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Abstract—Environmental audio tagging aims to predict only the
presence or absence of certain acoustic events in the interested
acoustic scene. In this paper, we make contributions to audio tag-
ging in two parts, respectively, acoustic modeling and feature learn-
ing. We propose to use a shrinking deep neural network (DNN)
framework incorporating unsupervised feature learning to handle
the multilabel classification task. For the acoustic modeling, a large
set of contextual frames of the chunk are fed into the DNN to per-
form a multilabel classification for the expected tags, considering
that only chunk (or utterance) level rather than frame-level labels
are available. Dropout and background noise aware training are
also adopted to improve the generalization capability of the DNNs.
For the unsupervised feature learning, we propose to use a sym-
metric or asymmetric deep denoising auto-encoder (syDAE or asy-
DAE) to generate new data-driven features from the logarithmic
Mel-filter banks features. The new features, which are smoothed
against background noise and more compact with contextual
information, can further improve the performance of the DNN
baseline. Compared with the standard Gaussian mixture model
baseline of the DCASE 2016 audio tagging challenge, our proposed
method obtains a significant equal error rate (EER) reduction from
0.21 to 0.13 on the development set. The proposed asyDAE system
can get a relative 6.7% EER reduction compared with the strong
DNN baseline on the development set. Finally, the results also show
that our approach obtains the state-of-the-art performance with
0.15 EER on the evaluation set of the DCASE 2016 audio tagging
task while EER of the first prize of this challenge is 0.17.

Index Terms—DCASE 2016, deep neural networks, deep de-
noising auto-encoder, environmental audio tagging, unsupervised
feature learning.

I. INTRODUCTION

A S SMART mobile devices are widely used in recent years,
huge amounts of multimedia recordings are generated
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and uploaded to the web every day. These recordings, such as
music, field sounds, broadcast news, and television shows,
contain sounds from a wide variety of sources. The demand for
analyzing these sounds is increasing, e.g. for automatic audio
tagging [1], audio segmentation [2] and audio context classifi-
cation [3], [4].

For environmental audio tagging, there is a large amount of
audio data on-line, e.g. from YouTube or Freesound, which are
labeled with tags. How to utilize them, predict them and further
add some new tags on the related audio is a challenge. The envi-
ronmental audio recordings are more complicated than the pure
speech or music recordings due to the multiple acoustic sources
and incidental background noise. This will make the acoustic
modeling more difficult. On the other hand, one acoustic event
(or one tag) in environmental audio recordings might occur in
several long temporal segments. A compact representation of the
contextual information will be desirable in the feature domain.

In traditional methods, a common approach is to convert low-
level acoustic features into “bag of audio words” [5]–[9]. K-
means, as an unsupervised clustering method, has been widely
used in audio analysis [5] and music retrieval [6], [7]. In [8], Cai
et al. replaced K-means with a spectral clustering-based scheme
to segment and cluster the input stream into audio elements.
Sainath et al. [9] derived an audio segmentation method using
Extended Baum-Welch (EBW) transformations for estimating
parameters of Gaussian mixtures. Shao et al. [7] proposed to
use a measure of similarity derived by hidden Markov mod-
els to cluster segment of audio streams. Xia et al. [10] used
Eigenmusic and Adaboost to separate rehearsal recordings into
segments, and an alignment process to organize segments. Gaus-
sian mixture model (GMM), as a common model, was also used
as the official baseline method in DCASE 2016 for audio tag-
ging [11]. Recently, in [12], a Support Vector Machine (SVM)
based Multiple Instance Learning (MIL) system was also pre-
sented for audio tagging and event detection. The details of the
GMM and SVM methods are presented in the appendix of this
paper. However, these methods can not well utilize the contex-
tual information and the potential relationship among different
event classes.

The deep learning methods were also investigated for related
tasks, like acoustic scene classification [13], acoustic event de-
tection [14] and unsupervised feature learning [15] and better
performance could be obtained in these tasks. For music tagging
task, [16], [17] have also demonstrated the superiority of deep
learning methods. Recently, the deep learning based methods
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Fig. 1. DNN-based environmental audio tagging framework using the
shrinking structure [23].

have also been widely used for environmental audio tagging
[18], [19], a newly proposed task in DCASE 2016 challenge
[11] based on the CHiME-home dataset [20]. However, it is
still not clear what would be appropriate input features, objec-
tive functions and the model structures for deep learning based
audio tagging. Furthermore, only the chunk-level instead of
frame-level labels are available in the audio tagging task. Multi-
ple acoustic events could occur simultaneously with interfering
background noise, for example, child speech could exist with TV
sound for several seconds. Hence, a more robust deep learning
method is needed to improve the audio tagging performance.

Deep learning was also widely explored in feature learn-
ing [21], [22]. These works have demonstrated that data-
driven learned features can get better performance than the
expert-designed features. In [21], four unsupervised learning
algorithms, K-means clustering, restricted Boltzmann machine
(RBM), Gaussian mixtures and auto-encoder are explored in
image classification. Compared with RBM, auto-encoder is a
non-probabilistic feature learning paradigm [22]. For the audio
tagging task, Mel-frequency Cepstral Coefficients (MFCCs) and
Mel-Filter Banks (MFBs) are commonly adopted as the basic
features. However it is not clear whether they are the best choice
for audio tagging.

