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Abstract—This work aims to temporally localize events that
are both audible and visible in video. Previous methods mainly
focused on temporal modeling of events with simple fusion of
audio and visual features. In natural scenes, a video records not
only the events of interest but also ambient acoustic noise and
visual background, resulting in redundant information in the raw
audio and visual features. Thus, direct fusion of the two features
often causes false localization of the events. In this paper, we
propose a co-attention model to exploit the spatial and semantic
correlations between the audio and visual features, which helps
guide the extraction of discriminative features for better event
localization. Our assumption is that in an audio-visual event,
shared semantic information between audio and visual features
exists and can be extracted by attention learning. Specifically,
the proposed co-attention model is composed of a co-spatial
attention module and a co-semantic attention module that are
used to model the spatial and semantic correlations, respectively.
The proposed co-attention model can be applied to various
event localization tasks, such as cross-modality localization and
multimodal event localization. Experiments on the public audio-
visual event (AVE) dataset demonstrate that the proposed method
achieves state-of-the-art performance by learning spatial and
semantic co-attention.

Index Terms—Audio-visual, event localization, cross-modal, co-
attention, deep learning.

I. INTRODUCTION

LOCALIZING events in a video is a focused problem in
computer science and has wide applications in various

domains, such as intelligent surveillance and scene understand-
ing [1, 2]. To tackle the ambiguity and challenges caused by
single-modal event localization, the concept of an audio-visual
event was recently developed, which defines an event as both
audible and visible in a video [3]. In this paper, we tackle
the problem of audio-visual event localization with two types
of tasks: the cross-modality localization (CML) task and the
multimodal event localization (MMEL) task. The CML task
predicts the temporal event boundary in one modality with an
input segment of the other modality. The MMEL task predicts
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Fig. 1. Illustration of two tasks of the audio-visual event localization
problem: cross-modality localization (CML) and multimodal event localization
(MMEL). In the CML task, the temporal boundary of an event in one modality
is localized an input segment of the other modality, as shown in (a). In the
MMEL task, each video segment is assigned with an event category, as shown
in (b). BG means background.

event categories for each video segment with both audio and
visual signals. Examples of the two tasks are shown in Fig. 1.
It should be noted that both CML and MMEL tasks deal with
the temporal localization problem. Unless otherwise indicated,
the term “localization” refers to “temporal localization” in the
following text.

Previous methods [3–5] mainly focused on the temporal
modeling of audio-visual events with the fusion of audio and
visual features and ignored the internal correlations between
audio and visual features. Although audio-guided visual at-
tention has been considered to extract visual features, such an
attention mechanism is not considered for the audio side. Since
much redundant information is contained in a video due to
ambient acoustic noise and visual background, it is important
to extract discriminative features from both audio and visual
modalities for better event localization. In addition, the se-
mantic relationship between audio and visual features has not
been well exploited in previous methods. To localize an event
that is both audible and visible, it is also important to extract
shared semantic information between the two modalities.

This paper aims to localize audio-visual events in a video
by developing new strategies for fusing audio and visual
information. Inspired by findings in prior psychological and
biological studies [6, 7] that the spatial and semantic coordi-
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nation between hearing and vision is an important mechanism
for human perception of the real world, we argue that the
modeling of the spatial and semantic correlations between
the audio and visual modalities is critical for reliable event
localization. For modeling the spatial correlation, while audio
features provide spatial attention for encoding discriminative
visual features, the encoded visual features in the region of
attention can in turn help encode discriminative audio features
that are distinct from background noise. For example, in a
noisy street, when a person focuses on a driving car, his/her
attention to hearing would be to the sound generated by the car
compared to other ambient noises. For modeling the semantic
correlation, the semantic information encoded by the visual
modality and the audio counterpart should be consistent for
an audio-visual event. For example, an event of a car driving
happens in a video only when both the appearance and the
sound of a car occur.

Technically, we develop an audio-visual event localization
framework in which a novel co-attention model is proposed
for modeling the mutual correlations between audio and visual
modalities. The proposed co-attention model (Section III-B)
includes two modules: the co-spatial attention (CSPA) module
and the co-semantic attention (CSEA) module, which work
in parallel and model the spatial and semantic correlations
between audio and visual features, respectively. Specifically,
the CSPA module embeds audio and visual features into a
common space to learn spatial attention for visual features,
which are then used to learn attention for audio features.
The CSEA module augments the shared semantic information
within audio and visual features by feature mapping between
the two modalities. The output features from the proposed co-
attention model effectively exploit the spatial and semantic
correlations between the audio and visual modalities. After
temporal encoding via recurrent neural networks, the encoded
features are applied to both CML and MMEL tasks, as
described in Section III-D and III-E. With the proposed co-
attention model, our method achieves state-of-the-art perfor-
mance for both tasks on a public audio-visual event dataset.

In summary, the main contributions of this work include the
following:
• A novel co-attention model is proposed to exploit spa-

tial and semantic correlations between audio and visual
modalities.

