denote the indicator function. I(a, b) = 1 if a = b
and 0 otherwise. I(a > b) = 1 if a > b and 0 otherwise. The
notation ‖·‖ denotes the l2 norm, and ones(1,K) is a 1×K
vector with all entries equal to one.

II. PROBLEM FORMULATION AND MODEL

In this section, the problem of multiple acoustic source lo-
calization is formulated. TDOA measurements at each TF bin
across different microphone arrays are estimated and a Bayesian
network is then developed to jointly assign the measurements
to the corresponding sources and estimate the position of each
source.

A. Measurement Extraction Over Distributed Arrays

Assume that N microphone arrays are deployed to receive
the speech signals emitted by K speakers at a discrete time
step t. Let ω be a TF bin index, and Sk = (Sk,ω)ω denotes the
short time Fourier transform (STFT) of the k-th source signal.
Ignoring the effect of noise and reverberation, the signal model
in the TF domain for the i-th microphone of the n-th array is

Zn,i(ω) =

K∑
k=1

an,i(k)e
−jωτn,i(k)Sk,ω, (1)

where an,i(k) =
1

4πrn,i(k)
represents the attenuation with

rn,i(k) denoting the corresponding distance from source k to
the i-th microphone of the n-th array, and τn,i(k) represents
the time-delay of the k-th source signal at the i-th microphone
of n-th microphone pair. According to the WDO assumption
[26], the TF bins are disjoint. Hence, each TF bin carries either
information regarding one of the sources, or simply noise.

Here we consider the case where each array has two micro-
phones. The solution for arrays with more than two microphones
can be extended in a straightforward manner. The ratio of the
TF bins across a microphone pair is given by

Rn(ω) =
Zn,1(ω)

Zn,2(ω)
= an(ω)e

−jωyn(ω), (2)

where an(ω) and yn(ω) are the gain-ratio (GR) and time-delay
of arrival (TDOA) estimates for TF bin ω respectively. Suppose
that the k-th source is active on ω (the contribution of other

sources on this TF bin is thus nil), the GR and TDOA are given
respectively as

an(ω) = |Rn(ω)| = an,1(k)

an,2(k)
� an(k),

yn(ω) =
∠Rn(ω)
−ω = τn,1(k)− τn,2(k) � τn(k), (3)

with | · | and ∠· denoting the amplitude and the phase of the
estimates respectively, and an(k) and τn(k) are the GR and
TDOA information of the k-th source, respectively. Note that the
TF bin index ω can be omitted in (3) as the GRs and TDOAs are
determined by the geometry of the source and the microphone
arrays, and thus the same across different TF bins associated to
a source.

Based on the GR and TDOA parameters, a histogram of all
TF bins can be generated and the TF bins for each source can
thus be clustered and separated in the TF domain. TDOAs for
multiple sources can hence be associated and the position of each
source can be triangulated accordingly. Assume that at the n-th,
for n = 1, . . . , N microphone array, a set of TDOAs yn(ω) =
{yn(1), . . . , yn(Ω)} is obtained by using DUET. Such a TDOA
set contains the source generated TDOAs as well as false TDOAs
when reverberation and noise are considered.

Let lk denote the location of the k-th source. For the mea-
surement generated by the k-th source, its relationship to the
location of the source is given by

yn(ω
k) =

‖lk − pn,1‖ − ‖lk − pn,2‖
c

. (4)

where pn,i, i ∈ {1, 2} is the position of the i-th microphone of
the n-th array and ωk represents that TF bin ω is associated to
source k. Equation (4) shows that the source positions can be
estimated by using correctly assigned measurements. However,
in the presence of noise and reverberation, the spectrogram is
smeared and blurred. The WDO assumption is violated and
such a clustering-based method is no longer valid, i.e., it is
very difficult to associate the TDOAs due to the same source
and consequently, the location estimates can be significantly
deviated from the ground truth.

B. Bayesian Network Model for Measurement-to-Source
Association

ConsiderN microphone arrays monitoringK sound sources.
The ground truth Cartesian coordinates of sources are l =
{lk}Kk=1, which is the random variable we want to estimate.
Let l′ = {l′n}Nn=1 be the locations of arrays. The locations of
the arrays and the number of sources are known. We generate
F frequency bins at each time-frame and use observations of T
time frames and thus in total Ω � T × F time frequency bins
are considered.

