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ABSTRACT

A block-based compressed sensing approach coupled with
binary time-frequency masking is presented for the underde-
termined speech separation problem. The proposed algorithm
consists of multiple steps. First, the mixed signals are seg-
mented to a number of blocks. For each block, the unknown
mixing matrix is estimated in the transform domain by a
clustering algorithm. Using the estimated mixing matrix, the
sources are recovered by a compressed sensing approach.
The coarsely separated sources are then used to estimate the
time-frequency binary masks which are further applied to
enhance the separation performance. The separated source
components from all the blocks are concatenated to recon-
struct the whole signal. Numerical experiments are provided
to show the improved separation performance of the pro-
posed algorithm, as compared with two recent approaches.
The block-based operation has the advantage in improving
considerably the computational efficiency of the compressed
sensing algorithm without degrading its separation perfor-
mance.

Index Terms— Underdetermined blind source separa-
tion (BSS), sparse representation, compressed sensing (CS),
block-based processing, binary time-frequency mask

1. INTRODUCTION

The problem of underdetermined blind source separation
(BSS) has been studied extensively in recent years. The ob-
jective of underdetermined speech separation is to estimate
the unknown speech sources from the mixtures without (or
with limited) prior knowledge about the mixing channels,
where the number of the sources is greater than that of the
mixtures. Considering a noise-free instantaneous model, the
problem can be described as:

X = AS (1)

where A ∈ RM×N is the unknown mixing matrix assumed to
be of full rank with M < N , X ∈ RM×T is the observed data
matrix whose row vector xi is the ith microphone signal with
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each having T samples at discrete time instants t = 1, ..., T ,
and S ∈ RN×T is the unknown source matrix containing N
source vectors sj , j = 1, ..., N .

An effective method for this problem is to use the so-
called sparse signal representation, assuming that the sources
are sparse or can be decomposed into the combination of
sparse components [1] [2]. Using such a representation, we
have recently proposed a novel algorithm based on com-
pressed sensing (CS) [3] in which the BSS model is reformu-
lated to a signal recovery model. However, the optimization
process for source estimation is computationally demanding
as the microphone signals of full length are stacked into a
single vector, resulting in a large dimension of the measure-
ment matrix, as well as the signal dictionary. In this paper,
we propose to improve its computational efficiency using a
block-based method. Another contribution of this work is to
use the binary masking technique to enhance the separation
performance of the compressed sensing algorithm. As a re-
sult, the proposed approach is a multi-stage system. We will
evaluate its systematic performance using the metrics and
datasets in [4], as compared with two recent methods. The
next section describes the proposed method in detail. Numer-
ical results are given in Section 3, followed by conclusions in
Section 4.

Fig. 1. Flow chart of the proposed system for separating four
speech sources from two mixtures.

2. THE PROPOSED METHOD

We consider the case of M = 2 and N = 4 in this paper. The
proposed separation system is depicted in Figure 1. First, the
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speech mixtures xi, i = 1, 2, are segmented into P blocks
xp

i , p = 1, ..., P , with each block having L samples. Then,
the mixture signals at each block xp

i , i = 1, 2 are processed in
the subsequent clustering, separating, and masking steps. Fi-
nally, the separated sources are reconstructed from the source
components within each block. For simplifying notations, we
omit p in xp, sp, Ap, and Hp in the following descriptions.
As shown in Section 3, compared with processing the whole
signal, the block-based processing considerably improves the
computational efficiency of the algorithm without degrading
its separation performance.
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Fig. 2. An example of the scatter plots of two mixtures of four
speech sources in the time (a) and the frequency (b) domain.

In the clustering step, we estimate the mixing matrix us-
ing the K-means clustering algorithm based on the short-time
fourier transform (STFT) coefficients. Assuming the sources
are sparse, i.e. ideally only one source has a nonzero value at
each time instant, some lines in the scatter plot of the mixtures
can be clearly identified, and the number of lines is equal to
that of the columns of A. For example, when M = 2, at
any time instant, the point on the scatter plot of x1 versus x2

should lie on the line that can be represented by one of the
column vectors in A. The vector of the plotted points is a
product of a scalar and one of column vectors in A. In prac-
tice, however, the sparseness assumption is seldom satisfied
nicely, due to the observation noises in real data. The lines
are usually broadened especially in the time domain, as shown
in Figure 2(a). It has been observed that the audio mixtures
become sparser if they are transformed into the frequency do-
main, as shown in Figure 2(b). As a result, it becomes easier
to observe the distributions of the data points in the scatter
plot. Therefore, to estimate the mixing matrix, we apply the
K-means algorithm to the audio data in the transform domain
obtained by the STFT, and details can be found in [3].