• A unified end-to-end deep framework is developed to
solve various tasks of audio-visual event localization.

• The proposed method achieves state-of-the-art perfor-
mance on various tasks in a public audio-visual event
dataset.

II. RELATED WORKS

A. Audio-Visual Event Localization

The task of event localization aims to temporally localize
events in videos. Previous event localization methods [8, 9]
mainly used sound signals to localize whether an event oc-
curred. To tackle the limitations of existing event localization
methods based on a single audio or visual modality, the
problem of audio-visual event localization [3] was introduced

recently, which aims to detect events that are both audible and
visible in a single video. Tian et al. [3] proposed using audio
information to guide visual features for spatial localization.
Lin et al. [4] used the dual seq2seq method to learn the
temporal dependence of audio and visual features. Wu et al. [5]
proposed using the global event feature as a reference for lo-
calizing audio-visual events. Most of the existing audio-visual
event localization methods focus on the temporal modeling
of audio-visual modalities, and few have studied the mutual
relationship between the two modalities.

Different from the previous methods, we propose to jointly
model spatial and semantic relationship between the audio and
visual modalities for better event localization.

B. Audio-Visual Learning

Previous work on audio-visual learning attempts to fuse
or embed audio and visual features [10, 11] and learn the
dependencies between audio and visual features [12–14] for
various tasks such as i) audio-visual representation learning
[10–12, 15, 16] and ii) audio-visual sound source localization
[11, 17–23].

Audio-visual representation learning. Aytar et al. [15]
uses the natural synchronicity of audio-visual streams in
videos to design a visual teacher network to learn audio rep-
resentations from unlabeled videos. Arandjelovic and Zisser-
man [10] introduced an audio-visual correspondence task that
learns both audio and visual representations in an unsupervised
manner. In addition, several works have temporally sampled
audio and visual modalities, thereby using self-supervised
learning for audio and visual modalities to learn the temporal
correspondence between the two modalities [10–12]. Owens
and Efros [11] used self-supervised learning to predict whether
video frames and audio are temporally aligned.

Audio-visual sound source localization. Zhao et al. [21]
introduced the PixelPlayer system to take advantage of the
natural synchronization of audio and visual modalities and to
learn to spatially locate the image region that produced the
sound. Senocak et al. [22] proposed using audio information
to guide sound source localization in visual scenes and built
a sound source localization dataset.

Related to the above work, we have also considered how
to learn the dependencies between audio and visual features.
Specifically, we focus on modeling their spatial and semantic
correlations with attention learning for event localization.

C. Attention Learning

The attention mechanism can be understood by comparing
it to the human visual system, which selectively focuses on a
part of all information while ignoring other visible information
[24]. For different tasks, the attention mechanism can learn
to focus on the most important part of the task. Recently,
attention mechanisms have shown great effectiveness in many
areas, such as computer vision [25], audio classification and
tagging [26–30], natural language processing [31], and visual
question answering [32]. Hu et al. [33] proposed reweighting
semantic features in the feature channel dimension, and Woo et
al. [34] proposed attention modules on semantic features based
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Fig. 2. Illustration of the proposed audio-visual event localization framework. The input is the audio and visual signals in synchronized audio-visual video.
The co-attention model is proposed to learn both spatial and semantic correlations between audio and visual features and can be directly applied to solve the
CML task (b) and the MMEL tasks (c).

on [33]. Chen et al. [35] proposed incorporating channel-wise
and spatial attention for image captioning. Vaswani et al. [31]
proposed a self-attention mechanism to solve the problem of
machine translation. Lu et al. [36] proposed an attention model
for visual question answering by jointly modeling images and
question attention.

Different from previous works that mainly learned attention
for single modal data such as images or texts, we perform
attention learning with multimodal data of audio and visual
signals. To address the modality gap, we first map the audio
and visual features into a common feature space and then
exploit the spatial and semantic correlations between the two
modalities for the extraction of discriminative features.

III. METHOD

A. Preliminaries

Task definition. Given a video of T seconds, the audio and
the corresponding visual signals are denoted as (At, Vt )

T
t=0.

For the task of cross-modality localization (CML), given a
segment of signal from one modality as input, the goal is to
predict a vector of Y r = [yr1, y

r
2, . . . , y

r
T ], y

r
t ∈ {0,1}, indicating

the event relevance at each segment of the other modality.
For the task of multimodal event localization (MMEL), given
synchronized audio and visual signals as input, the goal is
to predict a vector of event category Y e = [ye1 , y

e
2 , . . . , y

e
T ]

for each segment. The MMEL task has two modes: weakly
supervised event localization (WSEL) and supervised event
localization (SEL). For SEL, the label of the event category is
given for each segment during the training process, while for
WSEL, only video-level event labels are provided.