Let y = {yn(ω)}n,ω be the collection of the measurements
where yn(ω) is the observation corresponding to the ω-th time
frequency bin of the received signal of array n, and sn(ω) be the
index of the source signal that ω-th time frequency bin of array
n mainly comes from. Then we have the following observation
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model

p(yn(ω) | sn(ω) = k, lk) = N
(
f(lk, l

′
n), σ

2

)
, (5)

where σ is the known observation variance and f(lk, l′n) is a
known nonlinear function and depends on the structure of the
arrays and the observation yn(ω). Two examples of f(lk, l′n) are
as follows:

1) If yn(ω) is the DOA of the ω-th TF bin of
the signal received by array n, then f(lk, l

′
n) �

arctan(
lk(2)− l′n(2)
lk(1)− l′n(1)

).

2) If the number of microphones in each array is 2 and
yn(ω) is the TDOA of the ω-th TF bin of array n. Then

f(lk, l
′
n) �

‖lk − l′n‖
c

, where c is the sound speed.

The signal received by arraynmay come from multiple sound
sources. Let πn = {πn,k}k, where πn,k is the probability of
sn(ω) = k, namely

sn(ω) ∼ Cat (πn) . (6)

In (6), sn(ω) is a cluster index and in our method. We cluster the
observation yn(ω) by estimating sn(ω). In our model, we not
only cluster time-frequency bins of the same array, but also clus-
ter time-frequency bins across different arrays. To achieve this,
we use the same hierarchical model for any n ∈ {1, 2, . . . , N},
given as

πn ∼ Dir (π̃ + α) , (7)

where α is a known hyper parameter and

π̃ � {π̃k}Kk=1 ∼ LogNormal (M, V) (8)

with M and V being known hyper parameters. In (8), the
log normal distribution ensures that all the elements of π̃ are
positive. In (7), we use the Dirichlet distribution since the support
of a Dirichlet distribution can be regarded as the probabilities
of categorical events. Besides, the Dirichlet distribution is the
conjugate prior distribution of the categorical distribution in (7),
which helps to compute the posterior distribution in Bayesian
inference.

Apart from observationsy, we also use the geometry relation-
ships among arrays as arrays have higher probability to observe
the same source when they are closely located. Let zn→m be the
cluster (i.e., source) index array n belongs to under the influence
of array m. Let D(n,m) be the distance between array n and
array m. We assume zn→m | πn ∼ Cat(πn), zm→n | πm ∼
Cat(πm), and βk ∼ Be(g0, h0), where Be(g0, h0) is the beta
distribution with parameters g0, h0 > 0, ∀ k = 1, . . . ,K, and

p(D(n,m) < d | zn→m, zm→n, βzn→m
)

=

{
βzn→m

, if zn→m = zm→n,
ε, if zn→m �= zm→n,

(9)

with ε being a small constant and d is the threshold below which
we believe that two arrays are near to each other. In (9), when
array n and array m observe the same source (i.e., zn→m =
zm→n), the probability of D(n,m) < d ( i.e., array n and array

Fig. 2. Our proposed Bayesian network model.

m are near ) is βzn→m
, which is much larger than ε. Here ε is the

probability of D(n,m) < d when array n and array m observe
different sources. After integrating out zn→m, zm→n, we obtain

p(D(n,m) < d | πn,πm,β) =
K∑
k=1

πn,kπm,kβk. (10)

If D(n,m) < d, we say array n and array m are near to each
other. From (10), it can be observed that the probability that array
n and arraym are close to each other will be high when πn and
πm have larger cosine similarity, which means that σn and σm
have high probability of being the same prior, i.e., array n and
array m have high probability of observing the same acoustic
source. The general Bayesian network model is shown in Fig. 2.
The notations and their corresponding meanings are shown in
Table I.

III. INFERENCE ALGORITHM

Our proposed model tries to associate the observations in each
array and across different arrays and estimate the locations of
sound sources. In this section, we will present our inference
algorithm for our Bayesian network model. Usually two kinds
of methods are used to infer the parameters of the Bayesian
network model, namely Markov Chain Monte Carlo (MCMC)
and variational inference method. MCMC is a sampling-based
method and can achieve global optimal estimation given infinite
number of iterations but it is computationally expensive. For
sound source localization applications, the variational inference
method is employed due to its properties of guaranteed and
fast convergence [51]. However, in our model, priors of some
variables are not conjugate to their corresponding likelihood dis-
tributions, the traditional variational inference method can thus
not be directly used and specific approximations are required.