In this paper, we propose a robust deep learning framework
for the audio tagging task, with focuses mainly on the following
two parts, acoustic modeling and unsupervised feature learning,
respectively. For the acoustic modeling, we investigate deep
models with shrinking structure, which can be used to reduce
the model size, accelerate the training and test process [23].
Dropout [24] and background noise aware training [25] are
also adopted to further improve the tagging performance in the
DNN-based framework. Different loss functions and different
basic features will be also compared for the environmental audio
tagging task. For the feature learning, we propose a symmetric or
asymmetric deep de-noising auto-encoder (syDAE or asyDAE)
based unsupervised method to generate a new feature from the
basic features. There are two motivations here, the first is the
background noise in the environmental audio recordings which
will introduce some mismatch between the training set and the
test set. However, the new feature learned by the DAE can
mitigate the impact of background noise. The second motivation
is that compact representation of the contextual frames is needed
for the reason that only chunk-level labels are available. The

proposed syDAE or asyDAE can encode the contextual frames
into a compact code, which can be used to train a better classifier.

The rest of the paper is organized as follows. We present our
robust DNN-based framework in Section II. The proposed deep
DAE-based unsupervised feature learning will be presented in
Section III. The data description and experimental setup will be
given in Section IV. We will show the related results and discus-
sions in Section V, and finally draw a conclusion in Section VI.
Appendix will introduce the GMM and SVM based methods
in detail, which will be used as baselines for performance
comparison in our study.

II. ROBUST DNN-BASED AUDIO TAGGING

DNN is a non-linear multi-layer model for extracting robust
features related to a specific classification [26] or regression
[27] task. The objective of the audio tagging task is to perform
multi-label classification on audio chunks (i.e. assign one or
more labels to each audio chunk of a length e.g. four seconds
in our experiments). The labels are only available for chunks,
but not frames. Multiple events may happen at many particular
frames.

A. DNN-Based Multi-Label Classification

Fig. 1 shows the proposed DNN-based audio tagging frame-
work using the shrinking structure, i.e., the hidden layer size
is gradually reduced through depth. In [23], it is shown that
this structure can reduce the model size, training and test time
without losing classification accuracy. Furthermore, this struc-
ture can serve as a deep PCA [28] to reduce the redundancy and
background noise in the audio recordings. With the proposed
framework, a large set of features of the chunk are encoded into
a vector with values {0, 1}. Sigmoid was used as the activation
function of the output layer to learn the presence probability
of certain events. Rectified linear unit (ReLU) is the activation
function for hidden units. Mean squared error (MSE) and bi-
nary cross-entropy were adopted and compared as the objective
function. As the labels of the audio tagging are binary values,
binary cross-entropy can get a faster training and better perfor-
mance than MSE [29]. A stochastic gradient descent algorithm
is performed in mini-batches with multiple epochs to improve
learning convergence as follows,

Emse =
1
N

N∑

n=1

‖T̂n (Xn+τ
n−τ ,W,b)−Tn‖22 (1)

Ebce = −
N∑

n=1

(Tn logT̂n + (1−Tn )log(1− T̂n )) (2)

T̂n = (1 + exp(−On ))−1 (3)

where Emse and Ebce are the mean squared error and binary
cross-entropy, T̂n (Xn+τ

n−τ ,W,b) and Tn denote the estimated
and reference tag vector at sample index n, respectively, with N
representing the mini-batch size, Xn+τ

n−τ being the input audio
feature vector where the window size of context is 2τ + 1. It
should be noted that the input window size should cover a large
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set of contextual frames of the chunk considering the fact that
the reference tags are in chunk-level rather than frame-level.
The weight and bias parameters to be learned are denoted as
(W,b). The DNN linear output is defined as O before the
Sigmoid activation function is applied.

The updated estimate of W� and b� in the �-th layer, with a
learning rate λ, can be computed iteratively as follows:

(W� ,b�) ← (W� ,b�)− λ
∂E

∂(W� ,b�)
, 1 ≤ � ≤ L + 1 (4)

where L denotes the total number of hidden layers and the
(L + 1)-th layer represents the output layer.

During the learning process, the DNN can be regarded as an
encoding function, and the audio tags are automatically pre-
dicted. The background noise may exist in the audio recordings
which may lead to mismatch between the training set and the
test set. To address this issue, two additional methods are given
below to improve the generalization capability of DNN-based
audio tagging. Alternative input features, eg., MFCC and MFB
features, are also compared.

B. Dropout for the Over-Fitting Problem

Deep learning architectures have a natural tendency towards
over-fitting especially when there is little training data. This
audio tagging task only has about four hours training data with
imbalanced training data distribution for each type of tag, e.g.,
much fewer samples for event class ‘b’ compared with other
event classes in the DCASE 2016 audio tagging task. Dropout
is a simple but effective method to alleviate this problem [24]. In
each training iteration, the feature value of every input unit and
the activation of every hidden unit are randomly removed with
a predefined probability (e.g., ρ). These random perturbations
in the input or activations can effectively prevent the DNN from
learning spurious feature dependencies. At the testing phase, the
DNN scales all of the parameters tuned in the dropout training
by (1− ρ), which is treated as a model averaging process [30].