Overall Architecture. The overall architecture of the pro-
posed framework is demonstrated in Fig. 2 (a). As shown
by the information flow, two convolutional neural networks
(CNN) are used to extract audio and visual features Fa

t and Fv
t

from a segment of audio and visual signals At and Vt , respec-
tively. The core component of the framework is a co-attention
(CA) model proposed in this work for exploring spatial and
semantic correlations between the audio and visual features.
Long short-term memory (LSTM) networks are utilized to
capture the temporal characteristics of the audio and visual
features (La1

t , Lv1
t ) and (La2

t , Lv2
t ) after the CSPA and CSEA

modules, respectively. The CML task in Fig. 2 (b) and the
MMEL task in Fig. 2 (c) are trained separately, with the same
input from feature pairs of (La1

t , Lv1
t ) and (La2

t , Lv2
t ).

B. Co-attention Model

Since the raw audio features and visual features extracted
from CNNs involve noise and redundant information from
the background, it is important to focus on discriminative
information for better event localization. The co-attention
model is proposed to extract discriminative information by
exploiting the spatial and semantic correlations between audio
and visual features. The co-attention model is composed of a
CSPA module and a CSEA module, which are used to model
the spatial and semantic correlations, respectively.

1) Co-Spatial Attention Module.: Commonly speaking, au-
dio features contain semantic information, that is, the category
of events the audio features represent. On the other hand,
visual features consist of diverse semantic information in
different spatial regions, and only a part of the spatial region
is relevant to the event. In this work, we propose a co-
spatial attention module to exploit the information in the
audio features to guide the extraction of spatially important
visual features that are semantically consistent with the audio
features.

The network architecture of the co-spatial attention module
is shown in Fig. 3 (a). Let Fa

t denote the raw audio features
with dimensions of Ca. Let Fv

t denote raw visual features with
dimensions of [W,H,Cv], where (W,H) denotes the spatial
dimension and Cv denotes the number of channels. The raw
audio and visual features are first embedded into a common
feature space from which spatial attention is estimated as
follows:

fusion


Fav
t = f1

(
Fa
t

)
� f2

(
Fv
t

)
Z = f3

(
Fav
t

)
Zv
att = so f tmax(Z)

(1)

where ‘ � ’ denotes the Hadamard elementwise product,
fi (·) represents the i-th feature transformation component
implemented with a fully connected (FC) neural network and
is shown as FCi in Fig. 3, and Zv

att represents the spatial
attention for visual features.
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Fig. 3. The proposed co-attention model includes two modules, CSPA and CSEA. The CSPA module is proposed to learn the spatial relationship between audio
and visual features, as shown in (a). The CSEA module is developed to model the semantic relationship between audio and visual features, as shown in (b). In
the figure, (H ,W ) represents the spatial dimension, and Cvi/ai represents the channel (or semantic) dimension at different stages, where Cv2 = Ca2 = H×W .
‘ ⊗ ’ denotes matrix multiplication, ‘ � ’ denotes Hadamard elementwise product, and ‘⊕ ’ denotes elementwise addition.

The goal of this module is to extract discriminative audio
and visual features with spatial attention. To extract discrimi-
native visual features, we use Zv

att as spatial attention to filter
the raw visual features in the spatial dimension. For extracting
discriminative audio features that are correlated with the visual
features, we first encode Z to learn an attention vector and
then perform attention operations on the raw audio features.
The procedure of extracting audio and visual features with
spatial attention is presented as follows:

For Fa :
{

Za
att = so f tmax

(
f4

(
Fav
t ⊗Z

) )
Fa
spa = f5

(
Za
att� f1

(
Fa
t

) )
+ Fa

t

For Fv : Fv
spa = Fv

t ⊗
(
Zv
att

)T (2)

where ‘ ⊗ ’ denotes matrix multiplication, Fa
spa and Fv

spa

represent audio and visual features after the CSPA module.
2) Co-Semantic Attention Module.: In audio-visual event

localization, it is important to ensure that the semantic in-
formation represented by the audio and visual features cor-
responds to the same event; otherwise, no event would be
detected. Although the CSPA module helps extract discrimi-
native audio and visual features with spatial attention, it cannot
guarantee semantic consistency between the two features.
Therefore, the co-semantic attention module is designed based
on the principle that the semantic information in audio and
visual features of the same event should match each other.

The CSEA module is shown in Fig. 3 (b). The network
design is inspired by prior work in biology [7, 37], which
has shown that the human perception system can respond to

the visual picture of an event by hearing the sound of the
event, and vice versa. As visual features Fv

t contain both
spatial and semantic information, we use a global average
pooling operation on the spatial dimension of Fv

t to obtain its
semantic information. To obtain the semantic correspondence
between the audio and visual features, we first map features
of one modality into the feature space of the other modality.
Then, semantic correspondence (attention) can be obtained by
cross-checking the features of two modalities in the common
feature space of each modality. Finally, semantic attention is
applied to the audio and visual features to enhance the part
of features that corresponds to the same semantic information.
The procedure is as follows:

i) Fa→v = fa2v
(
Fa
t

)
, Fv→a = fv2a

(
G(Fv

t )
)

ii)
{

Fa
att = so f tmax( f6(Fa

t �Fv→a))

Fv
att = so f tmax( f7(Fv

t �Fa→v))

iii) Fa
sem =

(
Fa
att + 1

)
�Fa

t , Fv
sem =

(
Fv
att + 1

)
�Fv

t

(3)

where Fa
sem and Fv

sem represent audio and visual features
obtained after the CSEA module, G represents the global
average pooling operation, and fa2v, fv2a represents the feature
mapping implemented with fully connected networks.