The hidden random variables we need to estimate are
z � (zn→m)n,m,n�=m, β � (βk)k, π � (πn)n, π̃ � (π̃k)k, l �
(lk)k, and s = (sn(ω))n,ω . Let Υ � {z,β,π, π̃, l, s}. We aim
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TABLE I
SUMMARY OF COMMONLY-USED SYMBOLS

at obtaining the joint posterior distribution of hidden variables
p(Υ | y,D). In the variational inference method, we aim to find
a distribution q(Υ) from a distribution familyF to minimize the
KL-divergence between q(Υ) and p(Υ | y,D). q(Υ) is called
the joint variational distribution. Following [52], we choose F
to be the mean-field distribution family so that the model is
efficient to infer, though we need to sacrifice the optimality.
Distributions in F are distinguished by variational parameters
(i.e., parameters of the joint variational distribution) and the
optimal distribution q(Υ) is found by iteratively updating the
variational parameters. We assign a variational parameter for
each of the hidden variables in Υ, they are

Λ = {φ � (φn→m,k)n,m,n�=m,k,

λ � (λk)k,

γ � (γn,k)n,k,

ξ � (ξk)k,

μ � (μk)k,

ψ � (ψn,k(ω))n,k,ω},
respectively. We aim to find

q∗(Υ) = arg min
q(Υ)∈F

DKL(q(Υ) || p(Υ | y,D)), (11)

whereDKL(· || ·) is the KL divergence. From [52], solving (11)
is equivalent to maximizing the evidence lower bound

L(q) � Eq(Υ)[log p(Υ,y,D)]− Eq(Υ)[log q(Υ)]. (12)

We solve this problem by iteratively updating the variational
parameters according to the updating equations shown below.
The updating of the variational parameters are derived in the
appendix. The pseudo code of our algorithm is shown in Algo-
rithm 1 and the computation complexity of our algorithm in each

Algorithm 1: Proposed Multiple ASL Method (i-th Itera-
tion).

Input: Variational parameters in the (i− 1)-th iteration,
observations y, and distance matrix D.

Output: Variational parameters in the i-th iteration.
for each array n in {1, . . . , N} do

for each array pair (n,m) in {(n,m)}Nm=1do
Update φn→m and φm→n using (16) and (17).

end for
Update ψn using (18).

Update γn using (19).
end for
Update ξ using (24).
Update λ using (13) and (14).
Update μ using (22).
return φ, ψ, γ, ξ, λ, and μ.

iteration is O(N2K), where N and K represent the number of
arrays and sound sources, respectively.

A. Hyper Parameters β

We denote λk as (Gk, Hk) and let the variational distribution
of βk be q(βk) � Be(Gk, Hk). From [52], we have

Gk = Eq(z)

⎡⎣∑
(n,m)

I(D(n,m) < d)I(zn→m, k)I(zm→n, k)

+ g0

⎤⎦
=
∑
(n,m)

I(D(n,m) < d)φn→m,kφm→n,k + g0, (13)
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Hk = Eq(z)

⎡⎣∑
(n,m)

I(D(n,m) ≥ d)I(zn→m, k)I(zm→n, k)

+ h0

⎤⎦
=
∑
(n,m)

I(D(n,m) ≥ d)φn→m,kφm→n,k + h0, (14)

where φn→m,k is defined in (15) as q(zn→m = k) � φn→m,k.
We use βk to denote how dense the k-th group is. From (13)
and (14), it is observed that the variational distribution of β is
related to the group membership of arrays z and the distance
relationships among arrays D. We also have

Eq(βk)[log(βk)] = Ψ(Gk)−Ψ(Gk +Hk), and

Eq(βk)[log(1− βk)] = Ψ(Hk)−Ψ(Gk +Hk),

which will be used in Section III-B.

B. Group Membership Indicators z

We let the variational distribution of the group membership
index z be

q(zn→m = k) � φn→m,k. (15)

From equation (17) in [52], we have

φn→m,k | D(n,m) < d

∝ exp{φm→n,kEq(βk)[log(βk)] + (1− φm→n,k) log ε
+ Eq(πn,k)[log(πn,k)]}, (16)

where ε is a small constant. Thus, log ε < Eq(βk)[log(βk)] < 0
and φn→m,k (i.e., q(zn→m = k)) increases with φm→n,k when
array n and array m are close. Equation (16) holds because
of the mean field assumption and E[I(zm→n, k)] = φm→n,k.
Similarly, we have

φn→m,k | D(n,m) ≥ d
∝ exp{φm→n,kEq(βk)[log(1− βk)]

+ (1− φm→n,k) log(1− ε)
+ Eq(πn,k)[log(πn,k)]}. (17)

Usually the term (1− φm→n,k) log(1− ε) in (17) can be ig-
nored when ε is small.