C. Background Noise Aware Training

Different types of background noise in different recording
environments could lead to the mismatch problem between the
testing chunks and the training chunks. To alleviate this, we
propose a simple background noise aware training (or adapta-
tion) method. To enable this noise adaptation, the DNN is fed
with the main audio features appended with an estimate of the
background noise. In this way, the DNN can utilize extra on-line
information of background noise to better predict the expected
tags. The background noise is calculated as follows:

Vn = [Yn−τ , . . . ,Yn−1 ,Yn ,Yn+1 , . . . ,Yn+τ , Ẑn ] (5)

Ẑn =
1
T

T∑

t=1

Yt (6)

where the background noise Ẑn is fixed over the chunk and
estimated using the first T frames. Although this noise estimator
is simple, a similar idea was shown to be effective in DNN-based
speech enhancement [25], [27].

D. Alternative Input Features for Audio Tagging

Mel-frequency Cepstral Coefficients (MFCCs) have been
used in environmental sound source classification [31], [32],
however, some previous work [33], [34] showed that the use
of MFCCs is not the best choice as they are sensitive to back-
ground noise. Mel-filter bank (MFB) features have already been
demonstrated to be better than MFCCs in speech recognition in
the DNN framework [35]. However it is not clear whether this
is also the case for the audio tagging task using DNN models.
Recent studies in audio classification have also shown that ac-
curacy can be boosted by using features that are learned in an
unsupervised manner, with examples in the areas of bioacous-
tics [36] and music [37]. We will study the potential of such
methods for audio tagging and present a DAE-based feature
learning method in following section.

III. PROPOSED DEEP ASYMMETRIC DAE

MFCCs and MFBs are used as the basic features for the train-
ing of DNN-based predictor in this work. MFCCs and MFBs are
well-designed features derived by experts based on the human
auditory perception mechanism [39]. Recently, more supervised
or unsupervised feature learning works have demonstrated that
data-driven learned features can offer better performance than
the expert-designed features. Neural network based bottleneck
feature [40] in speech recognition is one such type of feature,
extracted from the middle layer of a DNN classifier. Significant
improvement can be obtained after it is fed into a subsequent
GMM-HMM (Hidden Markov Model) system and compared
with the basic features. However, for the audio tagging task, the
tags are weakly labeled and not accurate through the multiple
voting scheme. Furthermore, there are lots of related audio files
without labels on the web. Hence to use these unlabeled data, we
proposed a DAE based unsupervised feature learning method.

Specifically, for environmental audio tagging task, disordered
background noise exists in the recordings which may lead to
the mismatch between the training set and the test set. DAE-
based method can mitigate the effect of background noise and
focus on more meaningful acoustic event patterns. Another mo-
tivation is that the compact representation of the contextual
frames is needed since the labels are in chunk-level rather than
frame-level.

An unsupervised feature learning algorithm is used to dis-
cover features from the unlabeled data. For this purpose, the
unsupervised feature learning algorithm takes the dataset X as
input and outputs a new feature vector. In [21], four unsuper-
vised learning algorithms, K-means clustering, restricted Boltz-
mann machine (RBM), Gaussian mixtures and auto-encoder
have been explored in image classification. Among them, RBM
and auto-encoder are widely adopted to get new features or
pretrain a deep model. Compared with RBM, auto-encoder is
a non-probabilistic feature learning scheme [22]. The auto-
encoder explicitly has a feature encoding module, called the
encoder. It also defines another function, denoted as the de-
coder. The encoder and decoder function are represented as fθ

and gθ , respectively. To force the hidden layers to discover more
robust features, the de-noising auto-encoder [38] introduces a
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Fig. 2. A typical one hidden layer of de-noising auto-encoder [38] structure
with an encoder and a decoder. Some input units are set to zero by the Dropout
process (shown by a black cross “X”) to train a more robust system.

stochastic corruption process applied to the input layer, which
randomly selects some nodes to set their values to zero. Dropout
[24] is used here to corrupt the input units. Compared with the
auto-encoder, DAE can detect more robust features and prevent
it from simply learning the identity function [38]. Fig. 2 shows
a typical one hidden layer of DAE structure with an encoder and
a decoder. The encoder produces a new feature vector h from
an input x = x(1) , . . . , x(T ) . It is defined as,

h = fθ (x̃) = sf (Wx̃ + b) (7)

where h is the new feature vector or new representation or code
[22] of the input data x with the corrupted version x̃. sf is
the non-linear activation function. W and b denote the weights
and bias of the encoder, respectively. On the other hand, the
decoder, gθ can transfer the new feature representation back to
the original feature space, namely producing a reconstruction
x̂ = gθ (h).

x̂ = gθ (h) = sg (W′h + b′) (8)

where x̂ is the reconstructed feature which is the estimation
of the input feature. sg is the non-linear activation function of
the decoder. W′ and b′ denote the weights and bias of the
decoder. Here W and W′ are not tied, namely W′ �= WT . The
set of parameters θ = {W,b,W′,b′} of the auto-encoder are
updated to get the lowest reconstruction error L(x, x̂), which
is a measure of the Euclidean distance between the input x
and the output. x̂. The general loss function for the de-noising
auto-encoder [38] training can be defined as,

ΓAE (θ) =
∑

t

L(x(t) , gθ (fθ (x̃(t)))) (9)

Furthermore, the DAE can be stacked to obtain a deep DAE. The
DAE is actually an advanced PCA with the non-linear activation
functions [28].

