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ABSTRACT

Although prototypical network (ProtoNet) has proved to be
an effective method for few-shot sound event detection, two
problems still exist. Firstly, the small-scaled support set is
insufficient so that the class prototypes may not represent the
class center accurately. Secondly, the feature extractor is task-
agnostic (or class-agnostic): the feature extractor is trained
with base-class data and directly applied to unseen-class data.
To address these issues, we present a novel mutual learn-
ing framework with transductive learning, which aims at it-
eratively updating the class prototypes and feature extractor.
More specifically, we propose to update class prototypes with
transductive inference to make the class prototypes as close
to the true class center as possible. To make the feature ex-
tractor to be task-specific, we propose to use the updated class
prototypes to fine-tune the feature extractor. After that, a fine-
tuned feature extractor further helps produce better class pro-
totypes. Our method achieves the F-score of 38.4% on the
DCASE 2021 Task 5 evaluation set, which won the first place
in the few-shot bioacoustic event detection task of Detection
and Classification of Acoustic Scenes and Events (DCASE)
2021 Challenge.

Index Terms— Few shot learning, transductive inference,
sound event detection, mutual learning

1. INTRODUCTION

Deep learning-based sound event detection methods typically
require large amounts of data for training or fine-tuning mod-
els for specific applications [1, 2, 3]. The development of
deep learning models to detect unseen sound classes with only
few labels is insufficient. Recently, studies [4, 5] have pro-
posed to tackle this problem using few-shot learning (FSL),
where a classifier needs to learn to recognize novel classes
given only few samples of each class. In the FSL setting, a
model is first trained on labeled data with base classes. Then,
model generalization is evaluated on few-shot tasks, com-
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Fig. 1. The visualization of the embeddings of the support
set from test audio file by t-SNE [13]. We choose two audios
(‘buk4.wav’ and ‘al.wav’), each audio includes two classes
(POS and NEG). The overall F-score values of ‘buk4.wav’
and ‘al.wav’ are 45.5% and 63.7% respectively.

posed of unlabeled samples from novel classes unseen dur-
ing training (query set), assuming only one or a few labeled
samples (support set) are given per novel class. Prototypi-
cal network (ProtoNet) [6] has been proved as an effective
method for few-shot sound event detection [7, 8]. In DCASE
2021 Challenge Task 5, the official baseline and several solu-
tions [9, 10] submited to this challenge have also employed
ProtoNet. However, there are still two factors that limit the
performance of ProtoNet. Firstly, the class feature of the
support set may be insufficient due to the presence of back-
ground noise and interference in audio data, so that the class
prototypes learned from such support set may not represent
the class center accurately. Figure 1 shows the learned rep-
resentations (embeddings) extracted from ProtoNet, and we
can see that the embeddings of each class are scattered, espe-
cially for the support set of ‘buk4.wav’, which contains more
background noise than ‘al.wav’. As a result, the F-score of
‘buk4.wav’ is much lower than that of ‘al.wav’. Secondly,
ProtoNet trains a feature extractor with the base-class data and
applies the feature extractor to samples from unseen classes.
This style of transfer learning is task-agnostic: the feature ex-
tractor is not learned to be optimally discriminative with re-
spect to the unseen classes. It often performs worse than a
task-specific feature extractor [11, 12].

Following the discussions and observations above, we



propose a mutual learning framework to continuously update
the feature extractor and class prototypes. More specifically,
we firstly train a feature extractor with base-class data and use
the class prototypes to initialize a classifier. We then lever-
age the statistics of unlabelled audio to update the classifier
with transductive inference [14, 15, 16]. In order to obtain
a task-specific feature extractor, we further use the updated
class prototypes as the supervised information to fine-tune
the feature extractor. These processes can be repeated sev-
eral times so that the feature extractor and classifier can be
continuously updated. Our contributions can be summarized
as follows: (1) To solve the problem that class prototypes
cannot represent the true class centers accurately, we propose
to update class prototypes with transductive learning. (2) To
make the feature extractor to be task-specific, we propose
a novel method to fine-tune the feature extractor. (3) Our
mutual learning framework significantly improves the per-
formance of few-shot bioacoustic event detection over the
state-of-the-art methods.

