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Abstract

A block-based approach coupled with adaptive dictionary learning is presented for underdetermined blind speech separation. The
proposed algorithm, derived as a multi-stage method, is established by reformulating the underdetermined blind source separation prob-
lem as a sparse coding problem. First, the mixing matrix is estimated in the transform domain by a clustering algorithm. Then a dictio-
nary is learned by an adaptive learning algorithm for which three algorithms have been tested, including the simultaneous codeword
optimization (SimCO) technique that we have proposed recently. Using the estimated mixing matrix and the learned dictionary, the
sources are recovered from the blocked mixtures by a signal recovery approach. The separated source components from all the blocks
are concatenated to reconstruct the whole signal. The block-based operation has the advantage of improving considerably the compu-
tational efficiency of the source recovery process without degrading its separation performance. Numerical experiments are provided to
show the competitive separation performance of the proposed algorithm, as compared with the state-of-the-art approaches. Using
mutual coherence and sparsity index, the performance of a variety of dictionaries that are applied in underdetermined speech separation
is compared and analyzed, such as the dictionaries learned from speech mixtures and ground truth speech sources, as well as those pre-
defined by mathematical transforms such as discrete cosine transform (DCT) and short time Fourier transform (STFT).
� 2013 Elsevier B.V. All rights reserved.
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1. Introduction

Over the past two decades, blind source separation (BSS)
has attracted a lot of attention in the signal processing com-
munity, owing to its wide range of potential applications,
such as in telecommunications, biomedical engineering,
and speech enhancement (Hyvärinen et al., 2001; Cichocki
and Amari, 2003). BSS aims to estimate the unknown
sources from their observations without or with little prior
knowledge about the channels through which the sources
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propagate to the sensors. The instantaneous model of BSS,
which is the focus of this paper, can be described as:

X ¼ ASþ V ð1Þ
where A 2 RM�N is the unknown mixing matrix assumed to
be of full row rank, X 2 RM�T is the observed data matrix
whose row vector xi is the ith sensor signal having T sam-
ples at discrete time instants t ¼ 1; . . . ; T ; S 2 RN�T is the
unknown source matrix containing N source vectors, and
V 2 RM�T is the noise matrix containing M noise vectors.
The objective of BSS is to estimate S from X, without
knowing A and V. A classical example for BSS is the so
called “cocktail party problem”, where a number of people
are talking simultaneously in a cocktail party, and each one
can distinguish the others’ speech in this sound mixing
environment, but it is difficult for machines to replicate
such capabilities.
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Many algorithms have been successfully developed for
blind source separation, especially for the exactly or over
determined cases where the number of mixtures is no smaller
than that of the sources. Independent component analysis
(ICA) is a well-known family of BSS techniques based on
the assumption that the source signals are statistically inde-
pendent. However, ICA does not work in the underdeter-
mined case, where the number of mixtures is smaller than
that of the sources. Although several approaches (Makino
et al., 2007) have been developed to address this problem,
which are reviewed in next section, it remains an open prob-
lem, especially for speech source signals. In this underdeter-
mined case, we propose an approach to improve the
separation performance for speech signals by using sparse
signal recovery with adaptive dictionary learning.

It is worth noting that the cocktail party problem is
often addressed by a convolutive BSS model for which
many algorithms have been published such as some recent
works (Kowalski et al., 2010; Mandel et al., 2010; Jan et al.,
2011; Sawada et al., 2011; Alinaghi et al., 2011). Although
the convolutive BSS model is not the focus of this paper,
the methods developed here can also be used in convolutive
speech separation algorithms, such as many frequency
domain BSS algorithms where the convolutive model is
transformed into the frequency domain, leading to multiple
instantaneous but complex-valued BSS problems to be
solved, subject to permutation alignment and scale ambi-
guity correction, along the frequency channels (Smaragdis,
1998; Parra and Spence, 2000; Wang et al., 2005).

1.1. Underdetermined blind speech separation

Underdetermined blind speech separation is an ill-posed
inverse problem, due to the lack of sufficient observations,
i.e. the number of unknown speech sources to be separated
is greater than the number of observed mixtures. Several
approaches have been developed to address this problem,
such as the higher order statistics based method in (Comon,
1998), the sparse representations based technique in (Zibulev-
sky and Pearlmutter, 2001; Bofill and Zibulevsky, 2001), the
time–frequency mask based degenerate unmixing estimation
technique (DUET) in (Jourjine et al., 2000; Yilmaz and Ric-
kard, 2004), the clustering techniques in (Luo et al., 2006;
Araki et al., 2007), the method combining the techniques of
ICA and ideal binary mask (IBM) (Pedersen et al., 2008),
and matrix and tensor decomposition based methods (Wang,
2007; Wang et al., 2008; Wang and Zou, 2008; Wang et al.,
2009; Nion and Lathauwer, 2008; Cichocki et al., 2009;
Comon, 2004; Tichavský and Koldovský, 2011).

The authors in (Zibulevsky and Pearlmutter, 2001) pro-
posed a method for the selection of signal priors from a sig-
nal dictionary assuming that the sources can be sparsely
represented. The sources are then estimated under the max-
imum a posteriori (MAP) framework. In (Bofill and Zibulev-
sky, 2001), a two-stage approach was developed which
consists of estimating the mixing system by a clustering tech-
nique and separating sources by solving a low-dimensional
linear programming problem for each of the data points.
The DUET method (Jourjine et al., 2000; Yilmaz and Ric-
kard, 2004) attempts to solve the underdetermined speech
separation problem using a time–frequency masking tech-
nique based on the assumptions of W-disjoint orthogonality
(WDO) between the speech signals and the short distance
between the microphones. The binary mask based technique
combined with a K-means clustering algorithm was pre-
sented in (Araki et al., 2007). The methods in (Hulle, 1999;
Arberet et al., 2010) are also based on the clustering tech-
nique. The majority of the above work is based on sparse sig-
nal representation. Good reviews on using sparse
component analysis for source separation can be found in
(Gribonval and Lesage, 2006; Sudhakar, 2011).

1.2. Sparse coding

The key idea of sparse signal representation is to assume
that the sources are sparse, or can be decomposed into the
combination of a small number of signal components. By
sparse, we mean that most values in the signal or its trans-
formed coefficients are zero, except for a few nonzero val-
ues. These signal components are called atoms or
codewords, and the collection of all the atoms is referred
to as a dictionary. Finding the sparsest representation
(i.e. the non-zero coefficients) which best approximates
the observation is often an NP-hard problem (Donoho,
2006). A great number of works have shown that a near
optimal performance can be achieved by using different
relaxations for the sparsity measure, e.g. the ‘1 norm (Chen
et al., 1999; Wang, 2008), the ‘p norm (Daubechies et al.,
2010), and the smoothed ‘0 norm (Mohimani et al.,
2009). Such relaxations have led to a wide range of algo-
rithms for signal reconstruction: the basis pursuit technique
based on linear programming (Chen et al., 1999), the
greedy algorithm such as matching pursuit (Mallat and
Zhang, 1993) and iterative thresholding (Blumensath and
Davies, 2008), subspace techniques such as subspace pur-
suit (Dai and Milenkovic, 2009) and CoSaMP (Needell
and Tropp, 2008), and regression shrinkage and selection
(LASSO) (Tibshirani, 1996).

1.3. Contribution and organization

In this paper, sparse coding, based on various types of
dictionaries (both learned and predefined), is used to solve
the problem of underdetermined blind speech separation.
In particular, we propose a novel algorithm in which the
BSS model is reformulated to a sparse signal recovery
model. As a result, any of the state-of-the-art sparse signal
recovery algorithms could be incorporated into this model
to solve the underdetermined blind speech separation prob-
lem, with various separation performance and computa-
tional efficiency. Several signal recovery algorithms have
been examined in the proposed system. We then extend this
approach to a multi-stage method for enhancing the
separation performance by incorporating adaptive



Fig. 1. The flow chart of the proposed system for separating four speech sources from two mixtures.

Fig. 2. An example of the scatter plots for two mixtures of four speech sources in the time (a) and frequency (b) domain. Note that, the absolute values of
the mixtures and their STFT coefficients are plotted.
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dictionary learning algorithms for the signal recovery and
incorporating a blocking process to improve its computa-
tional efficiency. In other words, the predefined transform
traditionally used is replaced by an adaptive transform
containing a group of atoms trained from the speech data.
Under the adaptive transform, a speech signal can be
decomposed as a linear combination of only a few atoms,
i.e. it has a sparse representation. This sparse representa-
tion not only captures important features from the speech
data, but also has the potential to reduce the effects of
noise. We will also evaluate the performance of the pro-
posed algorithm systematically and compare it with the
state-of-the-art.