In Fig. 3, the framework of deep asymmetric DAE (asyDAE)
based unsupervised feature learning for audio tagging is pre-
sented. It is a deep DAE stacked by simple DAE with random
initialization. To utilize the contextual information, multiple
frames MFB features are fed into the deep DAE. A typical DAE
is a symmetric structure (syDAE) with the same size as the in-
put. However here the deep DAE is only designed to predict
the middle frame feature. This is because the more predictions
in the output means the more memory needed in the bottleneck
layer. In our practice, the deep DAE would generate a larger
reconstruction error if multiple frames features were designed
as the output with a narrow bottleneck layer. This leads to an

inaccurate representation of the original feature in a new space.
Nonetheless, with only the middle frame features in the output,
the reconstruction error is smaller. Fig. 4 plots the reconstruction
error between the asyDAE and syDAE for the example shown in
Section IV. However, we will show the performance difference
between deep asyDAE and deep syDAE later in Section V. The
default size of the bottleneck code is 50 and 200 for asyDAE and
syDAE, respectively. For syDAE, there is a trade-off when set-
ting the bottleneck code size, to avoid the high input dimension
for the back-end DNN classifier, as well as for reconstructing
the multiple-frame output. Typically, the weights between the
encoder and the decoder are tied. Here we set them to be untied
to retain more contextual information in the bottleneck codes.
More specifically, the input frame number in the DAE input
layer is chosen as seven for the reason that 91-frame expansion
will be used in the back-end DNN classifier. In addition, larger
frame expansion in DAE is more difficult to encode into a fixed
bottleneck code.

As the output of DAE is a real-valued feature, MSE was
adopted as the objective function to fine-tune the whole
deep DAE model. A stochastic gradient descent algorithm is
performed in mini-batches with multiple epochs to improve
learning convergence as follows,

Er =
1
N

N∑

n=1

‖X̂n (Xn+τ
n−τ ,W,b)−Xn‖22 (10)

where Er is the mean squared error, X̂n (Xn+τ
n−τ ,W,b) and

Xn denote the reconstructed and input feature vector at sample
index n, respectively, with N representing the mini-batch size,
Xn+τ

n−τ being the input audio feature vector where the window
size is 2τ + 1. (W,b) denote the weight and bias parameters
to be learned.

The activation function of the bottleneck layer is another key
point in the proposed deep DAE based unsupervised feature
learning framework. Sigmoid is not suitable to be used as
the activation function of the code layer, since it compresses
the value of the new feature into a range [0, 1] which will reduce
its representation capability. Hence, Linear or ReLU activation
function is a more suitable choice. In [28], the activation
function of the units of the bottleneck layer or the code layer of
the deep DAE is linear. A perfect reconstruction of the image
can be obtained. In this work, ReLU and Linear activation
functions of the bottleneck layer are both verified to reconstruct
the audio features in the deep auto-encoder framework. Note
that all of the other layer units also adopt ReLU as the activation
function.

In summary, the new feature derived from the bottleneck
layer of the deep auto-encoder can be regarded as the optimized
feature due to three factors. The first one is that the DAE learned
feature is generated from contextual input frames with new
compact representations. This kind of features are better for
capturing the temporal structure information compared with
the original feature. The second advantage is that the deep de-
noising AE based unsupervised feature learning can smooth the
disordered background noise in the audio recordings to alleviate
the mismatch problem between the training set and test set.



1234 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 25, NO. 6, JUNE 2017

Fig. 3. The framework of deep asymmetric DAE (asyDAE) based unsupervised feature learning for audio tagging. The weights between the encoder and the
decoder are untied to retain more contextual information into the bottleneck layer (shown in the dashed rectangle).

Fig. 4. The reconstruction error over the CV set of the asymmetric DAE
with 50 ReLU units in the bottleneck layer (denoted as asyDAE-50ReLU) and
the symmetric DAE with 200 ReLU units in the bottleneck layer (denoted as
syDAE-200ReLU).

Finally, with this framework, the large amount of unlabeled data
could be utilized and more statistical knowledge in the feature
space can be learned.