C. Temporal Modeling

To capture the temporal characteristics of audio-visual
events, we use LSTM networks to temporally encode the
output features of the co-attention model, which is commonly
incorporated in other audio-visual event localization methods.
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The temporal modeling process takes as input the output
features of the CSPA and CSEA modules separately. Since
the temporal modeling processing for the two modules is
similar, we describe only the module with the CSPA stream
for simplicity. The process is written as follows:

La1
t ,

(
ha1
t , c

a1
t

)
= LST Ma1

(
Fa
spa,

(
ha1
t−1, c

a1
t−1

))
Lv1
t ,

(
hv1
t , c

v1
t

)
= LST Mv1

(
Fv
spa,

(
hv1
t−1, c

v1
t−1

)) (4)

where La1
t /L

v1
t represent the output of temporal audio and

visual features, ha1
t /h

v1
t represent the hidden state vectors, and

ca1
t /c

v1
t represent the memory cell state vectors of LST Ma1

and LST Mv1 at time step t, respectively.
Similar to the CSPA module, temporal audio and visual

features La2
t /L

v2
t of the CSEA module are obtained as the

output of LST Ma2 and LST Mv2.

D. Cross-Modality Localization

Given an audio or visual segment, the CML task aims
to match the corresponding visual segment (A2V) or audio
segment (V2A) of the same event. In this section, we introduce
the procedure of how to use the output features from LSTMs
to complete the CML task. Since the procedures of V2A and
A2V are similar, we only introduce the CML task in the V2A
mode for simplicity.

In the training phase, given the CSPA stream as an example,
let La1

t and Lv1
t denote the audio and visual features output

from LSTMa1 and LSTMv1 at time t in the CSPA stream.
Two multilayer perceptrons (MLPs), as shown in Fig. 2 (b),
each containing two fully connected layers with output sizes
128 and 64, respectively, are used to encode La1

t and Lv1
t

into a common feature space as ma1
t and mv1

t for matching.
With event relevance label yrt ∈ {0,1} for each video segment,
our goal is to learn the model parameters by minimizing
the mismatch between the corresponding audio and visual
segments. We use the contrastive loss [38] for training, as
formulated below:

LC1
t = yrt S2

θ

(
mv1

t ,ma1
t

)
+

(
1 − yrt

) (
max

(
0, τ − Sθ

(
mv1

t ,ma1
t

) ) )2 (5)

where LC1
t denotes the contrastive loss for a pair of segments

in the calculation stream of the CSPA module, Sθ denotes the
Euclidean distance with model parameter θ, and τ = 2.0 is the
threshold for contrastive loss. Similar to the CSPA stream, we
can obtain the contrastive loss LC2

t in the calculation stream
of the CSEA module. Overall, the total loss for the CML
task is LC

t = λcL
C1
t + (1 − λc)LC2

t , where λc ∈ (0,1) is a
hyperparameter balancing the contribution of the CSPA and
CSEA streams. We evaluate the impact of various values of
λc in Section IV-C.

In the inference phase, a visual segment Vr is chosen from
{Vi}

T
i=0, and then a best-matching audio segment is obtained

from {Ai}
T
i=0 by calculating the Euclidean distance for each

pair of segments in a sliding window manner. The pairwise
distance is computed from the CSPA and CSEA streams
separately, and the average distance of the two streams is used.

E. Multimodal Event Localization

The goal of multimodal event localization is to predict
event categories for each video segment given audio and
visual features. We consider both supervised event localization
(SEL) and weakly supervised event localization (WSEL). In
the SEL setting, event category label yet of a one-hot vector
is provided for each segment, and the output is a segment-
level classification vector et , both with the shape of [1, C],
where C = 29 represents the number of event categories. In
the WSEL setting, the event category label is video-level and
represented as yw , indicating the occurrence of an event for the
whole video. The output is a video-level classification vector v
obtained by global max-pooling along the temporal dimension
of all segment-level classification vectors {et }, with its element
computed as v[i] = max

t=1,2,...,T
et [i].

