
1

A Fast Dictionary Learning Algorithm via
Codeword Clustering and Hierarchical

Sparse Coding

By Tao Xu1, Wenwu Wang1, Wei Dai2

1 Department of Electronic Engineering, University of Surrey, UK
2 Department of Electrical and Electronic Engineering, Imperial College London, UK

Emails: [t.xu; w.wang]@surrey.ac.uk; wei.dai1@imperial.ac.uk

Abstract

Dictionary learning algorithms, aiming to learn a sparsifying transform from train-
ing data, are often established on an optimization process involving the iterations be-
tween two stages: sparse coding and dictionary update. In practice, however, these al-
gorithms are often computationally demanding especially when dealing with large scale
data or high dimensional signals. In this paper, we propose new methods for improving
the computational efficiency of dictionary learning algorithms. Specifically, we develop
a tree-structured multi-level representation of dictionary based on clustering, which is
used to derive a hierarchical algorithm in the sparse coding stage. The proposed idea is
then applied to the simultaneous codeword optimisation (SimCO) algorithm, a dictio-
nary learning algorithm that we developed recently, resulting in a new algorithm: fast
SimCO. Numerical examples are provided to show its computational efficiency and the
performance for image denoising.

1. Introduction

Sparse representation is an emerging technique in signal processing, aiming to address the
problem of how to represent a natural signal as the combination of only a few elementary
components (i.e. codewords or atoms) chosen from a dictionary (i.e. the collection of all
the atoms), assuming that the signals are naturally sparse in one domain or can be made
sparser in another domain using e.g. a transform. This technique can be used in a number
of applications, e.g. image denoising and source separation, and was demonstrated to be
useful for large scale and highly redundant data.

The performance of sparse representation relies greatly on the fit between the signals
of interest and the dictionary that is used to sparsify the signals. Either a pre-defined
dictionary (obtained by an analytical transform) or a learned dictionary (based on a
machine learning or optimisation algorithm) has been used in the literature to serve for
this purpose. Learning a dictionary from training data, as shown recently, may give a
better fit to the signals, and therefore has the potential to offer better performance than
a predefined dictionary. The learning process, however, may involve a higher computa-
tional complexity, rendering the algorithms to be less practical in computation extensive
applications, for example, when dealing with large scale or high-dimensional data.

We propose a new method to improve the computational efficiency of dictionary learn-
ing algorithms based on codeword clustering and hierarchical sparse coding, and we ap-
ply this method to our recently proposed dictionary learning algorithm, i.e. simultaneous

2

codeword optimisation (SimCO) in Dai et al. (2012). The details of the proposed method,
i.e. fast SimCO, are given in Section 2, and simulations together with the analysis of the
results are provided in Section 3.

2. The Proposed Method

The dictionary learning task is usually achieved by alternate iterations between sparse
coding and dictionary update. First, given an initial dictionary, a signal is decomposed
as a linear combination of only a few atoms. The atoms of the dictionary are trained
with fixed or sometimes unfixed weighting coefficients. The trained dictionary is then
used to compute the new weighting coefficients. The process is iterated until the most
suitable dictionary is obtained eventually based on a pre-defined optimisation criterion.
When developing the SimCO algorithm, we also adopted this process, and used the
OMP algorithm by Pati et al. (1993) for the sparse coding stage, which aims to solve
the optimisation problem: Given data matrix Y, find a sparse coefficient matrix X to
minimize ‖Y −DX‖2F for a given overcomplete dictionary D. In OMP, this is achieved
by finding the column vector in D which most closely resembles a residual vector r,
which is initialised to y, then adjusted at each iteration to take into account the vectors
previously chosen.
In this work, we propose to make the following improvements to the SimCO algo-

rithm. First, the dictionary atoms obtained in the dictionary update stage of SimCO
are clustered using a K-means algorithm. The cluster centers represent a high-level rep-
resentation of the dictionary, with the atoms in their neighborhoods representing the
low-level dictionary. In the sparse coding stage, the closest centroid from the higher level
dictionary to the signal under consideration is found, and their neighbors are then used
to code this signal with a dimension reduced orthogonal matching pursuit (OMP), based
on the nearest neighbor search. A tree structure with multi-level dictionary, obtained
by multi-level K-mean clustering, is applied for sparse coding process. We call this new
algorithm as the tree-OMP (TOMP) method, summarised in Algorithm 1. The atoms of
the dictionary are organized by a tree structure to improve the computational efficiency
in the coding stage. In each iteration, the atom that is closest to the residual vector,
is selected from the cluster centroids of the atoms in the dictionary, instead of all the
atoms in the dictionary, and the coding is performed in the neighborhood of each cen-
troid. Simulations are given in Section 3 to demonstrate its advantage in computational
efficiency.
We have also tested an approximate version of TOMP, called the centralized OMP

method (COMP), where only the centroid that is closest to the residual vector is selected
in each iteration. The only difference is that the sub-optimization problem in step (d) of
TOMP is now replaced by using the centroid directly in COMP. This apparently improves
the computational efficiency but may degrade the sparse coding performance, as shown
in the next section.