IV. DATA DESCRIPTION AND EXPERIMENTAL SETUP

A. DCASE2016 Data Set for Audio Tagging

The data that we used for evaluation is the dataset of Task 4 of
the DCASE 2016 [11], which is built based on the CHiME-home
dataset [20]. The audio recordings were made in a domestic envi-
ronment [41]. Prominent sound sources in the acoustic environ-
ment are two adults and two children, television and electronic
gadgets, kitchen appliances, footsteps and knocks produced by
human activity, in addition to sound originating from outside
the house [41]. The audio data are provided as 4-second chunks
at two sampling rates (48 kHz and 16 kHz) with the 48 kHz
data in stereo and the 16 kHz data in mono. The 16 kHz record-
ings were obtained by down-sampling the right channel of the
48 kHz recordings. Note that Task 4 of the DCASE 2016
challenge is based on using only 16 kHz recordings.

TABLE I
LABELS USED IN ANNOTATIONS

Label Description

b Broadband noise
c Child speech
f Adult female speech
m Adult male speech
o Other identifiable sounds
p Percussive sounds, e.g. crash, bang, knock, footsteps
v Video game/TV

For each chunk, multi-label annotations were first obtained
from each of 3 annotators. There are 4378 such chunks available,
referred to as CHiME-Home-raw [20]; discrepancies between
annotators are resolved by conducting a majority vote for each
label. The annotations are based on a set of 7 label classes as
shown in Table I. A detailed description of the annotation pro-
cedure is provided in [20]. To reduce uncertainty about annota-
tions, evaluations are based on considering only those chunks
where 2 or more annotators agreed about label presence across
label classes. There are 1946 such chunks available, referred to
as CHiME-Home-refined [20]. Another 816 refined chunks are
kept for the final evaluation set of Task 4 of the DCASE 2016
challenge.

B. Experimental Setup

In our experiments, following the original specification of
Task 4 of the DCASE 2016 [11], we use the same five folds from
the given development dataset, and use the remaining audio
recordings for training. Table II lists the number of chunks
of training and test data used for each fold and also the final
evaluation setup.

To keep the same feature configurations as in the DCASE
2016 baseline system, we pre-process each audio chunk by seg-
menting them using a 20ms sliding window with a 10 ms hop
size, and converting each segment into 24-dimension MFCCs
and 40-dimension logarithmic MFBs. For each 4-second chunk,
399 frames of MFCCs are obtained. A large set of frames
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TABLE II
THE NUMBER OF AUDIO CHUNKS FOR TRAINING AND TEST FOR THE

DEVELOPMENT SET AND THE FINAL EVALUATION SET

Fold index #Training #Test

0 4004 383
1 3945 442
2 3942 463
3 4116 271
4 4000 387

Evaluation set 4387 816

expansion is used as the input of the DNN. The impact of the
number of frame expansion on the performance will be evalu-
ated in the following experiments. Hence the input size of DNN
was the number of expanded frames plus the appended back-
ground noise vector. All of the input features are normalized
into zero-mean and unit-variance. The first hidden layer with
1000 units and the second with 500 units were used to construct
a shrinking structure [23]. The 1000 or 500 hidden units are
a common choice in DNNs [42]. Seven sigmoid outputs were
adopted to predict the seven tags. The learning rate was 0.005.
The momentum was set to be 0.9. The dropout rates for in-
put layer and hidden layer were 0.1 and 0.2, respectively. The
mini-batch size was 100. T in Equation (6) was 6. In addition
to the CHiME-Home-refined set [20] with 1946 chunks, the re-
maining 2432 chunks in the CHiME-Home-raw set [20] without
‘strong agreement’ labels in the development dataset were also
added into the DNN training considering that DNN has a better
fault-tolerant capability. Meanwhile, these 2432 chunks without
‘strong agreement’ labels were also added into the training data
for GMM and SVM training. The deep asyDAE or deep asy-
DAE has 5 layers with 3 hidden layers. For asyDAE, the input
is 7-frame MFBs, and the output is the middle frame MFB. The
first and third hidden layer both have 500 hidden units while the
middle layer is the bottleneck layer with 50 units. For syDAE,
the output is 7-frame MFBs, and the middle layer is the bot-
tleneck layer with 200 units. The dropout level for the asyDAE
or syDAE is set to be 0.1. The final DAE models are trained at
epoch 100.

For performance evaluation, we use equal error rate (EER) as
the main metric which is also suggested by the DCASE 2016
audio tagging challenge. EER is defined as the point of the
graph of false negative (FN ) rate versus false positive (FP )
rate [43]. The number of true positives is denoted as TP . EERs
are computed individually for each evaluation fold, and we then
average the obtained EERs across the five folds to get the final
performance. Precision, Recall and F-score are also adopted to
evaluate the performance among different systems.

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

F-score =
2Precision·Recall

Precision
+ Recall (13)

All the source codes for this paper and pre-trained models
can be downloaded at Github website.1 The codes for the SVM
and GMM baselines are also uploaded at the same website.

C. Compared Methods

For a comparison, we also ran two baselines using GMMs and
the SVMs mentioned in the Appendix section. For the GMM-
based method, the number of mixture components is 8 which is a
default configuration of the DCASE 2016 challenge. The sliding
window and hop size set for the two baselines and our proposed
methods are all the same. Additionally, we also use chunk-level
features to evaluate on SVM-based method according to [44].
The mean and covariance of the MFCCs over the duration of the
chunk can describe the Gaussian with the maximum likelihood
[44]. Hence those statistics can also be unwrapped into a vector
as a chunk-level feature to train the SVM. To handle audio
tagging with SVM, each audio recording will be viewed as a
bag. To accelerate computation, we use linear kernel function
in our experiments.