At training time, given the CSPA stream for example, the
concatenation of La1

t and Lv1
t is first encoded by a MLP as

shown in Fig. 2 (c), containing two fully connected layers
with output sizes 64 and 29, respectively, and then the event
classification score et is obtained for each segment. We use
the multilabel soft-margin loss for training:

LS1 = − 1
C ∗

T∑
t=0

C−1∑
j=0

yet [ j] ∗ log
(

exp(et [j])
1+exp(et [j])

)
+ (1 − yet [ j]) ∗ log

(
1

1+exp(et [j])

) (6)

LW1 = − 1
C ∗

C−1∑
j=0

yw[ j] ∗ log
(

exp(v[j])
1+exp(v[j])

)
+ (1 − yw[ j]) ∗ log

(
1

1+exp(v[j])

) (7)

where LS1 and LW1 represent the loss functions of the SEL
and WSEL settings, respectively. In a similar way, we can
obtain the SEL loss LS2 and the WSEL loss LW2 in the
CSEA stream. Overall, the total losses for SEL and WSEL are
LS = λsL

S1+ (1−λs)LS2 and LW = λwL
W1+ (1−λw)LW2,

respectively. λs and λw are hyperparameters balancing the
contribution of the CSPA and CSEA modules for the two
subtasks respectively.

At inference time, the model averages the outputs of the
CSPA and CSEA streams as final prediction scores of audio-
visual events.

IV. EXPERIMENTS

A. Experiment Setup

Dataset. We conduct experiments on a large public AVE
dataset [3]. The AVE dataset consists of 4143 videos, each
lasting 10 seconds. It is constructed by Tian et al. [3] as
a subset of Audioset [39] and ensures that only one audio-
visual event exists in each video segment. The dataset is
split into training, validation and test sets with 3339, 402,
and 402 videos, respectively. For cross-modality localization,
the AVE dataset provides a label yrt ∈ {0,1} for each one
second video segment, where 1 represents the audio and visual
signals of the same segment match each other (i.e., an audio-
visual event happens in the segment) and 0 otherwise. For
supervised event localization, annotations of event categories
are provided for each one-second video segment in both the
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training and testing stages, with a total of 28 categories (e.g.,
horse, violin, mandolin, helicopter, baby cry, etc.) plus 1
background. For weakly supervised event localization, only
video-level annotations of event categories are provided in the
training stage. However, it is evaluated at the segment-level in
the testing stage, similar to supervised event localization.

Evaluation metrics. Accuracy is used as the evaluation
metric for both tasks, following the evaluation routing in
previous work [3].

For the CML task, accuracy is computed as the percentage
of correct matching over all matched segment pairs from the
test videos. A matched segment pair is composed of a query
segment in the source modality and a best-matching segment
in the target modality. A matched segment pair is considered
correct if the two segments are temporally aligned. For a video
with T = 10 segments, the accuracy by chance is 10%.

For the MMEL task, accuracy is computed as the percent-
age of correct classification over all test segments for both
supervised and weakly supervised settings. In the dataset,
the background class has taken up the highest percentage of
17.1%, which implies accuracy by chance.

Implementation details. For feature extraction before the
proposed co-attention model, the duration of each video in the
dataset is T = 10s, and we extract audio and visual features for
each one-second video segment. For visual input, the original
frame rate in the dataset is not fixed and is greater than 16.
For consistency, 16 images are sampled in each one-second
segment, and visual features are extracted through a VGG19
network [40] pretrained on Imagenet [41]. For audio input,
the original audio signal has a sampling frequency of 16 kHz.
Short-time Fourier-transform (STFT) is performed for each
25 ms window with a step of 10 ms. The STFT signal in
the frequency domain is then transformed into mel-scale filter
banks with 64 bins. This gives a mel-spectrogram “image”
with dimensions of 96 × 64 for each one-second segment.
Audio features are extracted by feeding the mel-spectrogram
image into a VGGish network [42] pretrained on Audioset
[39]. For more details, please refer to [42]. Note that the
VGG16 and VGGish networks correspond to the CNNs in
Fig. 2 (a).

In the co-attention model, the values of Ca1, Cv1, Cv2 and
Ca2 are set as 128, 512, 49 and 49, respectively. The spatial
dimension H×W of visual features is 7×7. The implementation
details of each fully connected layer in the network are shown
in Table I. For temporal modeling, we use bidirectional LSTMs
(BLSTMs) for audio and visual features, where the number of
hidden states and output are 128 and 256, respectively, for
both modalities. The hyperparameters for balancing the CSPA
and CSEA modules are empirically set as λc = 0.6, λs = 0.3,
and λw = 0.7 for the CML, SEL and WSEL tasks.

In the proposed method, both the pretrained VGG19 and
VGGish networks are fixed in the CML and MMEL tasks.
The co-attention model and the LSTM network are first trained
for the MMEL task. Then, for the CML task, we initialize the
co-attention model and the LSTM network with parameters
learned from the MMEL task. We found that this can help
accelerate the convergence of training for the CML task.

The network is optimized using the Adam optimizer with

TABLE I
IMPLEMENTATION DETAILS OF EACH FULLY CONNECTED LAYER IN THE

NETWORK.

hidden layers output of each layer
FC1 2 [512,49]
FC2 2 [512,49]
FC3 1 [1]
FC4 2 [256,49]
FC5 1 [128]

FCv2a 1 [128]
FCa2v 1 [512]
FC6 1 [128]
FC7 1 [512]

TABLE II
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON THE

CROSS-MODALITY LOCALIZATION TASK. ACCURACY (%) IS USED AS THE
EVALUATION METRIC.