3. Simulation Results

Firstly, we evaluate the proposed fast SimCO algorithm (i.e. using TOMP in the sparse
coding stage, but the same dictionary update stage as the original SimCO algorithm)
on synthetic data. We compare TOMP with OMP and COMP in the coding stage. As
in Dai et al. (2012), we refer to the iterations between sparse coding and dictionary
learning stages as outer-iterations, and the iterations within the dictionary update stage

3

Algorithm 1 TOMP

Task: To find the sparse representation X from the data sample matrix Y.
Input: The initial m ∗ d dictionary D, the m ∗ n matrix Y, and the sparsity L.
Output: The d ∗ n coefficient matrix X

Initialize: The residual r0 = y, the index set Λ is empty and the iteration counter j = 1.
Do:
(a) Cluster the atoms in dictionary D by K-means algorithm to obtain the centroids

of the atoms dc1 , ...,dce , and e is the number of centers.
(b) Find the index of one of the centers cb that solves the optimization problem cb =

argmaxi=1,...e | < rj−1,dci > |.
(c) Find the index λj that solves the sub-optimization problem λj =

argmaxj | < rj−1, d̂cb > |.
(d) Combine the index set and the chosen atom: Λj = Λj−1

⋃
{λj} and Dj =

[Dj−1dλj
].

(e) Solve the least squares problem to obtain a new coefficient estimate: xj =
argmax

x
‖y −Djx‖2.

(f) Calculate the new approximation of the data and the new residual ŷj = Dj xj , rj
= yj − ŷj .
(g) Increase j and return to Step (b) if j is smaller than L. This leads to the search of

another best centroid.

500 600 700 800 900 1000 1100
20

30

40

50

60

70

80

n : # of training samples

ru
nn

in
g

tim
e

(s
ec

on
ds

)

m=64, d=512, S=5, # of realization=50, # of iterations=20

OMP
TOMP
COMP

Figure 1. Average running time comparison
between fast SimCO and the baselines.

500 600 700 800 900 1000 1100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n : # of training samples

||
Y

 −
 D

 X
 ||

 F2
 /

n

m=64, d=512, S=5, # of realization=50, # of iterations=20

OMP
TOMP
COMP

Figure 2. Average approximation error
comparison between fast SimCO and the

baselines.

as inner-iterations. In our tests, all results are averaged over 50 realizations with a random
initialization for each realization. The numbers of outer-iterations are set to 20 for all of
three algorithms, and in each outer iteration, the numbers of inner-iterations of all the
algorithms are set to 1. Furthermore, in dictionary update stage, the regularized constant,
as in Dai et al. (2012), is set to µ = 1e− 1 during the first 10 outer-iterations, and µ = 0
during the remaining 10 outer-iterations. The average running time by OMP, TOMP
and COMP respectively is shown in Figure 1. The approximation error ‖Y −DX‖

2

F /n
versus n are depicted in Figure 2. It can be observed that TOMP improves computational
efficiency over OMP, while maintaining a similar reconstruction performance, and COMP,
despite being most efficient, gives the worst performance among the three algorithms.
Secondly, we test the fast SimCO algorithm for image denoising, and compare it with

baseline algorithms: MOD by Engan et al. (1999), KSVD by Aharon et al. (2006), and

4

Original clean image Noisy image, 20.1595dB Denoised by MOD, 30.0781dB

Denoised by KSVD, 30.6725dB Denoised by Regularized fast SimCO, 30.7949dB Denoised by Regularized SimCO, 30.6825dB

Figure 3. Image denoising examples using the fast SimCO compared with other baseline
algorithms. PSNR values in dB are given in the sub-figure titles.

the original SimCO in Dai et al. (2012), using the examples presented in Elad and Aharon
(2006). Here, an image corrupted by noise was used to train the dictionary. We take 1000
blocks (with each of size 8 × 8 pixels) from the corrupted image as training samples.
The number of codewords in the dictionary is set to d = 256. The number of outer-
iterations and inner-iterations is 10 and 50 respectively. The TOMP algorithm is used
in the sparse coding stage. The regularization constant is set to µ = 0.05. We use the
learned dictionary to reconstruct the images, and the results are shown in Figure 3. The
proposed fast SimCO algorithm offers a similar PSNR to those by the baselines, but
only needs 11.56 seconds, as opposed to 14.68 and 18.13 seconds required by the original
SimCO and K-SVD respectively. The MOD algorithm needs the shortest running time
7.50 seconds thanks to its second-order operations.

REFERENCES

Aharon, M., Elad, M., Bruckstein, A., 2006. K-svd: An algorithm for designing overcomplete
dictionaries for sparse representation. IEEE Trans. Signal Process. 54 (11), 4311–4322.

Dai, W., Milenkovic, O., 2009. Subspace pursuit for compressive sensing signal reconstruction.
IEEE Trans. Inform. Theory 55, 2230–2249.

Dai, W., Xu, T., Wang, W., 2012. Simultaneous codeword optimization (simco) for dictionary
update and learning. IEEE Trans. on Signal Processing.

Elad, M., Aharon, M., dec. 2006. Image denoising via sparse and redundant representations over
learned dictionaries. IEEE Transactions on Image Processing 15 (12), 3736 –3745.

Engan, K., Aase, S., Husøy, J. H., 1999. Method of optimal directions for frame design. In: IEEE
Int. Conf. Acoustics, Speech, and Signal Processing. Vol. 5. pp. 2443–2446.

Pati, Y. C., Rezaiifar, R., Rezaiifar, Y. C. P. R., Krishnaprasad, P. S., 1993. Orthogonal matching
pursuit: Recursive function approximation with applications to wavelet decomposition. In:
Proceedings of the 27 th Annual Asilomar Conference on Signals, Systems, and Computers.
pp. 40–44.