We also compared our methods with the state-of-the-art meth-
ods. Lidy-CQT-CNN [18], Cakir-MFCC-CNN [19] and Yun-
MFCC-GMM [45] are the first, second and third prize of the
audio tagging task of the DCASE2016 challenge [11]. The for-
mer two methods used convolutional neural networks (CNN) as
the classifier. Yun-MFCC-GMM [45] adopted the discrimina-
tive training method on GMMs.

V. RESULTS AND DISCUSSIONS

In this section, the overall evaluations on the development
set and the evaluation set of the DCASE 2016 audio tagging
task will be firstly presented. Then several evaluations on the
parameters of the models will be given.

A. Overall Evaluations

Table III shows the EER comparisons on seven labels
among the proposed asyDAE-DNN, syDAE-DNN, DNN base-
line trained on MFB, DNN baseline trained on MFCC methods,
Yun-MFCC-GMM [45], Cakir-MFCC-CNN [19], Lidy-CQT-
CNN [18], SVM trained on chunks, SVM trained on frames and
GMM methods [11], which are evaluated on the development
set and the evaluation set of the DCASE 2016 audio tagging
challenge. On the development set, it is clear that the proposed
DNN-based approaches outperform the SVM and GMM base-
lines across the five-fold evaluations. GMM is better than the
SVM methods. SVM performs worse on the audio event ‘b’
where less training samples are included in the imbalanced de-
velopment set compared with other audio events [11]. However,
the GMM and DNN methods perform better on the audio event
‘b’ with lower EERs. The frame-level SVM is superior to the
chunk-level SVM. This is because the audio tagging is a multi-
label classification task rather than a single-label classification
task while the statistical mean value in the chunk-SVM will
make the feature indistinct among different labels in the same

1https://github.com/yongxuUSTC/aDAE_DNN_audio_tagging
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TABLE III
EER COMPARISONS ON SEVEN LABELS AMONG THE PROPOSED ASYDAE-DNN, SYDAE-DNN, DNN BASELINE TRAINED ON MFB, DNN BASELINE TRAINED ON

MFCC METHODS, YUN-MFCC-GMM [45], CAKIR-MFCC-CNN [19], LIDY-CQT-CNN [18], SVM TRAINED ON CHUNKS, SVM TRAINED ON FRAMES AND GMM
METHODS [11], WHICH ARE EVALUATED ON THE DEVELOPMENT SET AND THE EVALUATION SET

Tags b c f m o p v Average

Development Set

GMM (DCASE baseline) [11] 0.074 0.225 0.289 0.269 0.290 0.248 0.050 0.206
Chunk-SVM 0.464 0.438 0.430 0.470 0.524 0.518 0.274 0.445
Frame-SVM 0.205 0.199 0.284 0.390 0.361 0.308 0.090 0.263
Yun-MFCC-GMM [45] 0.074 0.165 0.249 0.216 0.278 0.210 0.039 0.176
Cakir-MFCC-CNN [19] 0.070 0.210 0.250 0.150 0.260 0.210 0.050 0.171
Lidy-CQT-CNN * [18] – – – – – – – –
MFCC-DNN 0.078 0.145 0.230 0.126 0.268 0.183 0.029 0.151
MFB-DNN 0.067 0.142 0.206 0.102 0.256 0.148 0.025 0.135
Proposed syDAE-DNN 0.068 0.134 0.206 0.087 0.238 0.146 0.023 0.129
Proposed asyDAE-DNN 0.067 0.124 0.202 0.092 0.231 0.143 0.023 0.126

Evaluation Set

GMM (DCASE baseline) [11] 0.117 0.191 0.314 0.326 0.249 0.212 0.056 0.209
Chunk-SVM 0.032 0.385 0.407 0.472 0.536 0.506 0.473 0.402
Frame-SVM 0.129 0.166 0.241 0.353 0.336 0.268 0.093 0.227
Yun-MFCC-GMM [45] 0.032 0.177 0.179 0.253 0.266 0.207 0.102 0.174
Cakir-MFCC-CNN [19] 0.022 0.25 0.25 0.159 0.258 0.208 0.027 0.168
Lidy-CQT-CNN [18] 0.032 0.21 0.214 0.182 0.32 0.168 0.035 0.166
MFCC-DNN 0.032 0.204 0.21 0.209 0.288 0.194 0.039 0.168
MFB-DNN 0.032 0.184 0.204 0.172 0.272 0.179 0.053 0.157
Proposed syDAE-DNN 0.023 0.184 0.203 0.165 0.280 0.174 0.041 0.153
Proposed asyDAE-DNN 0.014 0.210 0.207 0.149 0.256 0.175 0.022 0.148

∗Lidy-CQT-CNN [18] did not measure the EER results on the development set.