Method A2V V2A Average
DCCA [43] 34.8 34.1 34.5
AVDLN [3] 44.8 35.6 40.2
DAM [5] 47.1 48.5 47.8
Ours 49.0 51.0 50.0

an initial learning rate of 0.001. In the MMEL task, the model
is trained for 300 epochs in total with a batch size of 64, and
in the CML task, the model is trained for 30 epochs in total
with a batch size of 32.

B. Comparison with state-of-the-art

In this section, we compare our method with state-of-the-
art methods for both tasks of cross-modality localization and
multimodal event localization. The compared methods are as
follows:

DCCA [43]. By combining deep neural network and canon-
ical correlation analysis (CCA), it tried to learn the feature
mapping of two views that are maximally correlated at the
same time.

ED-TCN [44]. It introduced a temporal model of temporal
convolutional networks (TCNs) to capture long-range patterns
by using a hierarchy of temporal convolutional filters.

Audio-visual w /att and AVDLN [3]. It proposed an
audio-guided visual attention mechanism. In addition, it also
proposed a dual multimodal residual network (DMRN) to fuse
the information over the two modalities.

AVSDN [4]. It is based on sequence-to-sequence and au-
toencoders and exploits global and local event information in
a seq2seq [45] manner.

DAM [5]. It proposed a dual attention matching (DAM)
module to capture the global information in a long time and
the local temporal information through a global cross-check
mechanism.

1) Cross-modality localization.: Table II shows the perfor-
mance comparison between our method and the current state-
of-the-art methods on the cross-modality localization task.
DCCA [43] does not work well on the task, probably since
it does not consider the specific relationship between the
audio and visual features. Although AVDLN [3] considers
audio-guided spatial attention for visual features, it does
not model their semantic relationship. DAM [5] outperforms
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TABLE III
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON THE

SUPERVISED SETTING OF MULTIMODAL EVENT LOCALIZATION TASK. †
INDICATES THAT THE METHOD WAS RE-IMPLEMENTED WITH THE SAME

PRE-TRAINED VGG-19 FEATURE FOR A FAIR COMPARISON.

Method Accuracy (%)
ED-TCN [44] 46.9
Audio-visual [3] 71.4
AVSDN† [4] 72.6
Audio-visual+Att [3] 72.7
DAM [5] 74.5
Ours 76.5

previous methods by encoding the global event information as
a reference when localizing audio-visual events. Our method
achieves the highest average accuracy of 50.0% by modeling
the spatial and semantic relationship between audio and visual
features. Specifically, on the V2A task, our method improves
the accuracy from 48.5% to 51.0%.

2) Multimodal event localization.: We also evaluate our
method on the MMEL task, which aims to predict the event
category for each video segment. The performance comparison
with state-of-the-art methods for multimodal event localization
in supervised and weakly supervised settings is shown in Table
III and Table IV, respectively. From Table III, it can be seen
that ED-TCN [44], a state-of-the-art temporal action labeling
method, is not suitable for the MMEL task. AVSDN [4] pro-
posed using the Seq2Seq mechanism to capture the temporal
dependencies of audio and visual features for event prediction.
Tian et al. [3] considered the audio-guided spatial attention
mechanism for visual features to improve the performance.
DAM [5] reported higher accuracy in the supervised setting
by considering global information on localizing short-term
events. Similar results can be seen in Table IV. Our method
outperforms previous methods on both supervised (76.5%) and
weakly supervised settings (70.2%).

To demonstrate how our method works for different event
categories, we show the confusion matrix of our method on the
MMEL task in Fig. 4. Our method outperforms the baseline
method in most events, with several events largely improved
by our method, such as index 4: “Race car”, index 11: “Truck”,
and index 15: “Train horn”. These events have sufficient
training samples with unique correspondence between visual
and audio signals and therefore can be well modeled by our
method. However, for some events with relatively small data
proportions, such as index 19: “Baby cry” and index 23:
“Horse”, the proposed method performs slightly worse than
the baseline. The reason might be that the data samples of
these events are not sufficient for the proposed method to
effectively model the correlations between the two modalities
in these events.

C. Ablation Studies

To examine how different parts of our proposed co-attention
model contribute to the final performance on the four tasks,
we conducted an ablation study by removing a subset of
our full model. For all baselines, LSTMs are adopted for
temporal modeling. Details of different baselines are explained
as follows:

TABLE IV
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON THE WEAKLY

SUPERVISED SETTING OF MULTIMODAL EVENT LOCALIZATION TASK.