2. PROPOSED METHOD

In this section, few-shot setting, transductive inference and
the mutual learning framework will be introduced.

2.1. Few-shot setting

. .. N
Assume we are given a training set, Xyo5c = {3, ¥, 1,27,

where x; denotes the acoustic feature of example ¢ and y;
denotes associated one-hot label. Let Y3, denote the label
set of this base dataset. The few-shot learning assumes that
we are given a test dataset: Xy = {mi,yi}ﬁvj’f", with a
completely new label set Yi . such that Yiyase N Yiess = 0,
and the test dataset only has a few labelled examples.

2.2. Transductive inference

Transductive inference (TI) is about reasoning from observed,
specific (training) cases to specific (test) cases. In this paper,
the core idea of TI is about leveraging the statistics of the un-
labeled data. More specifically, we adapt the idea from [14],
which maximizes the mutual information (MI) between the
query features and their label predictions for a few-shot task
at inference. It means that the model has seen these unlabeled
data before making final prediction.

2.3. Mutual learning framework

The overview of the mutual learning framework is shown in
Figure 2. In this section, we first introduce how to use class
prototypes to build a classifier and update the classifier with
transductive inference. After that, we discuss how to make
use of the updated class prototypes to fine-tune the feature ex-
tractor. Lastly, we summarize the core idea of mutual learning
framework.
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Fig. 2. The overview of mutual learning framework. Feature
extractor is trained with base class data.

Building classifier For a given few-shot task, with a support
set .S and a query set @), let X denote the random variables
associated with the acoustic features within S U @) and let
Y = {1,2,..., K} be the random variables associated with
the labels. Let fy : X — Z C R denote the encoder (i.e.,
feature extractor) function of a deep neural network, where
¢ denotes the trainable parameters, and Z stands for the set
of embedded features. The encoder is firstly trained from
the base training set Xp,s. using the standard cross-entropy
loss. Next, for each specific few-shot task, we define a clas-
sifier, parametrized by a weight matrix W = (w1, ..., wk] €
RE*d_ The posterior distribution over labels given features
is defined by p;r, = P(Y = k|X = x;; W, ¢). The marginal
distribution over query labels is defined by p, = P(Yy =
k; W, ¢). pii and py, are calculated as formula (1).
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where z; = WJ:’((% denotes L2-normalized embedded fea-
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tures. For each task, weights W are initialized by the class
prototypes of the support set, as follows

Wy = |SL D folmi) )
k| x; €Sk

In this paper, we only need to judge whether the audio frame
is a positive sample, so we set K = 2.
Updating classifier To update the weight matrix W, for each
single few-shot task, we propose a loss function with two
complementary terms: (1) a standard cross-entropy loss on
the support set; (2) a mutual-information loss, which includes
a conditional entropy loss and a marginal entropy loss.

Ly =Xcg - CE — [(Xq; Yy) (3)
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where CFE denotes the cross entropy loss function, y;; de-
notes the true label of the sample in the support set, p;; de-
notes the prediction result. In our experiments, Acg is set
as 0.1. I(Xg;Yy) denotes the mutual information between
the query samples and their latent labels. It is a combination
of two terms, the first term is the empirical label-marginal
entropy, denoted as H (Yg), while the second term is an em-
pirical estimate of the conditional entropy of labels given the
query acoustic features, denoted as H (Yo|Xq). H(Yo|Xg)
aims at minimizing the uncertainty of the posteriors at unla-
belled query samples, thereby encouraging the model to out-
put confident predictions. This entropy loss is widely used
in the context of semi-supervised learning (SSL) [17, 18], as
it models effectively the cluster assumption: the classifier’s
boundaries should not occur at dense regions of the unlabelled
features. The label-marginal entropy regularizer H (Yg) en-
courages the marginal distribution of labels to be uniform.
Note that we only update the weight matrix W in this step,
while the feature extractor is fixed. Our experimental results
also show that simultaneously updating feature extractor f
and weight matrix W does not offer better performance.
Updating feature extractor Previous works [11, 12] have
shown that a task-specific feature extractor works better than
a task-agnostic one, so we expect our feature extractor to be
task-specific. To achieve this, we propose a novel method to
update feature extractor, which uses the updated class proto-
types as supervision information to fine-tune the feature ex-
tractor. In addition, we plan to make use of the predicted
results for unlabelled data. Figure 2 shows the updating pro-
cess of our method. When we finish step 3 and 4, we make
use of W and predicted results of high confidence to fine-
tune the feature extractor f4. The loss function has two terms
as formula (6) shows, including a cross-entropy (CE) loss ac-
cording to pseudo label and a contrastive loss.