chunk. Compared with the DNN methods, SVM and GMM are
less effective in utilizing the contextual information and the po-
tential relationship among different tags. Note that the DNN
models here are all trained using binary cross-entropy defined
in Eq. (2) as the loss function. Binary cross-entropy is found
better than the mean squared error for training the audio tag-
ging models which will be shown in the following subsection.
The DNN trained on MFCCs is worse than the DNN trained
on MFBs with the reduced EER from 0.151 to 0.135, espe-
cially on the percussive sounds (‘p’), e.g. crash, bang, knock
and footsteps. This result is consistent with the observations in
speech recognition using DNNs [35]. Compared with MFBs,
MFCCs lost some information after the discrete cosine trans-
formation (DCT) step. The bottleneck code size for asyDAE-
DNN and syDAE-DNN here is 50 and 200, respectively. It is
found that asyDAE-DNN can reduce the EER from 0.157 to
0.148 compared with MFB-DNN-baseline, especially on tag
‘c’ and tag ‘o’. The asyDAE-DNN method is slightly better
than the syDAE-DNN because the syDAE-DNN should have
a larger bottleneck code to reconstruct the seven-frame out-
put. However, the large size of the bottleneck code in syDAE-
DNN will make the input dimension of the back-end DNN
classifier very high. Lidy-CQT-CNN [18] did not measure the
EER on the development set [18]. Our proposed DNN methods
can get better performance than Cakir-MFCC-CNN [19] and
Yun-MFCC-GMM [45].

Fig. 5 shows the box-and-whisker plot of EERs, among
the GMM baseline, MFB-DNN baseline and asyDAE-DNN
method, across five standard folds on the development set
of the DCASE 2016 audio tagging challenge. It can be
found that the asyDAE-DNN is consistently better than the

Fig. 5. The box-and-whisker plot of EERs, among the GMM baseline,
Mel-Filter bank (MFB)-DNN baseline and asymmetric DAE (asyDAE)-DNN
method, across five standard folds on the development set.

MFB-DNN baseline. To test the statistical significance between
the asyDAE-DNN and MFB-DNN baseline, we use the paired-
sample t-test [46] tool in MATLAB. The audio tagging task of
the DCASE2016 challenge has five standard folds with seven
tags. Hence, a 35-dimension vector can be obtained for each
method, then the paired-sample t-test tool can be used to cal-
culate the p-value. Its results indicate that t-test rejects the null
hypothesis at the 1% significance level. It was found that the
p-value is� 0.01 in this test which indicates that the improve-
ment is statistically significant. Finally our proposed method can
get a 38.9% relative EER reduction compared with the GMM
baseline of the DCASE 2016 audio tagging challenge on the
development set.

Table III also presents EER comparisons on the evaluation
set. Note that the final evaluation set was not used for any train-
ing which means syDAE and asyDAE also did not use it in the
training. It can be found that our proposed asyDAE-DNN can
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TABLE IV
PRECISION, RECALL AND SCORE COMPARISONS BETWEEN THE MFB-DNN BASELINE AND THE ASYDAE-DNN METHOD, WHICH ARE EVALUATED FOR SEVEN

TAGS ON THE FINAL EVALUATIONS SET OF THE DCASE2016 AUDIO TAGGING TASK

Evaluation set b c f m o p v Average

Precision MFB-DNN 1.000 0.684 0.676 0.464 0.583 0.774 0.980 0.737
asyDAE-DNN 1.000 0.654 0.691 0.474 0.692 0.819 0.991 0.760

Recall MFB-DNN 0.968 0.905 0.507 0.405 0.224 0.677 0.976 0.666
asyDAE-DNN 0.968 0.912 0.464 0.456 0.288 0.658 0.973 0.674

F-score MFB-DNN 0.984 0.780 0.580 0.432 0.324 0.722 0.978 0.686
asyDAE-DNN 0.984 0.762 0.556 0.465 0.407 0.730 0.982 0.698

Fig. 6. Spectrograms of the reconstructed Mel-Filter Banks (MFBs) by the
deep asymmetric DAE (asyDAE) and deep symmetric DAE (syDAE), and also
the original MFBs. The dotted ovals indicate the smoothed parts on the recon-
structed MFBs. The Y-axis is the frequency bin and the X-axis is the frame
number.

get the state-of-the-art performance. Our MFB-DNN is a strong
baseline through the use of several techniques, e.g., the dropout,
background noise aware training, shrinking structure and also bi-
nary cross-entropy. The proposed asyDAE-DNN can get a 5.7%
relative improvement compared with the MFB-DNN baseline.
syDAE-DNN did not show improvement over the MFB-DNN
because syDAE-DNN with the bottleneck code size 200 can
not well reconstruct the unseen evaluation set. However the
asyDAE-DNN with the bottleneck code size 50 can well recon-
struct the unseen evaluation set. Finally, our proposed methods
can get the state-of-the-art performance with 0.148 EER on the
evaluation set of the DCASE 2016 audio tagging challenge.
Another interesting result here is that Yun-MFCC-GMM [45]
performs well on tag ‘c’ and tag ‘f’ where high pitch information
exists. It would be interesting to fuse their prediction posteriors
together in our future work.