Method Accuracy (%)
Audio-visual [3] 63.7
AVSDN† [4] 63.6
Audio-visual+Att [3] 66.7
Ours 70.2

0: “Church bell”
1: “Male speech”
2: “Bark”
3: “Aircraft, airplane”
4: “Race car, auto racing”
5: “Female speech”
6: “Helicopter”
7: “Violin”
8: “Flute”
9: “Ukulele”
10: “Frying”
11: “Truck”
12: “Shofar”
13: “Motorcycle”
14: “Acoustic guitar”
15: “Train horn”
16: “Clock”
17: “Banjo”
18: “Goat”
19: “Baby cry”
20: “Bus”
21: “Chainsaw”
22: “Cat”
23: “Horse”
24: “Toilet flush”
25: “Rodents, rats, mice”
26: “Accordion”
27: “Mandolin”
28: “Background”

(a) 

(b) 

(c) 

Fig. 4. The confusion matrix of the baseline [3] and the proposed method
on the MMEL task are shown in (a) and (b), respectively. (c) compares the
accuracy of different event classes between the baseline and the proposed
method. The indexes of event classes are shown within the dotted box.

Single attention module. We examine the contribution of a
single CSPA module or CSEA module and denote them as
CSPA and CSEA, respectively.

CSPA module without audio attention. To evaluate the
contribution of the proposed visual-guided audio attention in
the CSPA module, we remove this part and test the remaining
model and denote this baseline as (CSPA /aa)+CSEA.

CSEA module with one branch. To examine the contribution
of semantic attention from either the audio or visual branch,
we remove the attention calculated with mapped audio fea-
tures Fv→a or mapped visual features Fa→v , respectively.
These two baselines are denoted as CSPA+(CSEA /v2a) and
CSPA+(CSEA /a2v).
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TABLE V
ABLATION STUDY OF DIFFERENT MODULES OF THE PROPOSED

CO-ATTENTION MODEL ON FOUR SUB-TASKS. ACCURACY (%) IS USED AS
THE EVALUATION METRIC.

Method A2V V2A SEL WSEL
CSPA 39.3 33.3 74.1 68.0
CSEA 48.5 50.7 72.9 66.4
(CSPA /aa) + CSEA 48.5 49.8 75.5 69.8
CSPA + (CSEA /v2a) 48.5 48.0 75.9 70.1
CSPA + (CSEA /a2v) 44.0 47.3 76.3 70.1
CSPA + CSEA 49.0 51.0 76.5 70.2

49.6 49.1 49.9 
48.2 48.6 49.1 50.0 

47.9 49.1 49.3 

36.3 
36.0 
38.0 
40.0 
42.0 
44.0 
46.0 
48.0 
50.0 
52.0 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

A
cc

ur
ac

y 
(%

)

λc

72.9

74.7
75.5

76.5
75.5

74.8 74.8 74.8
75.8

74.4 74.1

72.0 
73.0 
74.0 
75.0 
76.0 
77.0 
78.0 
79.0 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

A
cc

ur
ac

y 
(%

)

λs

66.4 

69.6 69.4 69.3 69.3 69.7 
68.8 

70.2 
69.5 

70.1 

68.0 

66.0 
67.0 
68.0 
69.0 
70.0 
71.0 
72.0 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

A
cc

ur
ac

y 
(%

)

λw

最终输出版

Fig. 5. Illustrations of the effect of hyperparameters on the performance of
the proposed method. λc , λs and λw are used to balance the CSPA stream
and the CSEA stream in the CML, SEL, and WSEL tasks, respectively.

The ablation study results are shown in Table V. Compar-
ing single attention modules, the performance of the CSEA
module is significantly better than that of the CSPA module
in the CML task (A2V and V2A). This shows that the CSEA
module can effectively learn the semantic relationship between
audio and visual features so that it can accurately match audio-
and visual-related segments in the CML task. However, in the
MMEL task (SEL and WSEL), the performance of the CSPA
module is better than that of the CSEA module, which implies
that the spatially augmented audio and visual features by the
CSPA module are more discriminative for predicting the cat-
egory of audio-visual events. Comparing (CSPA /aa)+CSEA
with our full model (CSPA+CSEA), it can be seen that remov-
ing the proposed visual-guided audio attention in the CSPA
module would degrade the performance. It is also interesting
to note that the performance degradation is more severe by
removing audio-to-visual mapping (CSPA+CSEA /a2v) than
by removing visual-to-audio mapping (CSPA+CSEA /v2a) in
the CML task, which indicates that mapping from audio to
visual features is more critical in cross-modal mapping. Most
importantly, the combination of CSPA and CSEA achieves the
best performance in all tasks.

In Sections III-D and III-E, we introduce three separate

hyperparameters λc , λs and λw to balance the contribution of
the CSPA and CSEA modules in various tasks. To examine the
influence of these three hyperparameters on the performance of
our method, we conducted experiments with different values
of hyperparameters and the results are shown in Fig. 5. By
studying the performance variation with λc for the CML task,
we can see that the performance would significantly decrease
when the CSPA module is used alone (λc = 1.0), which
is consistent with the results in Table V. By studying the
performance variation with λs and λw for the MMEL task
(including SEL and WSEL), we can see that the performance
would decrease when either the single CSPA module (λs = 1
and λw = 1) or the CSEA module is used alone (λs = 0
and λw = 0), which indicates that both the CSPA and
CSEA modules are needed for audio-visual event localization.
Moreover, when the two attention modules are both used,
the change in the relative contribution of the two modules
(λ ∈ [0.1,0.9]) only slightly affects the performance. This
demonstrates not only the superior performance but also the
robustness of our proposed co-attention model.