The results show that the separation performance
obtained by using the adaptive dictionary is more robust
in noisy environments as compared with the fixed dictio-
nary obtained by, for example, the discrete cosine trans-
form (DCT). Among the dictionary learning algorithms
compared, simultaneous codeword optimization (SimCO)
(Dai et al., 2012), which we proposed recently and is used
for the first time in an underdetermined speech separation
application, offers the best performance as compared with
others. To further improve the computational efficiency
and enhance the system performance, we employ a block
processing stage in the front-end of our system. The pro-
posed algorithm will be compared with the recent methods
in the source separation evaluation campaign SiSEC2008
(Vincent et al., 2009) using the same datasets and evalua-
tion approach. Preliminary results of this work were pre-
sented in (Xu and Wang, 2009, 2010, 2011).

The remainder of the paper is organized as follows. The
proposed multi-stage method with clustering, dictionary
learning, blocking, separating and reconstruction stages is
presented in Section 2. Experimental results are given in
Section 3. Finally, conclusions and future work are sum-
marized in Section 4.
2. The proposed multi-stage system based on sparse signal

recovery and dictionary learning

For underdetermined BSS, i.e. M < N , one has to esti-
mate A first, then the sources S. However, in this case, even
if A is available, the solution to S is not unique. To address
this problem, we reformulate the BSS model into a sparse
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signal recovery model with an adaptive dictionary learned
from training data. As a result, the proposed method is a
multi-stage procedure. To explain the concept, we omit
the noise V when necessary in the following sections. It is
worth noting that the designed algorithm works well for
noisy mixtures according to our numerical results.

To demonstrate the proposed multi-stage approach, we
typically consider the underdetermined case of M ¼ 2 and
N ¼ 4 in the model (1). However, the approach can be
readily extended to other underdetermined cases with var-
ious numbers of sources and mixtures. As depicted in
Fig. 1, the proposed method using sparse signal recovery
and dictionary learning for underdetermined blind speech
separation (SDUBSS in short) is composed of the cluster-
ing stage, the dictionary learning stage, the blocking stage,
the separating stage, and reconstruction stage. Note that,
the dictionary learning stage can be replaced by a prede-
fined transform, such as the DCT transform, if a fixed dic-
tionary is applied. The segments of the signals obtained by
the blocking stage will be used only in the separating and
reconstruction stages, while the clustering and the dictio-
nary learning stages are still performed for the whole sig-
nal, and bA and U obtained in these stages will be shared
by all the segments in the separating stage. The details of
all the stages are given in the following subsections.

2.1. Estimating the mixing matrix by clustering

In the clustering stage, we use the standard technique as
in (Zibulevsky and Pearlmutter, 2001) to estimate the mix-
ing matrix A by using the K-means clustering algorithm
based on the short-time fourier transform (STFT) coeffi-
cients of the mixtures. Assuming the sources are sparse,
i.e. ideally only one source has nonzero value at each time
instant, some lines in the scatter plot of the mixtures can be
clearly identified, and the number of lines should be equal
to that of the columns of A. For example, when M ¼ 2, at
any time instant, the point on the scatter plot of x1 versus
x2 should lie on the line that can be represented by one of
the column vectors in A, as there exists only one source in
this time instant. The vector of the plotted points is a prod-
uct of a scalar and one of the column vectors in A. When
all the data points are plotted, some lines in the coordinate
plane can be clearly identified, and the number of lines
should be equal to that of the columns of A. In practice,
however, the sparseness assumption is seldom satisfied
nicely, due to the observation noise in real data. The lines
are usually broadened especially in the time domain, as
shown in Fig. 2(a). It has been observed that the audio mix-
tures become sparser if they are transformed into the fre-
quency domain. As a result, it becomes easier to observe
the distributions of the data points in the scatter plot, as
shown in Fig. 2(b).

Therefore, to estimate the mixing matrix, we apply the
K-means algorithm to the speech data in the frequency
domain obtained by the STFT. The algorithm can be sum-
marized in Algorithm 1.
Algorithm 1. K-means algorithm for mixing matrix
estimation.

Task: estimate the mixing matrix for the following stages
in SDUBSS

Input: X

Output: bA.
� Apply the STFT to each mixture signal in X to obtain

a spectrogram of this mixture signal then reshape it to
a vector as the coefficient vector in eX, i.e. the time–fre-
quency representation of X.
� Normalize the vectors in eX to move all the points to a

unit semi-circle for the K-means algorithm to be
applied.
� Choose the starting points for the K-means algo-

rithm, and divide eX to four parts (equals to the num-
ber of sources) and compute the mean values of each
part as the initial centers.
� Run the K-means clustering algorithm to update

iteratively the four centers until convergence, and
compute the column vectors of the estimated mixing
matrix bA as the final cluster centers.
2.2. Separating sources by sparse signal recovery

In the separating stage, with the estimated mixing
matrix bA, we formulate the underdetermined blind speech
separation problem as a sparse signal recovery problem.
Eq. (1) can be expanded as:
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where xi ði ¼ 1; . . . ;MÞ are the mixtures, sj ðj ¼ 1; . . . ;NÞ
are the sources, and aij is the ijth element of the mixing
matrix A. We can further write the above equation as
follows,
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where T is the length of the signal, Kij 2 RT�T is a diagonal
matrix whose diagonal elements are all equal to aij. Let
b ¼ vecðXT Þ; f ¼ vecðST Þ, where vec is an operator stack-
ing the column vectors of a matrix into a single vector.
Eq. (3) can be written in a compact form as:
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b ¼Mf ð4Þ

The above equation can be interpreted as a sparse signal
recovery problem in a compressed sensing model, in which
M is the measurement matrix and b is the compressed vec-
tor of samples in f. Therefore, a sparse representation in the
transform domain can be employed for f:

f ¼ Uy ð5Þ

where U is a transform dictionary and y contains the
weighting coefficients in the U domain. Combining (4)
and (5), we have

b ¼MUy ð6Þ

In Eq. (6), if y is sparse, the signal f can be recovered from
the measurement b using an optimization process. This
indicates that source estimation in the underdetermined
problem can be achieved by computing y in (6) using sparse
signal recovery (i.e. sparse coding) methods.
2.2.1. Alternative sparse signal recovery methods

An approach for estimating f from b ¼Mf ¼MUy is to
solve the following ‘0 minimization problem

min kyk0 s:t: b ¼MUy ð7Þ

where kyk0 is the ‘0 norm measuring the sparseness of y.
The solution to the optimization of the above cost function
is an NP-hard problem (Donoho, 2004), which is not a
good choice in practice. However, it has been shown in
(Chen et al., 1999) that the solution to the ‘0 minimization
problem is essentially equivalent to the solution of the fol-
lowing ‘1 minimization problem

min kyk1 s:t: b ¼MUy ð8Þ

This ‘1 norm minimization problem corresponds to the so-
called basis pursuit (BP) (Chen et al., 1999) and can be
solved through linear programming. One starts from a
solution to the overcomplete representation problem
b ¼MUyð0Þ then iteratively updates the coefficients while
keeping b ¼MUyðkÞ, as follows. First, we choose an initial
basis matrix B which is a square matrix having the same
rank as MU and consists of the selected columns of MU,
i.e. the smallest possible complete dictionary. Then, we up-
date the basis by swapping a column of B with an unse-
lected column in MU. When the basis cannot be further
improved based on a pre-defined criterion, we reach the
optimal solution. Finally, y can be readily computed by
B�1b. The vector f which consists of the separated sources
can be obtained by simply multiplying the dictionary U
with y using (5).

Apart from the BP method described above, there are
alternative methods for recovering the speech signals, such
as matching pursuit (MP) (Mallat and Zhang, 1993). The
basic idea of MP is to represent a signal as a weighted
sum of atoms using Eq. (9) which involves finding the “best
matching” projections of multidimensional data onto an
over-complete dictionary,

b ¼
Xk

i¼1

yiqci
þ rðkÞ ð9Þ

where rðkÞ is a residual after k iterations, and qci
is the atom

of MU that has the largest inner product with the residual.
At stage i, it identifies the dictionary atom that best corre-
lates with the residual then subtract its contribution as
follows,

rðiþ1Þ ¼ rðiÞ � yiqci
ð10Þ

where yi = hrðiÞ; qci
i, and h; i is an inner product operation.