C. Source Indices s

Let the variational distribution of community index s be
q(sn(ω) = k) = ψn,k(ω). Then, we have

ψn,k(ω)

∝ exp

(
− 1

2σ2
[V ′n,k + (M ′

n,k − yn(ω))2] + Eq(πn)[log(πn,k)]

)
(18)

where Eq(πn)[log(πn,k)] is computed using (20), M ′
n,k �

Eq(lk)[f(lk, l
′
n)], and V ′n,k � Eq(lk)[(f(lk, l

′
n)−M ′

n,k)
2]. Both

M ′
n,k and V ′n,k are computed with the Monte Carlo method and

the samples of lk are drawn from (21).

D. Source Weights π

Let the variational distribution of the mixture weight πn be
q(πn) � Dir(γn), where γn is a K dimensional vector, K is
the number of sources, then we have

γn,k = Eq(π̃k)[π̃k] +

N∑
m=1,m �=n

φn→m,k +
Ω∑
ω=1

ψn,k(ω)

= ξk +

N∑
m=1,m �=n

φn→m,k +
Ω∑
ω=1

ψn,k(ω), (19)

where ξk is obtained from (24). Equation (24) integrates∑
m φn→m,k (which is related to the clustering of array net-

work) and
∑Ω
ω=1 ψn,k(ω) (which is related to the clustering of

observations). Besides, according to the property of the Dirichlet
distribution, we have

Eq[log(πn,k)] = Ψ(γn,k)−Ψ

(
K∑
k=1

γn,k

)
. (20)

E. Position of Sources

We use Laplace approximation method proposed in [53] to
find a Gaussian approximation of the variational distribution
q(lk), given as

q(lk) ≈ N
(
μk,−

1

∇2 log (q(μk))

)
, (21)

Laplace approximations adopts a Taylor approximation around
the maximum a posterior (MAP) point of the target distribution.
Thus μk is given by

μk = arg max
lk

log q(lk), (22)

which can be solved using the gradient descent algorithm.

F. Prior Distribution Parameter π̃

We approximate q(π̃) using a normal distribution and obtain

q(π̃) ≈ N
(
ξ,− 1

∇2 log (q(ξ))

)
, (23)

where ξ is given by

ξ = arg max
π̃

log q(π̃), (24)

which can also be solved using the gradient descent algorithm.

IV. SIMULATION AND EXPERIMENT RESULTS

In this section, we evaluate our method on both simulated
datasets and real recordings, and compare it with the state-of-art
method proposed in [42].
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TABLE II
SIMULATION SETUP AND PARAMETER INITIALIZATION OF ALGORITHM 1

A. 2D Localization in Anechoic Environments

In this simulation, 2D localization and anechoic environment
are considered. Our objective is to evaluate the data association
accuracy and the localization accuracy of our method against
the baseline method proposed in [42] in ideal conditions.

1) Simulation Settings: To generate the dataset, we consider
a 2D space with length and width both 20 decimeters. 40 micro-
phone arrays are randomly deployed in the space and each array
is composed of two microphones. The distance between two
microphones in an array is 2 decimeters. The position of each
array is fixed at the central position of the corresponding micro-
phone pair. We consider two or three sound source scenarios and
the positions of the sound sources are also randomly generated.
The observation of each array is divided into 40 TF bins and
each TF bin belongs to an acoustic source. In this subsection,
the total number of TF bins is 40 and in the simulation of our
method and the baseline method, we use all the TF bins. Here
we let the total number of TF bins be 40 to show the effective-
ness of our method when limited number of observations are
available. In Section IV-B, we will show our method performs
better than the baseline method when the number of TF bins
is much larger. The number and the positions of arrays are
assumed to be known and the number of acoustic sources is also
known.

When performing simulations, The estimated locations of
acoustic sources are randomly initialized in the space in our
simulation. The values of the hyperparameters and parameter
initialization in our model are shown in Table II. The localization
performance is evaluated using the Mean Localization Error
(MLoE), which is defined as follows:

MLoE =
1

K

K∑
k=1

min
j∈{1,...,K}

∥∥∥̂lj − lk

∥∥∥, (25)

where {̂lj}Kj=1 and {lk}Kk=1 are the estimations and the ground
truths of the source locations. For an element lk in {lk}Kk=1, we
choose the closest element to lk in {̂lj}Kj=1 as its estimation and
calculate the mean square error over K sources.