Lf:Al*CE-F/\Q*LC (6)

where \; and A, are hyper-parameters. In our experiments,
A1 = Ao = 0.5. The contrastive loss L., is defined as follows.

exp(sim(w[1], Zpos))

Sy eap(sim(w[1], 2,,))

where (1] denotes the first row vector of W, and it repre-
sents the prototype of positive class in our experiments. Z .
denotes the mean of the learned representation of the posi-
tive samples on the support set, and zy,, denotes the learned
representation of negative samples. IV denotes the number of
negative samples. In our experiments, sim stands for cosine

Le = —log( ) @)

similarity. We do not use w|2] for the reason that the negative
sample is randomly chosen. This loss function also can be
viewed as knowledge distillation [19].

Mutual learning According to previous discussion, we can
make use of transductive inference to improve the classifier,
and we can also improve feature extractor by the updated clas-
sifier and pseudo label. After we get a better feature extrac-
tor, we can continue running the previous process to update
the classifier. It means that feature extractor and classifier can
learn from each other, so we name it as mutual learning.

3. EXPERIMENT

3.1. Experimental setups

Dataset The dataset is from DCASE2021 task 5 [20], includ-
ing development and evaluation sets. The development set is
pre-splitted into training and validation sets. The training set
contains about 14 hours of audio, and the validation set con-
tains 5 hours of audio. The evaluation set consists of 31 audio
files acquired from different bioacoustic sources.

Metrics For all the experiments, we use the event-based F-
measure [21] as the evaluation metric, which is one of the
most commonly used metrics for sound event detection.
Preprocessing All the raw audios are down-sampled to 22.05
kHz and applied a Short Time Fourier Transform (STFT) with
a window size of 1024 samples, followed by a Mel-scaled fil-
ter bank on perceptually weighted spectrograms. This results
in 128 Mel frequency bins and around 86 frames per second.
The input frames are normalized to zero-mean and unit vari-
ance according to the training set.

Training We use the same backbone as the baseline [6],
which only includes 4 convolutional layers. The only dif-
ference is that we do not use meta-learning training strategy.
Instead, we directly train feature extractor by the cross en-
tropy loss. Specifically, we use a dense layer after the feature
extractor, and then add a softmax layer to get classification
probability. The Adam optimizer is applied for a total of 15
epochs, with an initial learning rate of 1 x 1073,

Updating classifier The test audio only gives the first five
positive annotations, and negative samples are randomly sam-
pled from unlabelled parts. In order to update the classifier
W, the Adam optimizer is used for a range of 5-30 epochs,
with an initial learning rate of 1 x 10~°. We choose differ-
ent training epoch for different test audio, for the reason that
training epochs will affect the prediction results. The predic-
tion results at the last epoch are used as our final results.

Updating feature extractor We build a new dense layer after
the feature extractor, which only need to do binary classifica-
tion task. The Adam optimizer is used for a total of 5 epochs,
with an initial learning rate of 1 x 10~* for feature extractor,
and 1 x 1073 for the new dense layer.



Table 1. F-score comparison of different methods on DCASE
2021 task5 Development and Evaluation dataset.

Method Dev-set | Eval-set
Baseline [6] 41.48 20.1
Anderson et al. [9] 26.2 35.0
Tang et al. [10] 514 38.3
TI (ours) 51.21 332
TI-ML (ours) 55.26 38.4

Table 2. Ablation study on the effect of each term in formula
(3). CE: Cross entropy loss, I: Mutual information loss.