Then the process is repeated until the signal is satisfactorily
decomposed.

The orthogonal matching pursuit (OMP) (Pati et al.,
1993) was developed to improve the MP by projecting
the signal vector to the subspace spanned by the atoms
selected as in MP via the same method. However, as
opposed to MP, OMP maintains full backward orthogo-
nality of the residual at each step when updating the
coefficients:

b ¼
Xk

i¼1

yiqci
þ rðkÞ; s:t: hrðkÞ; qci

i ¼ 0 ð11Þ

As proven in (Pati et al., 1993) the necessary number of
iterations for OMP to converge is no greater than the num-
ber of atoms in the dictionary, while MP does not possess
this property.

A least squares method L1LS with ‘1 regularization is
described in (Kim et al., 2007a) for large scale problems.
This interior-point method uses the preconditioned conju-
gate gradient algorithm to compute the search direction.
It solves the following problem:

min kb�MUyk2
2 þ kkyk1 ð12Þ

where k � k2 denotes the ‘2 norm and k is the regularization
parameter. The search direction is computed first, followed
by setting the step size using a line search mechanism. After
computing the Hessian matrix, the PCG algorithm (Dem-
mel and Heath, 1997) is applied to update the coefficients.
Note that for a “small” k, this method will become equiv-
alent to BP.

The performance of the signal recovery methods dis-
cussed above will be studied in Section 3. Based on the
reformulation of the speech separation problem to the
problem of signal recovery as shown from Eq. (3) to (6),
the proposed speech separation algorithm is summarized
in Algorithm 2. We would like to note that the above algo-
rithms are just examples of many sparse signal recovery
algorithms, which, including the recent method FISTA
(Beck and Teboulle, 2009), can all be used for reconstruct-
ing the sources.
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Algorithm 2. Separating speech sources

Task: separating speech sources from each block based
on signal recovery method

Input: x
p
i ; i ¼ 1; 2; p ¼ 1; . . . ; P . (xp

i is one of the blocks
of mixtures, which are generated from blocking stage
to be discussed in Section 2.5), bA. U.

Output: s
p
j ; j ¼ 1; . . . ; 4; p ¼ 1; . . . ; P .

Initialization: p=1.
Repeat:
� Form the measurement vector bp by concatenating xp

1

with x
p
2.

� Multiply M which is formed from bA (obtained from
the clustering stage i.e. the output of Algorithm 1),
with the dictionary U (which can be obtained by dic-
tionary learning stage or a pre-defined DCT
transform).
� Use the signal recovery methods such as BP, MP or

L1LS to find the sparsest coefficients yp from MU
and bp.
� Compute fp according to Eq. (5).
� Compute the source vectors sp

j from fp.
� p ¼ pþ 1.
2.3. The adaptive dictionary learning algorithms

Sparse decompositions of a signal, however, highly rely
on the degree of the fit between the data and the dictionary,
which leads to another important problem, i.e. the issue of
designing dictionary U. According to recent research, two
main approaches are usually used: the analytical approach
and the learning-based approach. In the first approach, a
mathematical model of the data is given in advance so that
the dictionary can be generated by fast Fourier transform
(FFT), DCT, wavelet transform, etc. The second approach
applies machine learning techniques to train the dictionary
from a set of data so that its atoms can represent the fea-
tures of the signal. Dictionary learning methods are often
established on an optimization algorithm, in which an ini-
tial dictionary is given and a signal is decomposed as a lin-
ear combination of the atoms from the initial dictionary
and the weighted values are a few non-zero coefficients.
The atoms of the dictionary are then trained while the
weighting coefficients are fixed. After that, the trained dic-
tionary is used to compute the new weighting coefficients.
The process is iterated until the most suitable dictionary
is learned eventually (Aharon et al., 2006; Rubinstein
et al., 2010; Jafari and Plumbley, 2011; Dai et al., 2012),
based on a pre-defined criterion.

In this paper, instead of using a predefined transform such
as the DCT to obtain the dictionary matrix U, dictionary
learning algorithms will be applied to obtain an adaptive dic-
tionary. The model for dictionary learning is given below.

T ¼ UG ð13Þ
where T is a matrix in which each column contains one of the
training samples, U is the dictionary obtained from the train-
ing process, and G is a matrix consisting of the sparse
coefficient vectors. Three recent dictionary learning
approaches, namely the K-SVD (Aharon et al., 2006) algo-
rithm, the greedy adaptive dictionary algorithm (GAD)
(Jafari and Plumbley, 2011), and the simultaneous codeword
optimization (SimCO) algorithm (Dai et al., 2012), are used
to learn the dictionary U on the signal frames extracted from
speech data (either mixtures or speech sources).

2.3.1. K-SVD

The K-SVD algorithm aims to iteratively find the best
dictionary to represent the signal sample tj (j ¼ 1; . . . ; J ,
where J is the number of training signals) by approximat-
ing the solution to

min
U;G
kT�UGk2

F s:t: 8j; kgjk0 6 T 0 ð14Þ

where k � kF denotes the Frobenius norm, gj (j ¼ 1; . . . ; J )
is the jth column vector of the sparse coefficient matrix
G, and T 0 specifies the maximum number of non-zero coef-
ficients for coding each signal sample. The K-SVD algo-
rithm consists of a sparse-coding step and a dictionary
update step. The first step is to compute the sparse coeffi-
cient vectors from the sample signals in T using any
sparse-approximation approach such as a pursuit method
based on the given dictionary. The second step is updating
the atoms which are columns in the dictionary matrix to
better fit the signal using the sparse representations ob-
tained in the first step. The dictionary update is carried
out for one atom each time, i.e. optimizing Eq. (14) for
each atom in turn while keeping the other atoms fixed.
These two steps are iteratively repeated until the conver-
gence of the algorithm. The essential part of the dictionary
update step is presented here. First, the overall representa-
tion error matrix El is computed by (15).

El ¼ T�
X
i–l

/ig
T
i ð15Þ

where /i is the ith column of the dictionary matrix U; gT
i is

the ith row of the coefficient matrix G and El stands for the
residual when the lth atom is removed from the dictionary
matrix. The SVD decomposition is then applied to El to
find alternative /i and gT

i for approximating El as the clos-
est rank-1 matrix. When all the atoms in the dictionary
have been updated, the learned dictionary is ready for the
sparse coding stage in the next iteration.

2.3.2. GAD

The greedy adaptive dictionary (GAD) algorithm (Jafari
and Plumbley, 2011) learns the dictionary atoms based on
an iterative process using the sparsity index defined as
follows:

rj ¼
ktjk1

ktjk2

ð16Þ

where k � k1 and k � k2 denote the ‘1- and ‘2-norm respec-
tively and tj is the column vector of T. The sparsity index
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measures the sparsity of a signal, where the smaller rj, the
sparser the signal vector tj.

The GAD algorithm begins with the definition of a
residual matrix Rd = ½rd

1 ; . . . ; rd
J �, where rd

j is a residual col-
umn vector corresponding to the j-th column of Rd . This
residual matrix is initialized to T. The dictionary is then
built by selecting the residual vector that has the lowest
sparsity index j.

ĵ ¼ arg
j

min
krd

j k1

krd
j k2

ð17Þ

Then rd
ĵ

is normalized and added to the dictionary. Finally,
the new residual is computed for all the columns. The pro-
cess is repeated until the number of obtained atoms reaches
a pre-determined value.