Following [42], the mean association error (MAsE) is em-
ployed to evaluate the performance of the data association.
MAsE counts the percentage of wrong pairwise associations
between all pairs of arrays. In essence, the lower the MAsE is, the

Fig. 3. Demonstration of the estimates approaching the ground truth in a single
implementation. The symbols ‘*’, ‘Trk’ and ‘Esk’ denote the sensors, the ground
truth location of the k-th source and the estimated location of the k-th source in
our algorithm. The three arrows show the trajectories of our estimation results
in different iterations.

less impact an erroneous pair will have on the data-association
and thus to the localization error.

2) Single Experiment Result: In this experiment, we demon-
strate how the estimates approach the ground truth in a single
implementation. Fig. 3 shows the experiment setup and the
result. We use ‘*’, ‘Trk’ and ‘Esk’ to denote the sensors, the
true location of the k-th source and the estimated location of
the k-th source in our algorithm. The three arrows show the
trajectories of our estimation results in different iterations. It can
be observed that even the sources are randomly initialized to the
same position, the algorithm can still converge to the ground
truth quickly.

3) Mean Localization Error: We conduct 50 Monte Carlo
experiments for both two and three source scenarios and show
the localization performances of our method and the baseline
method in Fig. 4. The performances are evaluated using Eq.
(25). The boxes in the figure show the MLoE distributions
of our method and the baseline method. It can be observed
that our proposed method achieves lower MLoE median and
lower MLoE variance in both two and three source scenarios.
In our method, the MLoE medians are 0.07 decimeter and 0.14
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Fig. 4. Mean localization error comparison between our method and the
baseline method under two sources and three sources scenarios. On each box,
the central mark indicates the median, and the bottom and top edges of the
box indicate the 25th and 75th percentiles separately. The outliers are indicated
by ‘+’.

Fig. 5. Mean measurement to source association error comparison between our
method and the baseline method under two sources and three sources scenarios.
On each box, the central mark indicates the median, and the bottom and top
edges of the box indicate the 25th and 75th percentiles separately. The outliers
are indicated by ‘+’.

decimeter for two sources and three sources separately. In the
baseline method, however, the medians are 2.75 decimeter and
3.57 decimeter for corresponding cases. The performance of
our method is better than that of the baseline method due to
two reasons. First, the distance information between arrays are
employed and close arrays have high probability of observing
the same sound sources in our model. The other reason is that
we only use 40 TF bins and the baseline method cannot obtain
accurate histogram based features using such a small number of
observations. The result also shows the robustness of our method
when the number of TF bins is small.

4) Mean Association Error: The performance of data asso-
ciation is shown in Fig. 5. The mean association error (MAsE)
is computed across different arrays. It can be observed that the
MAsE medians of our method are 2% and 6% for two sources
and three sources separately. In comparison, the MAsE medians
of the baseline method are 63% and 55% correspondingly. The
MAsE variances of our method are also significantly lower than
those of the baseline method.

B. 3D localization with Reverberation and Noise

In this dataset, we consider localization of the sources in 3D
space with consideration of room reverberation. By considering
various reverberation time and signal-to-noise ratio, the robust-
ness of our method against model mismatch can be studied. We
do not evaluate the data association performance of our method
and the baseline method on this simulation as the ground truth
of the data associations is not available due to reverberation and
noise.

1) Data Generation Process: We use open source software
Pyroomacoustics1 to generate this simulation dataset. This soft-
ware provides room impulse response (RIR) simulations via the
imaging method. The length, width, and height of the room is set
to be [15, 10, 3]m. 20 arrays are randomly deployed in the room
with height fixed to 1.5 m. The source positions are randomly
generated in the localization scene; the distance between the
wall and the sources are assumed to be larger than 1m. We
perform simulations for both two and three source scenarios.
Various reverberation time (RT60) (i.e., 250 ms, 400 ms, 600 ms)
and signal to noise ratio (SNR) (i.e., 0 dB, 10 dB, 20 dB) are
considered in our experiments.

Pyroomacoustics simulates the sound propagation in the room
using our above settings. We obtain the audio signal received by
each microphone, which is a mixture of multiple speech signals
due to different sources. The audio signals are sampled at 16kHz.
We compute short time Fourier transform (STFT) of the received
signal of each microphone and obtained the phase of each time
frequency bin. For each TF bin, we extract the TDOA and then
convert it to the distance difference. The number of time frames
is 108 with 50% overlap between adjacent frames. At each array,
108× 512 TF bins are available to obtain the observations in
our model. We select the TF bins with amplitude higher than a
predefined threshold so that non-informative bins due to noise
and reverberation can be removed. The localization scenes are
illustrated in Fig. 6.