Method Loss Precision Recall F-score
None 16.89 60.1 26.38
TI 1 57.8 43.9 49.96
CE 55.17 46.07 50.21
I+CE 57.11 46.39 51.21
None 15.5 50.5 23.76
TI-ML | I 69.6 43.6 53.67
CE 52.68 49.1 50.83
I+CE 65.54 4776  55.26

3.2. Experimental results

Table 1 shows the experimental results. Our method achieves
38.4 % F-score on evaluation set, which significantly outper-
forms the baseline [6]. TI denotes we only use transductive
learning to update classifier (class prototypes). TI-ML de-
notes we use mutual learning framework to update classifier
and feature extractor. TI-ML performs better than TI, which
shows the effectiveness of our mutual learning framework.
Anderson et al. [9] also applied ProtoNet, and compared with
baseline [6], their model utilized both per-channel energy nor-
malisation (PCEN) on the front end and three data augmen-
tation methods. In contrast, our approach does not need to
employ these strategies and gets a better result. In addition,
Tang et al. [10] got a very close result with us on the evalu-
ation dataset, but they used a 12-layer ResNet pre-trained on
AudioSet [22] as the backbone.

3.3. Ablation study

In this part, we discuss the influence of transductive learning
and mutual learning. The experiments were carried out on the
development set.

Influence of each term on formula (3) We now assess the
impact of each term in formula (3). The results are reported
in Table 2. We observe that integrating the two terms in our
loss consistently outperforms any other configuration. None
indicates that we do not update classifier W, otherwise we di-
rectly use the class prototypes to initialize the classifier, and
then use it to predict results. We first analyze their effect on
transductive inference (TI). If we do not update the classifier,

Table 3. Ablation study on the effect of iterations on mutual

learning.
Method Iterations Precision Recall F-score
0 57.12 46.39 51.21
1 65.54 47.76 55.26
TI-ML 2 72.50 43.38 54.28
3 69.53 43.68 53.66

the F-score is 26.38%. The performance is lower than base-
line [6] for the reason that we do not use the meta-learning
training strategy. On the contrary, when we use either cross
entropy loss or mutual information loss to update the clas-
sifier, the performance will be significantly improved. We
can find that only using cross-entropy loss brings improve-
ment. It proves that insufficient support set leads to the prob-
lem that class prototypes cannot represent the true class cen-
ter, because class prototypes cannot even properly classify the
support set. Secondly, we analyze their effect on the mutual
learning (TI-ML). If we use the classifier which is not updated
to fine-tune feature extractor, we will get the worst results. If
we only use the cross entropy loss to update the classifier, it
brings a small improvement. Compared with the cross en-
tropy loss, the mutual information loss has more advantages
on mutual learning. The best results can be obtained when
both two terms are used.

Influence of each term on formula (6) To fine-tune the fea-
ture extractor, we devise a loss function as shown in (6) which
includes a cross the entropy loss and a contrastive loss. If we
only use the cross entropy loss, the result is 51.64%. If the
contrastive loss is used alone, the result is 51.06%. The best
result (55.26%) can be obtained when both are used, which
shows that these two loss terms are both important.
Influence of iterations Table 3 reports the impact of iter-
ations for mutual learning. Here, the iteration equals to O
means we do not update the feature extractor. Experimental
results indicate updating it only once offers the best F-score.
We find that the performance tends to decline when the num-
ber of iterations increase, one of the reasons is that the number
of negative samples is far more than that of positive samples
in this dataset, which makes the model learn more informa-
tion about negative samples, so the result shows higher False
Positives (FP) rate.

4. CONCLUSIONS

In this paper, we proposed a mutual learning framework with
transductive inference to continuously improve the ability of
feature extractor and classifier. Our method won the first
place in the DCASE 2021 Challenge Task 5, with a F-score of
38.4%. In the future, we will further improve the performance
of our systems. The source code is released.’

"https://github.com/yangdongchao/DCASE2021Task5
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