2.3.3. SimCO

We recently developed a novel dictionary learning algo-
rithm called simultaneous codeword optimization (SimCO)
(Dai et al., 2012). The unique feature of our approach is
that one can update an arbitrary set of codewords and
the corresponding sparse coefficients simultaneously. More
specifically, let X � I½ � � J½ � contain the indices of non-zero
entries in G which is the coefficient matrix produced by the
sparse coding stage. Gi;j – 0 for all i; jð Þ 2 X and Gi;j ¼ 0
for all i; jð Þ R X. We refer to this set as the sparsity pattern
which is often obtained via the sparse coding stage using
the algorithms discussed in Section 2.2.1 such as BP, MP
and OMP. Given the training data T and a sparsity pattern
X, the optimization problem under consideration is

min
U;G

T�UGk k2
F; s:t: U:;ik k2 ¼ 1; 8i

2 I½ �; and Gi;j ¼ 0; 8 i; jð Þ R X ð18Þ

where U:;i represents the ith column of dictionary U (This
notation is used because it can denote the sub-matrix of U
in the following paragraphs). With slight modification in
(18), the connection between our approach and K-SVD be-
comes clear. Let I � I½ � be an index set. Suppose that one is
only interested in updating the codewords indexed by I ,
i.e., U:;i’s with i 2 I , and keep other codewords constant.
Let U:;I denote the sub-matrix of U formed by the columns
of U indexed by I . Let GI ;: denote the sub-matrix of G

consisting of the rows of G indexed by I . The optimization
problem that only updates U:;I and GI ;: is given by

min
U:;I ;GI ;:

T�UGk k2
F ; s:t: U:;ik k2 ¼ 1; 8i

2 I ; and Gi;j ¼ 0; 8 i; jð Þ R X ð19Þ

When the index set I contains only one entry, the optimi-
zation problem (19) is the one that each step of K-SVD dic-
tionary update is designed to solve. When I ¼ I½ �, the
optimization problems (18) and (19) are identical.
For compositional convenience, we introduce the fol-
lowing notation. Suppose that we are updating the code-
words indexed by I , i.e., U:;I , and the corresponding
coefficients, i.e., GI ;:. Define

Tr ¼ T�U:;Ic GI c;:;

where I c is the complementary set of I . Clearly,

T�UG ¼ Tr �U:;IGI ; : :

Define the following function

fI Uð Þ ¼ min
GI ;: :Gi;j¼0;8 i;jð ÞRX

T�UGk k2
F :

It is clear that

fI Uð Þ ¼ min
GI ;: :Gi;j¼0;8 i;jð ÞRX

Tr �U:;IGI ;:k k2
F ð20Þ

Hence, the optimization problem (19) can be written as

min
U:;I

fI Uð Þ subject to U:;ik k2 ¼ 1; 8i 2 I ð21Þ

Based on the derivation in (Dai et al., 2012), the gradient of
fI Uð Þ, with respect to U:;i; i 2 I , can be computed via

rU:;i fI Uð Þ ¼ �2 T�UG�ð Þ:;X i;:ð ÞG
�T
i;X i;:ð Þ

¼ �2 T�UG�ð ÞG�Ti;: ð22Þ

Here, X i; :ð Þ gives the columns of T whose sparse represen-
tation involves the codeword U:;i. G�Ti;: is the optimal solu-
tion to the least squares problem in (20). Let
hi ¼ rU:;i fI Uð Þ be the gradient vector defined in (22). We
define

�hi ¼ hi �U:;iU
T
:;ihi; 8i 2 I ð23Þ

According to Edelman et al. (1999), �hi is in fact the gradient
of f with respect to U:;i on the Grassmann manifold. The
line search path for dictionary update, say U tð Þ; t P 0, is
defined as

U:;i tð Þ ¼ U:;i if i R I or �hi

�� ��
2
¼ 0;

U:;i tð Þ ¼ U:;i cos �hi

�� ��
2
t

� �
� �hi= �hi

�� ��
2

� �
sin �hi

�� ��
2
t

� �
if i 2 I and �hi

�� ��
2

– 0

8>><
>>:

ð24Þ

where hi ¼ rU:;i fI Uð Þ can be computed via (22).
Finally, a line search procedure over the product space

of Grassmann manifolds is proposed in (Dai et al., 2012)
to speed up the convergence of the gradient based dictio-
nary learning algorithm.

The dictionary learning algorithm in SDUBSS is sum-
marized in Algorithm 3. Note that, T can be formed from
speech mixtures X or original speech sources S, while U
needs to be learned from T, as discussed below.



Fig. 3. The flow chart of the STD strategy.
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Algorithm 3. Adaptive dictionary learning.

Task: find the best dictionary to represent the training
speech data

Input: T.
Output: U.
Initialization: Set the initial dictionary U 1ð Þ and j ¼ 1.
Repeat until convergence (use stop rule):
� Sparse coding stage: Fix the dictionary U jð Þ and

update G jð Þ using some sparse coding technique, such
as OMP.
� Dictionary update stage: Update U jð Þ, and G jð Þ as

appropriate, using e.g. SimCO dictionary update.
� j ¼ jþ 1.
2.4. Dictionary learning strategies

It is an important practical issue (Xu and Wang, 2011)
on how to learn the dictionary from training data. We
examine two different training strategies. To this end, we
first expand (5) in two mixtures and four sources case as
follows.
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Fig. 4. The flow chart of the MTD strategy.
2.4.1. Source-trained dictionary

The first strategy called the source-trained dictionary
(STD) is depicted in Fig. 3 where DL represents dictionary
learning which can be achieved by any of the algorithms
described in the above section. In this method, for each
source, we train a dictionary. Therefore four different dic-
tionaries D1;D2;D3;D4 are trained from the four original
sources respectively. They are then combined to form a sin-
gle dictionary matrix U for separating the sources in the
following stages. For example, D1 in Eq. (25) is trained
from the source s1. Firstly, the speech source vector is
reshaped to a speech sample matrix which contains consec-
utive speech frames (each frame has L samples) from the
source vector with an overlap of F samples (to ensure a suf-
ficient number of signals in the sample matrix). Therefore,
the sample matrix has L rows and bðT� LÞ=ðL� F Þc þ 1
columns, where b�c rounds the argument to its nearest inte-
ger. The dictionary is then computed by one of the three
learning algorithms described in Section 2.3 as an L� L
matrix. Finally, the dictionary matrix is arranged in a diag-
onal form with an overlap of F samples until the T� T dic-
tionary D1 is filled in. By using this block diagonal
operation we essentially split the signal in small vectors
and there will typically be a block boundary issue, i.e. a dis-
continuity between the joining area of two adjacent blocks,
causing undesired artifacts in the coefficients. To avoid this
we can multiply the vector by a window function (e.g. the
Hamming window), thus smoothing the signal at the
boundaries. Some information may be lost because of the
windowing, and hence overlapping between blocks is used
to eliminate this problem. The other dictionaries D2;D3;D4

can be generated in the same way. The final single dictio-
nary matrix U is formed by arranging these four dictionar-
ies along the diagonal of U without overlaps. Ideally, the
order of the dictionaries Di ði ¼ 1; . . . ; 4Þ should be consis-
tent with the order of sources si. According to our experi-
ments, when a mismatch of the orders occurs, the
separation performance may be degraded. The reason that
this happens could be that the feature of a speech source is
better captured by its corresponding dictionary rather than
the dictionary obtained from another source.

2.4.2. Mixture-trained dictionary

The second strategy, namely the mixture-trained dictio-
nary (MTD), is illustrated in Fig. 4. The two mixtures
xi ði ¼ 1; 2Þ used to train the dictionary are segmented with
an overlap of F samples (each frame has L samples) to form
the sample matrix which has L rows and ðbðT� LÞ=
ðL� F Þc þ 1Þ � 2 columns. The dictionary is then computed



2 Accessed from http://www.irisa.fr/metiss/SiSEC08/.
3 Accessed from http://www.irisa.fr/metiss/SASSEC07/.

440 T. Xu et al. / Speech Communication 55 (2013) 432–450
by the dictionary learning algorithms such as the K-SVD,
GAD or SimCO as an L� L matrix. Finally, the dictionary
is arranged in a diagonal form with an overlap of F samples
until the T� T dictionary DM is filled in. In this method,
D1;D2;D3, and D4 in Eq. (25) are all identical to DM which
is trained from the mixtures by the same methods as used
for the first strategy. In comparison, as shown in the exper-
iment section, STD has the best performance among the
two different dictionary training strategies. This suggests
that the dictionary trained in this way best matches the ori-
ginal speech source. However, this approach requires the
sources to be available a priori when training the dictionary.
Although in BSS, the sources are assumed to be unknown,
the STD method shows the performance benchmark that
could be achieved by a dictionary learning approach. In
MTD, the sources are estimated in a blind manner, as the
dictionary is trained directly from the mixtures. Neverthe-
less it captures the features less accurately from each source
as compared with STD. However, MTD will be used in our
experiments for fair comparison. It is worth noting that
mixture signals can be regarded as noisy signals (corrupted
by the interfering signals). Therefore, using mixture signals
as training data is reasonable. Similar training methods
could be found in (Elad and Aharon, 2006).