2) Mean Localization Error Under Different Reverberation
Time (RT60): The estimated locations of acoustic sources are
randomly initialized in the space in our experiment. The values
of the hyperparameters and initial values of some variables are
the same as those shown in Table II except that the number of
iterations is set to 100. The observation association becomes
more difficult when the reverberation is considered. We set the
SNR in our simulation to be 20 dB and conduct 20 MC exper-
iments for different RT60 values, namely {250, 400, 600}ms.
The results are shown in Fig. 7. It can be observed that the
proposed method has lower MLoE median, and is more robust to
the reverberation compared with the baseline method. It is worth
mentioning that both the baseline method [42] and our proposed
method are two stage methods, i.e., extracting the measurements
first and then performing the association. Hence, the association
algorithms in our method and in the baseline method can directly
deal with both DOAs and TDOAs. Besides, when implementing
the baseline method, we use the same observation association
and localization methods as those in [42].

3) Mean Localization Error Under Different SNRs: We use
the same settings as in Section IV-B2. In this subsection, we con-
sider the influence of different SNR values on the performance
of our method and the baseline method. We set the RT60 in
our simulations to be 250ms and conducted 20 MC experiments
for different SNRs in {0, 10, 20}dB. The results are shown in
Fig. 8. It shows that our method has better performance than
the baseline method when SNR are 10 dB and 20 dB. The
performance of our method is worse than the baseline method
when SNR is 0dB which is an extreme challenge environment
that both methods present high localization error.

1[Online]. Available: https://pypi.org/project/pyroomacoustics/0.4.1/
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Fig. 6. Rooms with two (left) and three (right) sources. The boxes represent the boundary of the room. The markers represent either a real sound source or a
virtual source generated by using the imaging method.

Fig. 7. Mean Localization Error (MLoE) under different reverberation time
values. On each box, the central mark indicates the median, and the bottom
and top edges of the box indicate the 25th and 75th percentiles separately. The
outliers are indicated by ‘+’.

C. Real Data Experiment

To further demonstrate the performance of our method in
practice, an experiment with real recordings in a lecture room is
conducted.

1) Recording Environment: The experiment settings are il-
lustrated in Fig. 9. The data set was recorded in a lecture
room of which the size is [10.5, 8.9, 3.9] m. The room has two

Fig. 8. Mean Localization Error (MLoE) under different SNR values. On each
box, the central mark indicates the median, and the bottom and top edges of the
box indicate the 25th and 75th percentiles separately. The outliers are indicated
by ‘+’.

wooden doors and tiled floor. Three walls are concrete blocks
and the other one is mainly glass windows. There are desks
and seats in the room. The measured reverberation time of the
room is about 880 ms. Six omni-directional microphone arrays
are placed on the table with a height of 0.79 m. Two different
types of microphone arrays are employed for recording: three
uniform linear arrays with 4 cm spacing and 4 microphones,
and three uniform circular arrays with 4.67 cm radius and also 4
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TABLE III
MLOE FOR THE BASELINE AND PROPOSED METHOD IN REAL DATA EXPERIMENT

Fig. 9. Real data experiment setting. Top: a schematic of the recording setup;
M1, M3 and M6 are three circular microphone arrays. M2, M4 and M5 are three
linear microphone arrays. The position of a microphone (marked by a dark dot)
in the array is given next to it; L1, L2 and L3 are the positions of three speakers;
the coordinate are shown in meter. Bottom: Real lecture room environment.

microphones. The signals received by the diagonal microphones
in the circular array and the signals from the microphones at two
ends of the linear array are employed for experiments. Three
different talkers (1 male and 2 female) are sitting at the given
position with height of [1.50, 1.39, 1.39] m to speak as acoustic
sources. Five different recordings for both two speaker and three
speaker simultaneously talking scenarios are considered.

2) Mean Localization Error: The values of the hyperparam-
eters and initial values of variables are the same as those in
Section IV-B2. The experiment results are shown in Table III.
It can be observed that our method has better performance than
the baseline method on all real recordings.

V. CONCLUSION

In this paper, we propose a Bayesian network model to
jointly infer the measurement-source association and locations
of multiple speaker sources. The proposed approach is able to

incorporate the information of distances between microphone ar-
rays to reduce the performance degradation due to reverberation
and noise. Experiments on both simulated environments and real
recordings are performed. The mean association error and the
mean location error are employed to evaluate the performance
of the proposed method. The results show the advantage of our
method in assigning TDOAs and localizing sound sources under
different environments. However, the number of sources are
assumed to be known and fixed in this paper. In our future work,
dynamic source and joint detection and localization problem will
be considered and Bayesian network based tracking algorithm
will be studied.