In the separating step, with the estimated mixing matrix

Â, we formulate the signal recovery problem as a compressed
sensing [5] model. For M = 2 and N = 4, (1) can be ex-
panded as:

(
x1

x2

)
=

(
a11 a12 a13 a14

a21 a22 a23 a24

) ⎛
⎜⎝

s1
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s3

s4

⎞
⎟⎠ (2)

where aij is the ij-th element of the mixing matrix A. We
can formulate the above equation as follows,
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where L is the length of each block, Λij ∈ RL×L is a diagonal
matrix whose diagonal elements are all equal to aij . Let b =
vec(X�), f = vec(S�), where vec is an operator stacking
the column vectors of a matrix into a single vector, and �
denotes matrix transpose. Equation (3) can be written in a
compact form as:

b = Mf (4)

The above equation can be interpreted as a CS model in which
M is the measurement matrix and b is the compressed vec-
tor of samples in f. Therefore, a sparse representation in the
transform domain can be employed for f:

f = Φy (5)

where Φ is a transform dictionary and y contains the weight-
ing coefficients in the Φ domain. Combining (4) and (5), we
have

b = MΦy (6)

According to compressed sensing theories, if both M and Φ
satisfy certain conditions and also y is sparse, the signal f
can be recovered by the measurement b using an optimiza-
tion process. This indicates that source estimation in our un-
derdetermined problem can be achieved by computing y in
(6) using the CS based signal recovery algorithms. An ap-
proach for estimating f from b = Mf = MΦy is to solve
the following l0 minimization problem

min ‖ y ‖0 s.t. b = MΦy (7)

where ‖ y ‖0 is the l0 norm measuring the sparseness of y.
The solution to the optimisation of the above cost function is
an NP-hard problem, which is not a good choice in practice.
However, it has been shown in [6] that the solution to the l0
minimisation problem is essentially equivalent to the solution
of the following l1 minimisation problem

min ‖ y ‖1 s.t. b = MΦy. (8)

The basis pursuit (BP) algorithm [6] can be used to solve the
problem, according to the following iterative process. First,
we choose an initial basis matrix B which is a squared ma-
trix having the same rank as MΦ and consists of the selected
columns of MΦ, i.e. the smallest possible complete dictio-
nary. Then, we improve the basis by swapping a column of
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B with an unselected column in MΦ. When the basis cannot
be further improved, we reach the optimal solution. Finally,
y can be readily computed by B−1b. The vector f consisting
of the separated sources sj can be obtained by simply multi-
plying the dictionary Φ with y using (5).

According to our listening tests, however, the separated
sources sj obtained from the above algorithm may still con-
tain a certain amount of interference from other sources su,
where u �= j. Recent studies in [7] show that binary time-
frequency (T-F) masking can be used to further enhance the
performance of BSS algorithms, due to its superior perfor-
mance in interference rejection. Therefore, in this step, we
further employ binary masks to improve the quality of the
separated sources. First, the separated sources sj are trans-
formed to the T-F representations such as spectrograms. The
binary masks are estimated by comparing the energy of the
“target” source with that of the summation of other sources
at each T-F unit. The element of the mask matrix Hj is as-
signed 1 if the energy of the target is stronger than that of the
interference from all the other sources at that T-F unit, and 0
otherwise. Specifically, Hj(m, k) is computed as follows:

Hj(m, k) =

⎧⎨
⎩

1 | Sj(m, k) | > 1
3

∑
u �=j

| Su(m, k) |,
0 otherwise.

(9)

where Sj(m, k) is the STFT of the jth source, m and k are the
time frame index and frequency bin index respectively. Then
we use the mask matrix Hj and the STFT of the mixtures to
obtain the original sources sj as,

sj = ISTFT (Xi � Hj) (10)

where Xi is the the T-F representation of the ith mixture, �
denotes element-wise multiplication, and ISTFT is the in-
verse STFT. For the two-mixture case, both X1 and X2 can
be used in the above equation. In practice, we choose Xi

based on aij which is already obtained from the clustering
step. If a1j > a2j , we choose X1 for the above equation,
and vice versa. The above process (including clustering, sep-
arating and masking steps) is repeated for each block of the
mixture signals. The whole sources sj , j = 1, ..., 4 are re-
constructed by concatenating together all the blocks of the
estimated source components sp

j , p = 1, ..., P .

3. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed algorithm using sim-
ulations. The speech signals used in our experiments were
taken from the database of the source separation evaluation
campaign [4]. We used two groups of speech sources in eval-
uations, with one group containing four male speech signals
and the other group four female speech signals. Each signal
has a duration of 10s and is obtained in a meeting room using
omnidirectional microphones with spacing 5cm [4], sampled
at 16kHz. We evaluate the results using three objective crite-
ria, i.e. the source image to spatial distortion ratio (ISR), the
source to interference ratio (SIR), the source to artifacts ratio

(SAR), which measure the relative amounts of the spatial dis-
tortion, the interference and the artifacts, defined in [4]. The
total error was also measured by the signal to distortion ratio
(SDR), defined as [4],

SDRj = 10log10

⎛
⎜⎜⎝

I∑
i=1

T∑
t=1

simg
ij (t)2

I∑
i=1

T∑
t=1

(sspat
ij (t) + sinterf

ij (t) + sartif
ij (t))2

⎞
⎟⎟⎠

(11)

where simg
ij (t) is the true source image of source j and

sspat
ij (t), sinterf

ij (t), and sartif
ij (t) are the distinct error com-

ponents representing the spatial distortion, the interference
and the artifacts respectively.
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Fig. 3. The effect of different block length L on the computa-
tional efficiency of the proposed algorithm.

First, we perform an experiment to evaluate the effect of
the block size L on the computational efficiency and separa-
tion performance of the proposed algorithm. In this experi-
ment, we generated two mixture signals by mixing together
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Fig. 4. The effect of different block length L on the separation
performance measured by SDR.
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four speech sources using the following mixing matrix.

A =
(

0.3420 0.6428 0.7934 0.9239
0.9397 0.7660 0.6088 0.3827

)
(12)

For the case of L = 512 (i.e. 32ms), the average of Â ob-
tained by the clustering algorithm for all blocks is shown in

(13). We see that Â is reasonably close to A except the per-
mutation ambiguity.

Â =
(

0.6275 0.9184 0.3620 0.7896
0.7754 0.3850 0.9270 0.6102

)
(13)

The computing time required for running the proposed algo-
rithm varies with L, as shown in Figure 3, where the results
for both the male and female groups of speech signals are
plotted. From this figure, it can be observed that the algo-
rithm is most efficient when the block size is equal to 32ms.
It only takes 70s and 105s for running the algorithm on both
groups of speech signals. In constrast, the average comput-
ing time required by the algorithm for the same two groups
of sources without blocking is 1208s and 1355s respectively.
In this case, the block-based algorithm is approximately 12
times faster than the algorithm without blocking. The sepa-
ration performance measured by the SDR is shown in Figure
4. This figure suggests that using different L, there are only
slight changes in the separation performance.

We also created 20 pairs of mixtures by using the mix-
ing matrices whose elements were drawn from uniformly dis-
tributed random variables. The proposed algorithm was ap-
plied to each pair of these mixtures. The averaged separa-
tion performance of these experiments is given in Table 1.
In comparison with other thirteen algorithms involved in the
campaign (see the results reported in [4]), the proposed algo-
rithm provides competitive separation performance. To show
this, we plot the results measured by the SDR in Figure 5 for
each source tested in the experiments, where our proposed
algorithm is compared with the two algorithms with best per-
formance, i.e. algortithm 1 and 3 in the campaign [4]. The
proposed algorithm offers a higher SDR in six out of the eight
tested sources.

SDR ISR SIR SAR

Male speech 1 13.26 16.77 14.17 17.38

Male speech 2 5.89 7.82 6.08 8.01

Male speech 3 4.83 5.67 5.08 9.32

Male speech 4 9.87 17.36 12.67 13.49

Female speech 1 10.40 19.98 12.52 14.12

Female speech 2 4.42 6.86 5.58 7.71

Female speech 3 3.92 5.74 4.95 7.15

Female speech 4 8.64 18.62 10.40 12.79

Table 1. SDR, ISR, SIR and SAR (in dB) measured for each
signal within the two groups of speech sources.
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Fig. 5. SDR comparison between the proposed algorithm and
two recent algorithms (algorithm 1 and 3 in the campaign [4]),
with sources 1-4 corresponding to the four male speech sig-
nals 1-4 in Table 1, and 5-8 corresponding to the four female
speech signals 1-4).

4. CONCLUSIONS AND FUTURE WORK

We have presented a multi-stage method for underdetermined
blind speech separation using block-based compressed sens-
ing incorporating binary mask. Numerical experiments have
shown the improved separation performance and computa-
tional efficiency by the proposed method, as compared with
recent underdetermined BSS approaches. Extension of the
proposed approach to the separation of convolutive speech
mixtures is our future work.
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