2.5. Blocking and reconstruction

According to Eq. (3), the microphone signals of full length
are stacked into a single vector. This could result in a large
size of measurement matrix for a long speech signal. The
optimization process for the source recovery can become
computationally demanding. To alleviate this issue, we pro-
pose to process the speech mixtures on a block-by-block
basis before running the separating stage i.e. split xi into xp

i

where i ¼ 1; 2; p ¼ 1; . . . ; P . The estimated sources from
each block are concatenated to reconstruct the full signals.
Therefore, the front-end processing stages (i.e. blocking
and reconstruction) will be included in our proposed system
to improve its computational efficiency. As shown in Sec-
tion 3, compared with processing the whole signal, the
block-based processing considerably improves the computa-
tional efficiency of the algorithm without degrading its sepa-
ration performance. It is worth noting that we have already
applied windowing and overlapping when learning the dic-
tionary atoms. Although the length of the atoms can be dif-
ferent from the block length, the atoms become smoother
due to the application of smoothing windows during the dic-
tionary learning process. Using such atoms, the discontinu-
ities between the reconstructed blocks become negligible.
Hence, we do not apply any further overlapping when recon-
structing the full-length signal. Informal listening tests also
confirm that the blocking artefacts are mostly inaudible.

2.6. The whole system

The whole system of the proposed SDUBSS algorithm
can be summarized in Algorithm 4. Note that, for
comparison purpose, in the dictionary learning stage of
SDUBSS, dictionary matrix U will also be computed from
a pre-defined transform such as DCT and/or STFT, as con-
sidered in our experiments.

Algorithm 4. CSDUBSS.

Task: Separate the four speech sources from the two
speech mixtures

Input: X.
Output: S.
� Clustering stage: obtain the estimated mixing matrixbA from the mixture matrix X by Algorithm 1.
� Dictionary learning stage: learn the dictionary U

from the mixture matrix X by Algorithm 3.
� Blocking stage: segment mixtures xi; i ¼ 1; 2 to

blocks xp
i ; p ¼ 1; . . . ; P .

� Separating stage: separate speech sources
s

p
j ; j ¼ 1; . . . ; 4; p ¼ 1; . . . ; P from each mixture

block x
p
i ; i ¼ 1; 2; p ¼ 1; . . . ; P by Algorithm 2.

� Reconstruction stage: reconstruct the speech source
matrix S including the four whole sources
sj; j ¼ 1; . . . ; 4 by concatenating together all the
blocks of estimated source components
s

p
j ; j ¼ 1; . . . ; 4; p ¼ 1; . . . ; P .
3. Experimental results

3.1. Evaluation dataset and performance metrics

In the first three subsections, we evaluate the proposed
algorithm by performing 50 random experiments for each
type of comparisons based on the TIMIT database. Twelve
speech signals from the TIMIT database are chosen as our
signals’ pool, from which four signals are randomly
selected to be original speech sources in each test. The mix-
ing matrix is randomly generated for each test so that two
mixtures are obtained by this mixing matrix and the speech
sources randomly picked from the pool. Note that the same
random seed is used for all the experiments, which means
that each experiment has the same 50 random mixing
matrices and 50 groups of random speech sources. All
the results in the first three subsections are the average val-
ues for the 50 tests. Each speech signal has a duration of
5 s, sampled at 10 kHz. That is, each signal has 50,000
samples.

In the final subsection, another database (‘dev2’) from
the signal separation evaluation campaign (SiSEC20082)
and the database from Stereo Audio Source Separation
Evaluation Campaign (SASSEC073) are used for making
comparison between the proposed algorithm and the
state-of-the-art method for this underdetermined blind
speech separation task. The original sources are also avail-
able for the evaluation with each having a duration of 10 s,

http://www.irisa.fr/metiss/SiSEC08/
http://www.irisa.fr/metiss/SASSEC07


Table 1
Average SDR, SIR, SAR (in dB) measured for four estimated speech
sources and p-values from the t-test between the methods, where B = BP,
M = MP, L = L1LS.

BP MP L1LS p-value

B/M B/L M/L

SDR 6.52 0.73 4.88 0.0000 0.0000 0.0000
SIR 9.98 19.07 6.43 0.0000 0.0000 0.0000
SAR 10.65 1.70 12.11 0.0000 0.0000 0.0000

4 By increasing the number of iterations, the MP algorithm is likely to
offer improved results, with however a considerably increased computa-
tional cost. Note that the parameters used in our experiments, including
those for BP and L1LS, are by no means optimal despite the fact that
every attempt has been made in order to find the parameter sets that give
the best possible performance for each algorithm under comparison. In
practice, however, we have also taken into account the computational
complexity of these algorithms to ensure fair comparisons among them.
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sampled at 16 kHz. That is, each signal has 160,000
samples.

For the fair comparison of blocking, dictionary learning
and separating stages, the true random mixing matrices are
used in the first three subsections i.e. the K-means cluster-
ing stage is excluded from the proposed multi-stage
method. In the last subsection, the full stages of the pro-
posed method are used to compare with the state-of-the-
art algorithm.

For objective quality assessment, we use the three per-
formance criteria defined in the BSSEVAL toolbox (Vin-
cent et al., 2006) to evaluate the estimated source signals.
These criteria are the signal to distortion ratio (SDR), the
source to interference ratio (SIR) and the source to arti-
facts ratio (SAR), defined respectively as

SDR ¼ 10log10

kstargetk2

keinterf þ enoise þ eartif k2
ð26Þ

SIR ¼ 10log10

kstargetk2

keinterf k2
ð27Þ

SAR ¼ 10log10

kstarget þ einterf þ enoisek2

keartif k2
ð28Þ

where stargetðtÞ is an allowed deformation of the target
source siðtÞ; einterf ðtÞ is an allowed deformation of the
sources which accounts for the interference of the un-
wanted sources, enoiseðtÞ is an allowed deformation of the
perturbation noise (but not the sources), and eartif ðtÞ is an
artifact term that may correspond to artifacts of the sepa-
ration algorithm such as musical noise, etc. Therefore, the
estimated source ŝðtÞ can be decomposed as follows:

ŝðtÞ ¼ stargetðtÞ þ einterf ðtÞ þ enoiseðtÞ þ eartif ðtÞ ð29Þ

According to Vincent et al. (2006), both SIR and SAR mea-
sure local performance. SIR mainly measures how well the
algorithm does for the suppression of interfering sources,
while SAR measures how much artefact is within the sepa-
rated (target) source. SDR is a global performance index,
which may give better assessment to the overall performance
of the algorithms under comparison. For this reason, we will
focus more on the interpretation of SDR results in subse-
quent analysis, as opposed to the SIR and SAR results.

3.2. Separation results with fixed dictionary

3.2.1. Comparison of different signal recovery algorithms for
separation

One advantage of the proposed system is that any of the
state-of-the-art signal recovery techniques can be employed
in the separating stage. Therefore, we compare the effect of
the different signal recovery algorithms on the separation
performance of the proposed system. To this end, we
replace the adaptive dictionary by the predefined dictio-
nary obtained by the DCT transform. We use the whole
speech signal as a single block, that is, P ¼ 1. We then vary
the algorithms used in the separating stage for signal
recovery. The methods BP, MP and L1LS discussed in Sec-
tion 2 are used in the experiment. Specifically, we use the
following three algorithms in our experiments, i.e. SPGL1
(Spectral Projected Gradient for L1 minimization) (Berg
and Friedlander, 2008a,b), the solveMP in SparseLab
(Donoho et al., 2005) and L1LS solver for ‘1 regularized
least squares problem (Kim et al., 2007a,b), which are the
typical implementations of the three signal recovery meth-
ods. To balance the performance and the running speed of
the algorithms, the parameters used in the three algorithms
are tuned on the basis of extensive tests. In BP, the opti-
mality tolerance parameter was set to 0.01. In MP, the
maximum number of iterations4 parameter maxIters was
set to 1000 and the stop condition parameter lambdastop
was set to zero. In L1LS, the regularization parameter
lambda was set to 0.01 and the relative target duality gap
was set to 1. With this set up, the computational time
required by these three algorithms is 1234 s, 8169 s and
4531 s respectively. The separation performance evaluated
by SDR, SIR and SAR is shown in Table 1.