APPENDIX

In the appendix, we show the derivation details of the varia-
tional parameter updating equations.

A. Hyper Parameters β

We use I(·) and I(·, ·) to denote the indicator functions and
they are defined at the end of Section I. The posterior distribution
of βk is

p(βk | D, z)
∝
∏

(n,m)

p(D(n,m) | βk, zn→m = k, zn←m = k)p(βk)

∝
∏

(n,m)

β
I(D(n,m)<d)I(zn→m,k)I(zm→n,k)
k

(1− βk)I(D(n,m)≥d)I(zn→m,k)I(zm→n,k)Be (g0, h0)

= β
∑

(n,m) I(D(n,m)<d)I(zn→m,k)I(zm→n,k)+g0−1
k

(1− βk)
∑

(n,m) I(D(n,m)≥d)I(zn→m,k)I(zm→n,k)+h0−1

= Be
⎛⎝∑

(n,m)

I(D(n,m) < d)I(zn→m, k)I(zm→n, k) + g0,

∑
(n,m)

I(D(n,m) ≥ d)I(zn→m, k)I(zm→n, k) + h0

⎞⎠ .

This posterior distribution is also a beta distribution. The beta
distribution is an exponential family distribution and its natural
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parameter is given by⎛⎝∑
(n,m)

I (D(n,m) < d) I(zn→m, k)I(zm→n, k) + g0,

∑
(n,m)

I(D(n,m) ≥ d)I(zn→m, k)I(zm→n, k) + h0

⎞⎠ .

We further denote λk as (Gk, Hk) and let the variational dis-
tribution of βk be q(βk) � Be(Gk, Hk). From [42], we obtain
(13) and (14).

B. Group Membership Indicators z

The posterior distribution of zn→m is

p(zn→m = k | πn, zm→n,D(n,m) < d, βk)

∝ p(D(n,m) < d | zn→m = k, πn, zm→n, βk)

p(zn→m = k | πn)
= β

I(zm→n,k)
k ε(1−I(zm→n,k))πn,k .

Similarly, we can also derive

p(zn→m = k | πn, zm→n,D(n,m) ≥ d, βk)
∝ (1− βk)I(zm→n,k)(1− ε)(1−I(zm→n,k))πn,k.

We let the variational distribution of the group membership index
z be

q(zn→m = k) � φn→m,k. (26)

From [42], we have

φn→m,k | D(n,m) < d

∝ exp{Eq(βk,zm→n,πn,k)[log(β
I(zm→n,k)
k ε(1−I(zm→n,k))πn,k)]}

= exp{φm→n,kEq(βk)[log(βk)] + (1− φm→n,k) log ε
+ Eq(πn,k)[log(πn,k)]}. (27)

Equation (27) holds because of the mean field assumption and
E[I(zm→n, k)] = φm→n,k. Similarly, we have

φn→m,k | D(n,m) ≥ d
∝ exp{Eq(βk,zm→n,πn,k)[log((1− βk)I(zm→n,k)

(1− ε)(1−I(zm→n,k))πn,k)]}
= exp{φm→n,kEq(βk)[log(1− βk)]

+ (1− φm→n,k) log(1− ε)
+ Eq(πn,k)[log(πn,k)]}. (28)

C. Source Indices s

The posterior distribution of sn(ω) is

p(sn(ω) = k | πn, yn(ω), lk)
∝ p(yn(ω) | sn(ω) = k, lk)p(sn(ω) = k | πn)
= N (f(lk, l′n), σ2

)
πn,k.

Here yn(ω) = nan if array n does not observe frequency ω.
sn(ω) is a discrete variable and follows a categorical distribution
and thus we obtain

p(sn(ω) | πn, yn(ω), lk)

= Cat

⎛⎜⎜⎜⎝
⎛⎜⎜⎝ N

(
f(lk, l

′
n), σ

2

)
πn,k∑K

k=1N
(
f(lk, l′n), σ2

)
πn,k

⎞⎟⎟⎠
K

k=1

⎞⎟⎟⎟⎠ .