D. Visualization and Qualitative Results

Attention visualization. The CSPA module is proposed to
extract discriminative audio and visual features by exploring
spatial attention. Here, we visualize the spatial attention of
visual features in Fig. 6 to show the CSPA module’s ability
to learn meaningful spatial relationships between audio and
visual modalities. It can be seen from the figure that as the
event evolves with time, our method can always capture the
spatial position where the event occurs. For example, the truck
in the 4th example of the figure moves from left to right, and
the region of the truck remains highlighted by spatial attention.

Feature learning visualization. The goal of our co-
attention model is to remove redundant information and extract
discriminative features for different events by exploiting cor-
relations between audio and visual modalities. To verify that
our model works as expected, we use a high-dimensional data
visualization tool of t-SNE [46] to visualize the features of
different events before and after our co-attention model. We
chose several classes with high proportions among all classes
for better illustration, and the visualization is shown in Fig.
7. The audio (as well as visual) features of different events
with either the CSPA or CSEA modules are separated more
apart from each other than raw features. Moreover, the features
with CSPA or CSEA modules show certain complementary
properties. Taking audio features as an example, while “Race
car, auto racing” (index 4) and “Train horn” (index 15) are
close in features with CSPA, they are apart in features with
CSEA. This partly explains why the combination of CSPA and
CSEA works better than the individual module.

Qualitative results. Fig. 8 shows qualitative results on the
CML (with two manners of V2A and A2V) and MMEL
tasks. For V2A, given a visual segment as input, the audio
segment corresponding to the same event is localized for
synchronization. A correct example is shown in Fig. 8 (a)
in which our method correctly matches the visual segment
of the baby crying with the corresponding audio segment. A
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Airplane Frying Car Truck

Fig. 6. Visualization of spatial attention learned by the CSPA module on four example events. The figure above visualizes the attention area of the four
audio-visual events in the visual space. From top to bottom, it represents two segments selected in the time sequence in the audio-visual video sequence.

Raw audio feature Audio feature with CSPA Audio feature with CSEA

Raw visual feature Visual feature with CSPA Visual feature with CSEA

Fig. 7. Illustration of the feature learning of the CSPA stream and CSEA stream in our proposed method. The number indices of 0, 2, 4, 14, 15, 24 and 26
represent “Church bell”, “Bark”, “Race car, auto racing”, “Acoustic guitar”, “Train horn”, “Toilet flush” and “Accordion”, respectively.

failure case in A2V is shown in Fig. 8 (b). Our method could
not correctly localize the visual segment of the baby crying
with the corresponding audio segment. In such failure cases,
mismatch is often caused by the inability to correctly identify
the event category of the input segment. The qualitative result
of the multimodal event localization task is shown in Fig.
8 (c), where the event categories in green and red indicate
correct and incorrect classifications, respectively. Although our
method correctly predicted in most video segments, the eighth
and ninth segments, where a train horn event happens, are
incorrectly predicted as a background event. In this exam-
ple, although the audio signal is discriminative, the visual
difference between the train horn event and the background
event is ambiguous. To tackle this challenge, event-dependent
importance weights of different modalities might be useful.

V. CONCLUSION AND FUTURE WORK

In this work, we proposed a new end-to-end deep framework
for the audio-visual event localization problem. Based on the
assumption that the audio and visual features share common
semantic information in an audio-visual event, we propose
the co-attention model to exploit the spatial and semantic
correlations between the audio and visual modalities through
attention learning. Specifically, the co-attention model includes
the CSPA and CSEA modules to model the spatial and seman-
tic relationship between the two modalities, respectively. The
experimental results show that 1) our proposed co-attention
model can extract discriminative audio and visual features by
fully exploiting the spatial and semantic correlations between
the audio and visual modalities. 2) In both the CML and
MMEL tasks, our proposed method performs significantly
better than previous methods.
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Train horn

BG BG BG BG BG BG BG Train hron

(c)

BG BG

(Matched)
Baby Cry

(a)

V2A

(Mismatched)
Baby Cry

(b)

A2V

Fig. 8. Qualitative results. The time dimension of the audio-visual sequence is shown from the left to the right of the figure. Green indicates the correct
result, red indicates the wrong result, and BG denotes the background event.

Our current model exploits correlations between audio and
visual modalities based on an assumption that useful informa-
tion of an event in the two modalities occurs simultaneously
in synchronized data. Therefore, it might be limited to tackle
a more challenging case of time-delay events, such as “thun-
der and lightning”, where useful information does not occur
simultaneously even though the two modalities of a video are
synchronized. To address this case, we consider incorporating
temporal modeling within our co-attention model in a unified
way, which is left as our future work.
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