We also perform a paired Student’s t-test of the null
hypothesis that the results from different methods are signif-
icantly different. All the t-tests in this work have been car-
ried out at 5% significance level. If the p-value is greater
than 0.05 (i.e. 5% significance level), the difference between
the results is statistically insignificant. Otherwise, if the p-
value is less than 0.05, the results are statistically significant,
which means that the performance difference between these
methods is significant. The first letter of these methods is
used to represent the p-value between them. For example,
in Table 1, B/M is used to denote the p-value obtained by
comparing the results from BP and MP respectively. It
can be observed that the p-value between different methods
in the following tables are almost all smaller than 0.05,
suggesting that the performance difference between these
methods is statistically significant. The only exceptions are
the p-values for K/G in Table 3, and S/F in Table 2, which
are both greater than 0.05, suggesting that their difference is



Table 2
Average SDR, SIR, SAR (in dB) measured for four estimated speech sources by using adaptive dictionary with different learning strategy and compared to
using fixed dictionary i.e. DCT, STFT, MDCT. The right four columns present the p-values from the t-tests between STD and other four methods,
respectively MTD, DCT, STFT and MDCT, where S = STD, M = MTD, D = DCT, F = STFT, C = MDCT.

STD MTD DCT STFT MDCT p-value

S/M S/D S/F S/C

SDR 7.85 5.32 6.87 6.00 5.14 0.0000 0.0001 0.0000 0.0000
SIR 12.43 8.94 10.86 9.37 9.33 0.0000 0.0003 0.0000 0.0000
SAR 10.36 8.80 9.86 10.19 8.58 0.0000 0.0073 0.3507 0.0000
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Fig. 5. The effect of different block length on the computational efficiency and separation performance of the proposed algorithm. The cost-benefit (i.e.
computing time divided by the output SDR) is also shown.
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statistically small. We have also calculated the confidence
intervals in each t-test performed in Tables 1 and 2 respec-
tively, and the results are shown in Tables 11 and 12 in the
Appendix.

It can be seen from this table that BP performs better for
sparse signal recovery in our separation task. Therefore, we
will use it as the default signal recovery algorithm in the
following experiments.
3.2.2. Effect of blocking on system performance

In this section, we perform experiments to evaluate the
effect of the block size on the computational efficiency
and separation performance of the proposed algorithm.
We use the BP algorithm in the separating stage and the
DCT transform to obtain the fixed dictionary U. The rela-
tion of the computational cost to the block length is shown
in the upper subplot of Fig. 5, while the separation perfor-
mance (measured by the SDR) versus the block length is
shown in the middle subplot. Each result on the plots is a
value averaged over the four estimated speech sources.
From this figure, it can be observed that the algorithm
becomes computationally more efficient when reducing
the block lengths, with the separation performance getting
slightly worse. For example, for the block size equal to 512
samples, it takes only 151 s to run the algorithm, however,
the separation performance in terms of average SDR
becomes 4.58 dB. For the block size equals to 2048 sam-
ples, the algorithm takes 302 s to run which is less efficient
as compared to the use of a smaller block size, however it
provides an average SDR for up to 5.67 dB. Compared
with processing the full-length signal as a single block
which takes 1234 s for the algorithm to finish running,
using the block size of 2048 samples is reasonably fast. In
this case, the block-based algorithm is approximately five
times faster than the algorithm without blocking. Fig. 5
suggests that there are only slight changes in the separation
performance for a certain range of block lengths. Based on
these observations, we will use the block size of 2048 sam-
ples in the following experiments. It appears from the
upper subplot of Fig. 5 that, as opposed to a very short
block length, longer block lengths do not vary the required
runtime considerably. This observation can be related back
to the motivation for introducing the blocking process in
the proposed method. We found that the BP algorithm
can take enormous amount of time to converge for a long
input signal, and can eventually become computationally
prohibitive. When processing the whole signal on a
block-by-block basis, this algorithm converges much faster.



Table 3
Average SDR, SIR, SAR (in dB) measured for four estimated speech sources by using the dictionaries learned with different learning algorithms. The right
three columns present the p-values from the t-tests between these methods, where S = SimCO, K = K-SVD, and G = GAD.

SimCO K-SVD GAD p-value

S/K S/G K/G

SDR 5.32 3.99 2.93 0.0000 0.0000 0.0000
SIR 8.94 6.25 6.19 0.0000 0.0000 0.8079
SAR 8.80 9.35 7.08 0.0001 0.0000 0.0000

Table 4
Performance comparison (measured by SDR in dB) between the learned
dictionaries and the predefined dictionary (i.e. DCT) for the noise-free
mixtures, noisy mixtures, and the performance degradation (i.e. the
difference between the results obtained from the noise-free mixtures and
the noisy mixtures).

DCT SimCO K-SVD GAD

Noise-free mixtures 6.87 5.32 3.95 2.93
Noisy mixtures 5.82 5.31 3.81 2.91
Performance degradation 1.05 0.01 0.14 0.02
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As a result, the overall time for processing the whole num-
ber of short blocks is still shorter than processing the full-
length signal as one long block. With the test results for dif-
ferent block lengths, we attempt to find empirically an
appropriate block length around which the pursuit algo-
rithm converges efficiently, and at the same time, the sepa-
ration performance does not deteriorate. In fact, if the
number of iterations in BP is fixed, the blocking process
may increase the computational time. In our method, the
BP algorithm terminates iterations once a criterion is satis-
fied (using a threshold). For shorter signals, the pursuit
algorithm tends to take much shorter time to find the solu-
tion (using a smaller number of iterations). The runtime or
the number of iterations taken by the pursuit algorithms to
converge varies with respect to several factors including the
length of blocks, the nature of the signal, numerical arte-
facts, and the hardware used for running the tests. Recall
that each result in Fig. 5 is an average of 50 random tests,
with each taking a different number of iterations to con-
verge. As a result, some longer block lengths do not vary
the required runtime considerably.

3.3. Separation performance with adaptive dictionary

3.3.1. Comparison of different strategies for learning the

dictionary

From the mixtures, we can recover the four speech
sources using the DCT, STFT, MDCT dictionaries as done
in sections5 3.2.1 and 3.2.2. Alternatively, we can learn the
adaptive dictionaries based on the STD and MTD meth-
ods. The dictionary learning algorithm applied here is Sim-
CO due to its performance advantage shown in the
following section where the setup of the parameters is also
given. The average results for 50 random tests are pre-
sented in Table 2.

From this table, we can observe that the separation per-
formance using the STD trained dictionary is considerably
better than using the fixed dictionary. However, it is not
surprising that the MTD method i.e. using the dictionary
learned from the mixtures offers lower performance than
the STD method. These results suggest that the properly
learned dictionaries outperform the pre-defined dictionary
in underdetermined speech separation.
5 The parameters were set to be the same for DCT, STFT, and MDCT,
for example, the window (block) lengths were all set to 2048 samples.
3.3.2. Comparison of different dictionary learning algorithms

for separation

In this section, we compare the results of using different
learning algorithms in the dictionary learning stage of the
proposed system. As above, the BP algorithm is used in
the separating stage, and the same mixtures are used in
these random experiments. The parameters used in the dic-
tionary learning algorithms are also tuned to balance the
performance and the running speed of the algorithms.
The number of trained atoms was set to 512, the length
of each atom i.e. L to 512, the sparsity parameter to 10
and the number of iterations to 30 for both SimCO and
K-SVD. In GAD, only the size of the dictionary needs to
be set, which is 512. Note that in the first 15 iterations, Sim-
CO was run with the regularization parameter l set to 0.1,
and in the following 15 iterations, to 0. The average results
over 50 random tests are given in Table 3. It shows that the
separation performance obtained by using SimCO is better
than using K-SVD and GAD.