We let the variational distribution of community index s be
q(sn(ω) = k) = ψn,k(ω). Then, we have

ψn,k(ω)

∝ exp{Eq(lk,πn)[log(N
(
f(lk, l

′
n), σ

2

)
πn,k)]}

= exp

(
Eq(lk)[log(N

(
f(lk, l

′
n), σ

2

)
)] + Eq(πn)[log(πn,k)]

)
= exp

(
Eq(lk)

[
log

(
1√
2πσ2

exp

(
− (yn(ω)− f(lk, l′n))2

2σ2

))]
+Eq(πn) [log(πn,k)]

)
∝ exp

(
Eq(lk)

[
− (yn(ω)− f(lk, l′n))2

2σ2

]
+ Eq(πn)[log(πn,k)]

)

∝ exp

(
Eq(lk)

[
− (f(lk, l

′
n)−M ′

n,k +M ′
n,k − yn(ω))2

2σ2

]
+Eq(πn)[log(πn,k)]

)
= exp

(
− 1

2σ2
[V ′n,k + (M ′

n,k − yn(ω))2] + Eq(πn)[log(πn,k)]

)
(29)

where Eq(πn)[log(πn,k)] is computed using (20), M ′
n,k �

Eq(lk)[f(lk, l
′
n)], and V ′n,k � Eq(lk)[(f(lk, l

′
n)−M ′

n,k)
2]. Both

M ′
n,k and V ′n,k are computed with the Monte Carlo method and

the samples of lk are drawn from (21).

D. Source Weights π

The posterior distribution of πn is

p(πn | {sn(ω)}Ωω=1, z, π̃)

=

Ω∏
ω=1

p(sn(ω) | πn)
∏
m

p(zn→m | πn)p(πn | π̃)

= Dir

⎛⎜⎝
⎧⎨⎩π̃k +

N∑
m=1,m �=n

I(zn→m, k) +
Ω∑
ω=1

I(sn(ω), k)

⎫⎬⎭
K

k=1

⎞⎟⎠,
where

∑N
m=1,m �=n I(zn→m, k) is corresponding to the cluster-

ing of the distance relation network and
∑Ω
ω=1 I(sn(ω), k) is

corresponding to the clustering of the observations. We let the
variational distribution of the mixture weight πn be q(πn) �
Dir(γn), whereγn is aK dimensional vector,K is the maximum
number of communities, then we obtain (19).
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E. Position of Sources

Assume the prior distributions of sources’ locations are uni-
form distributions. The posterior distribution of lk is then pro-
portional to its corresponding likelihood. We obtain the posterior
distribution of lk:

p(lk | {yn,ω}n,ω, {sn(ω)}n,ω)

∝
N∏
n=1

Ω∏
ω=1

p(yn(ω) | sn(ω), lk)I(sn(ω),k)

=

N∏
n=1

Ω∏
ω=1

N
(
yn(ω); f(lk, l

′
n), σ

2

)I(sn(ω),k)
.

We can see that p(lk | {yn,ω}n,ω, {sn(ω)}n,ω) is not an expo-
nential family distribution. To find q(lk) to minimize (12), we
take the functional derivative of the objective function (12) with

respect to q(lk) and set it to zero, namely
∂L(q)
∂q(lk)

= 0, we obtain

the maximizer as

q(lk) ∝ exp(Eq(s)[log p(lk | {yn,ω}n,ω, {sn(ω)}n,ω)])

∝ exp

(
Eq(s)

[
N∑
n=1

Ω∑
ω=1

log

[
N
(
yn(ω); f(lk, l

′
n), σ

2

)]

I(sn(ω), k)

])

=

N∏
n=1

Ω∏
ω=1

N
(
yn(ω); f(lk, l

′
n), σ

2

)ψn,k(ω)

(30)

Equation (30) is difficult to analyze and thus we use Laplace
approximation method proposed in [53] to find a Gaussian
approximation, given as (21) and (22).

F. Prior Distribution Parameter π̃

The posterior distribution of π̃ = {πk}k is

p(π̃ | π) ∝
N∏
n=1

p(πn | π̃)p(π̃)

=
N∏
n=1

Dir (πn; π̃) LogNormal (M, V) (31)

Similar to Section III-E, we take the functional derivative of the
objective function (12) with respect to q(π̃) and set it to zero,

namely
∂L(q)
∂q(π̃)

= 0 and obtain

q(π̃) ∝ exp

(
N∑
n=1

Eq(πn)[log p(πn | π̃)] + log p(π̃)

)

∝ exp

(
N∑
n=1

Eq(πn)

[
log Γ

(
K∑
k=1

π̃k

)
−

K∑
k=1

log Γ(π̃k)

+

K∑
k=1

(π̃k − 1)Eq[log(πn,k)]

]

−K
2
log(2π)− 1

2
log(det(V))−

K∑
k=1

log(π̃k)

−1

2
(log(π̃)−M)TV−1(log(π̃)−M)

)
. (32)

The last formula holds due to (7) and (8). We approximate
q(π̃) using a normal distribution, given as (23) and (24).
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