3.4. Separation in noisy case

In this section, we examine the performance of adaptive
dictionaries for noisy mixtures. To this end, we add white
Gaussian noise to the speech mixtures with a
SNR = 20 dB. The dictionary is trained from the noisy
mixtures and the sources are separated from the same noisy
mixtures using the proposed algorithm. The set up of the
proposed system is identical to the one for the noise-free
case. Table 4 shows the results measured by SDR for the
noise-free mixtures, noisy mixtures, and the difference
between them (i.e. the performance degradation). From
this table, it can be observed that using a fixed dictionary,
the performance degradation based on 50 random tests
from noise-free to noisy environment is considerably
greater than that using an adaptive dictionary. This



Fig. 6. The four male speech sources (a), (b), (c), (d) and the two mixtures (e), (f) used in the experiment. The horizontal and vertical axis are the sample
indices and amplitude respectively, same for those in Fig. 7.
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indicates that the learned dictionary tends to be more
robust than a fixed dictionary for the separation of noisy
speech mixtures.
3.5. Comparison with the state-of-the-art method

In this section, the proposed algorithm is compared with
two related methods, namely, Gowreesunker and Tewfik
(2009, 2008) and Bofill and Zibulevsky (2001). First, we
compare our algorithm with (Gowreesunker and Tewfik,
2009, 2008), which also uses adaptive dictionary for speech
separation. Their results have been reported in the evalua-
tion campaign SiSEC2008. In this method, the mixing
matrix is estimated using peak picking on a threshold his-
togram and separation using coefficient space partitioning
with a K-SVD trained dictionary. In our proposed method,
the techniques used in different stages are specified based
on the above experimental results. The mixing matrix is
estimated by K-means clustering in the clustering stage.
The basis pursuit is used in the separating stage for signal
recovery. The dictionary update algorithm SimCO and the
training strategy MTD (for ‘blind’ separation) is used in
the dictionary learning stage. All the speech mixtures are
processed by the blocking stage and the reconstruction
stage to obtain the final separation performance. The test
Fig. 7. The four estimated
data used are the four male speech signals from SiSEC2008
‘Under-determined speech and music mixtures develop-
ment 2’ database.

In the beginning of the experiment, we used two instan-
taneous mixtures which were obtained by mixing four male
speech sources with the following mixing matrix.

A ¼
0:3338 0:6495 0:8241 0:9397

0:9426 0:7604 0:5664 0:3420

� �
ð30Þ

The bA obtained from the two instantaneous mixtures by
the clustering algorithm (i.e. clustering stage of the pro-
posed algorithm) is shown in Eq. (31). We see that the esti-
mated mixing matrix bA is reasonably close to the true
mixing matrix A except the permutation ambiguity.

bA ¼ 0:6312 0:9368 0:8132 0:3532

0:7756 0:3499 0:5820 0:9355

� �
ð31Þ

Based on the estimated mixing matrix, we can then recover
the four speech sources using the remaining stages of the
proposed system. For the mixtures shown in Fig. 6, the sep-
aration result by the proposed system is shown in Fig. 7,
where the adaptive dictionary was learned by SimCO in
the dictionary learning stage. It can be observed that the
estimated sources in Fig. 7 are very similar to the original
sources in Fig. 6.
male speech sources.



Table 5
Average SDR, SIR, SAR (in dB) measured for four estimated male speech
sources obtained by the proposed method (with the learned dictionary),
the method due to Gowreesunker and Tewfik, and the proposed method
with the STFT dictionary.

Proposed method Gowreesunker and Tewfik STFT method

SDR 4.38 2.73 4.77
SIR 7.53 8.15 7.99
SAR 9.02 5.93 9.23

Table 6
Average SDR, SIR, SAR (in dB) measured for four estimated female
speech sources obtained by the proposed method (with the learned
dictionary), the method due to Gowreesunker and Tewfik, and the
proposed method with the STFT dictionary.

Proposed method Gowreesunker and Tewfik STFT method

SDR 4.04 3.80 4.51
SIR 6.19 8.58 6.86
SAR 9.73 6.60 9.78

Table 8
Average SDR, SIR, SAR (in dB) measured for four estimated female
speech sources.

Proposed method Bofill and Zibulevsky STFT

SDR 5.52 4.30 5.72
SIR 6.06 8.90 6.64
SAR 10.54 9.20 10.73
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The average performance of these four separated
sources measured by SDR, SIR, SAR is shown in Table 5,
where the results are compared between the proposed
method, the method by Gowreesunker and Tewfik, and
the proposed method without using dictionary learning
(i.e. using the STFT basis instead).

We can see that, using the proposed method, there is an
approximately 2 dB improvement over the method by
Gowreesunker and Tewfik. For this task, the proposed
method takes 868 s while the compared method needs
1200 s to separate the speech sources.

We have also tested these methods on four female
speech signals in the SiSEC2008 evaluation campaign,
using the exactly same parameters as those for male speech
tests. Table 6 shows the performance of the compared
methods measured by SDR, SIR, and SAR from these four
separated sources. Again, the proposed method offers con-
sistently better performance than these baseline methods.

To compare our method with another benchmark method
by (Bofill and Zibulevsky, 2001), we use the dataset in the
evaluation campaign SASSEC07, which can be regarded as
an earlier version of SiSEC2008. The reason for this choice
is that the results of the algorithm by Bofill and Zibulevsky
were reported in SASSEC07, but not in SiSEC2008. Using
the data from the campaign SASSEC07 thus enables us to
compare the results of our algorithm with those of Bofill
and Zibulevsky’s method. Specifically, we used the signals
from the Instantaneous Mixtures in the ‘Development data’.
Table 7
Average SDR, SIR, SAR (in dB) measured for four estimated male speech
sources.

Proposed method Bofill and Zibulevsky STFT

SDR 6.15 3.33 6.40
SIR 7.36 7.65 7.75
SAR 9.76 8.50 10.08
The algorithm by Bofill and Zibulevsky has been used as a
benchmark for performance comparison in many papers on
underdetermined source separation. Even though this
method does not use an adaptive dictionary, it is one of the
early papers that implement the idea of sparse coding for
underdetermined source separation. In this approach, the
mixing matrix is estimated by maximizing a potential function
which is defined as the sum of the individual contributions
from each angular direction of all the possible directions
along the circle of unit length (Bofill and Zibulevsky, 2001).
The maxima of the potential function are considered to be
the estimated directions of the basis vectors (Bofill and Zibu-
levsky, 2001). The average performance measured by SDR,
SIR, SAR from these four separated sources is shown in
Table 7, where the results for using predefined dictionary
STFT are also included for comparison.

The results of another test based on four female speech
signals are shown in Table 8.

It is observed from Tables 5 and 6 that, the reference
method (Gowreesunker and Tewfik, 2009, 2008) performs
better in terms of SIR and worse in terms of SAR than
our proposed method. We believe such an effect is mainly
caused by the different ways of processing taken in these
two methods, instead of by parameter tuning. In an ideal
situation, one would expect an algorithm to be able to sup-
press the interfering sources as much as possible, without
introducing artefacts to the separated source (i.e. the
source of interest). In practice, however, many algorithms
may introduce processing artefacts to the source of interest
when suppressing the interfering sources. Such artefacts
may be introduced by the separation algorithm due to,
for example, time–frequency masking (causing e.g. musical
noise), filtering operations, or deformations that are not
allowed (Vincent et al., 2006). Such a difference (i.e. a
higher SIR, but a lower SAR) can also be observed from
the results of the algorithms reported in the SiSEC2008
evaluation campaign (Vincent et al., 2009).

The reference method (Gowreesunker and Tewfik, 2009,
2008) uses a coefficient space partitioning technique for
source recovery and separation. Such an approximation
is likely to introduce additional artefacts despite its ability
in suppressing the interfering sources. This may well be the
situation that is observed here, i.e. giving a higher SIR but
a lower SAR, in comparison to our proposed method. As
shown in (Vincent et al., 2006, 2009), using SDR may give
better overall performance assessment to the algorithms
under comparison, as SDR is a global performance index
(Vincent et al., 2006).



Table 9
Mutual coherence of the dictionaries learned from the female and male
speech mixtures using SimCO, as compared with the DCT and STFT
dictionaries. Note that, the DCT and STFT atoms (bases) are pre-defined,
hence they are kept the same for female and male speech in this example.

SimCO (female) SimCO (male) DCT STFT

Coherence 0.16 0.28 5.26e�16 1.37e�16

Table 10
The average sparsity indices (and their standard deviations) of all the
atoms and the coding coefficients from the learned dictionaries (different
for female and male speech mixtures) and the predefined dictionaries
(DCT and STFT, fixed for male and female speech mixtures).

SimCO
(female)

SimCO
(male)

DCT STFT

Atoms 20.37 (0.15) 20.36 (0.17) 20.38 (0.14) 20.34 (0.32)
Coefficients 8.29 (0.24) 8.45 (0.25) 8.28 (0.25) 8.72 (0.25)
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3.6. Additional performance analysis

Recent progresses suggest that the performance of dictio-
nary learning algorithms is highly dependant on the level of
sparsity (of atoms and/or coding coefficients) achieved in
sparse approximation and the mutual coherence between
the atoms (Tropp, 2004; Gribonval and Vandergheynst,
2006; Dai et al., 2012; Mailhe et al., 2012; Barchiesi and
Plumbley, 2012; Plumbley et al., 2010). To gain a deeper
understanding about the results obtained in above sections,
we have performed additional experiments and numerical
analysis from the following two aspects: namely sparse cod-
ing effect and mutual atom coherence (either learned, or pre-
defined). We perform the analysis based on the SiSEC2008
campaign data as already used in Section 3.5. The mixtures
Fig. 8. Time domain original female speech mixtures (
both have a length of 160,000 samples, and the length of each
dictionary atom was set to 512.

As shown earlier (e.g. in Tables 2–5), using the dictio-
naries learned from the ‘ground truth’ speech sources offers
significantly better separation performance than using the
predefined dictionary consisting of DCT basis functions,
while the dictionaries learned from speech mixtures tend
to perform worse than the DCT dictionary. The difference
in separation performance due to the use of these dictionar-
ies can be well explained by the difference in their mutual
coherences. The mutual coherence of a dictionary, i.e.
mðUÞ, can be defined as the maximum absolute inner prod-
uct between any two different atoms,

mðUÞ ¼ max
i–j
jh/i;/jij ð32Þ

Using the same speech data as for Tables 5 and 6, we show
in Table 9 the mutual coherence results of the learned dic-
tionaries and the predefined dictionaries (DCT and STFT).
It is not surprising that the coherence values of the DCT
and STFT dictionary are very small, as their bases are
orthogonal to each other. In contrast, the learned dictio-
nary (from either female or male speech) has a much great-
er coherence value. According to Tropp (2004), only if the
mutual coherence of the dictionary is low, the sparse cod-
ing algorithm OMP, which is used in our SimCO algo-
rithm, will guarantee to obtain the right support, i.e. the
selection of the atoms, for sparse signal recovery. As a con-
sequence, the dictionaries learned from speech mixtures
may produce worse results than the predefined dictionaries
(DCT and STFT), due to the higher coherence. As such,
increasing efforts are devoted to the learning of incoherent
dictionaries from data (Gribonval and Vandergheynst,
2006; Mailhe et al., 2012; Barchiesi and Plumbley, 2012).
down sampled at rate 100:1) and their scatter plot.



Fig. 9. Coding coefficients obtained using the dictionary learned by SimCO (down sampled at rate 100:1) and their scatter plot.

T. Xu et al. / Speech Communication 55 (2013) 432–450 447
Incoherency constraints could be incorporated to our sep-
aration system in order to further improve the separation
performance, which we leave to our future work.

Apart from the mutual coherence, sparsity also contrib-
utes to the performance difference. For example, comparing
Tables 5 and 6, we found that the coherence of the dictionary
learned from the female speech is a little smaller than that
from the male speech (despite the difference being small),
however, the proposed algorithm tends to give higher SDR
results for male speech. Such a single test may not be
Fig. 10. DCT coding coefficients (down sam
sufficient to draw an explicit link between the performance
variation and the separation results. It is however interesting
and useful to compare the sparsity level of the learned dictio-
naries and the predefined dictionaries, together with their
coding coefficients (i.e. sparse approximation results). This
can be assessed by checking the sparsity index as defined in
Eq. (16) and the joint scatter plots of the coding coefficients.
The sparsity index measures the sparsity of an atom. The
smaller the sparsity index, the sparser the measured atom.
The average sparsity indices of the atoms (corresponding
pled at rate 100:1) and their scatter plot.



Fig. 11. STFT coding coefficients (down sampled at rate 100:1) and their scatter plot.

Table 11
The confidence intervals corresponding to the p-values in Table 1 obtained
from the t-test between the methods, where B = BP, M = MP, and L =
L1LS.

Confidence intervals

B/M B/L M/L

SDR (4.71, 6.85) (1.24, 2.02) (�5.14, �3.15)
SIR (�10.63, �7.57) (3.00, 4.08) (11.20, 14.07)
SAR (8.48, 9.44) (�1.71, �1.20) (�10.82, �10.01)

Table 12
The confidence intervals corresponding to the p-values in Table 2 obtained
from the t-tests between the STD and other four methods, respectively
MTD, DCT, STFT and MDCT, where S = STD, M = MTD, D = DCT,
F = STFT, and C = MDCT.

Confidence intervals

S/M S/D S/F S/C

SDR (2.08, 2.98) (0.52, 1.45) (1.34, 2.35) (2.20, 3.22)
SIR (2.69, 4.29) (0.75, 2.39) (2.25, 3.87) (2.27, 3.93)
SAR (1.20, 1.91) (0.14, 0.87) (�0.19, 0.53) (1.42, 2.15)

Table 13
The confidence intervals corresponding to the p-values in Table 3 obtained
from the t-tests between the methods of SimCO, K-SVD and GAD, where
S = SimCO, K = K-SVD, and G = GAD.

Confidence intervals

S/K S/G K/G

SDR (0.95, 1.71) (2.02, 2.75) (0.71, 1.41)
SIR (2.05, 3.31) (2.15, 3.35) (�0.47, 0.60)
SAR (�0.82, �0.28) (1.45, 1.99) (2.04, 2.51)
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to Table 9) and and their coding coefficients are shown in
Table 10. It can be observed that the dictionary with a lower
average sparsity index of the atoms tends to produce higher
SDR performance. This coincides with the result observed in
(Jafari and Plumbley, 2011).

To obtain the coding coefficients, the signal was first
divided into frames with each having a length of 512 sam-
ples. The DCT coding coefficients were then calculated for
these frames, with an analyzing length identical to the
length of the segments. The coefficients of each frame were
then concatenated to form a vector of coefficients with an
equal length to the original mixtures in the time domain.
The STFT coefficients are obtained in the same way. The
coding coefficients based on the learned dictionary are
obtained by multiplying each frame of signals with the dic-
tionary matrix obtained by the SimCO algorithm, which
are then concatenated in the same way as the DCT and
STFT coefficients. For the convenience of visualization,
we show the downsampled versions of the speech mixtures,
and their coding coefficients, with a sampling rate of 100:1,
resulting in a length of 1600 samples along the horizontal
axis. We also show the joint scatter plots of the original
female speech mixtures (Fig. 8), and their coding coeffi-
cients using dictionaries learned by SimCO (Fig. 9), or pre-
defined transforms such as DCT (Fig. 10) and and STFT
(Fig. 11). Note that the joint scatter plots for male speech
are omitted here. From these figures, it can be observed
that the learned dictionary provides a similar sparsity pat-
tern to those in DCT and STFT. This implies that the
learned dictionary offers an alternative to DCT and STFT
for coding speech signals. Similar effects have been
observed from the male speech mixtures.

Inspecting the mutual coherence and average sparsity
index of a dictionary provides some useful clues for inter-
preting the performance of a dictionary for the task of sep-
aration. However, the performance of using these
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dictionaries can be dependant on the nature of the data, as
well as the objective of the signal processing task. In some
cases, it may be beneficial to promote the statistical depen-
dency between the atoms, as shown in a recent paper (Peleg
et al., 2012).

4. Conclusions

We have presented a multi-stage system for underdeter-
mined blind speech separation using block-based sparse
coding with adaptive dictionary learning. Numerical exper-
iments have shown the competitive separation performance
by the proposed method, when compared with the recent
underdetermined BSS approaches reported in the recent
source separation evaluation campaign. The proposed
method builds a new framework for underdetermined
BSS, and offers great potential to accommodate the sparse
signal recovery and adaptive dictionary learning algo-
rithms to the source separation problems. This study has
also shown the benefit of using learned dictionaries for
underdetermined BSS, and the advantage of using the
block-based processing to improve the computational effi-
ciency of the signal recovery algorithms. Moreover, the
framework of the proposed method provides a friendly
structure to test the performance of other dictionary learn-
ing and signal recovery algorithms in source separation
applications in the future.
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