To give a further comparison between the MFB-DNN baseline
and the asyDAE-DNN method, Table IV shows precision, recall
and score comparisons evaluated for seven tags on the final

Fig. 7. EERs on Fold 1 of the development set evaluated using different
number of frame expansions in the input layer of the MFB-DNN.

evaluation set of the DCASE2016 audio tagging task. As the
DNN prediction belongs to [0, 1], a threshold 0.4 is set to
judge whether it is a hit or not. Using asyDAE-DNN better
performance than the MFB-DNN baseline can be obtained on
most of the three measures. One interesting result is that DNN
method can get a quite high score on tag ‘b’ although there are
only few training samples in the training set [11].

Fig. 6 shows the spectrograms of the original MFBs and the
reconstructed MFBs by the deep syDAE and deep asyDAE. Both
of them can reconstruct the original MFBs well while syDAE
got a smoother reconstruction. There is background noise in
original MFBs which will lead to the mismatch problem men-
tioned earlier. syDAE can well reduce the background noise
shown in the dashed ellipses with the risk of losing the impor-
tant spectral information. However, asyDAE can be a trade-off
between background noise smoothing and signal reconstruction.
On the other hand, the weights of the encoder and decoder in the
deep asyDAE and the deep syDAE are not typically tied. In this
way, more contextual information is encoded into the bottleneck
layer to get a compact representation, which is helpful for the
audio tagging task considering the fact that the reference labels
are in chunk-level.

B. Evaluations for the Number of Contextual Frames in the
Input of the DNN Classifier

The reference label information for this audio tagging task is
on the utterance-level rather than the frame-level, and the oc-
curring orders and frequencies of the tags are unknown. Hence,
it is important to use a large set of the contextual frames in the
input of the DNN classifier. However, the dimension of the input
layer of the DNN classifier will be too high and the number of
training samples would be reduced if the number of the frame
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Fig. 8. EERs on Fold 1 of the development set evaluated using different
features, namely MFCCs and Mel-Filter Banks (MFBs), different loss functions,
namely mean squared error (MSE) and binary cross entropy (BCE).

expansion is too large. Larger input size will increase the com-
plexity of the DNN model and as a result, some information
could be lost during the feed-forward process considering that
the hidden unit size is fixed to be 1000 or 500. Fewer training
samples will make the training process of DNN unstable consid-
ering that the parameters are updated using a stochastic gradient
descent algorithm performed in mini-batches.

Fig. 7 shows the EERs for Fold 1 evaluated by using different
number of contextual frames in the input of the DNN classifier.
Here the MFBs are used as the input features. It can be found
that using the 91-frame MFBs as the input gives the lowest
EER. As mentioned in the experimental setup, the window size
of each frame is 20 ms with 50% hop size. 91-frame expansion
means that the input length is about one second. However, the
length of the whole chunk is 4 seconds, so it indicates that most
of the tags occurred several times and overlap with each other
heavily in the certain chunk. Meanwhile, 91-frame expansion
in the input layer of the DNN is a good trade-off among the
contextual information, input size, and total training samples.

C. Evaluations for Different Kinds of Input Features and
Different Types of Loss Functions

Fig. 8 shows EERs on Fold 1 evaluated using different
features, namely MFCCs and MFBs, different loss functions,
namely mean squared error (MSE) and binary cross entropy
(BCE). It can be found that MFBs perform better than MFCCs.
MFBs contain more spectral information than the MFCCs. BCE
is superior to MSE considering that the value of label is binary,
either zero or one. MSE is more suitable to fit the real values.

D. Evaluations for Different Bottleneck Size of DAE and
Comparison With the Common Auto-Encoder

Fig. 9 shows the EERs on Fold 0 evaluated using different
de-noising auto-encoder configurations and compared with the
MFB-DNN baseline. For the deep syDAE, the bottleneck layer
size needs to be properly set. If it is too small, the 7-frame
MFBs can not be well reconstructed. While it will increase the
input size of the DNN classifier if the bottleneck code is too
large. For the deep asyDAE, the bottleneck layer with 50 ReLU
units is found empirically to be a good choice. The linear unit
(denoted as asyDAE-Linear50) is worse than the ReLU unit
for the new feature representation. Another interesting result

Fig. 9. EERs on Fold 0 of the development set evaluated using different de-
noising auto-encoder configurations and compared with the MFB-DNN base-
line. syDAE-ReLU200 means the symmetric DAE with 200 ReLU units in the
bottleneck layer. asyDAE-Linear50 means the asymmetric DAE with 50 linear
units in the bottleneck layer. aAE-ReLU50 denotes the asymmetric auto-encoder
without de-noising (or dropout).

TABLE V
EERS FOR FOLD 1 ACROSS SEVEN TAGS USING DNNS AND GMMS TRAINED

ON THE ‘CHIME-HOME-RAW’ SET AND ‘CHIME-HOME-REFINED’ SET

Dataset b c f m o p v

DNN-Refine 0.009 0.168 0.223 0.158 0.273 0.118 0.050
DNN-Raw 0.002 0.124 0.209 0.146 0.277 0.089 0.025
GMM-Refine 0.000 0.203 0.343 0.303 0.305 0.333 0.154
GMM-Raw 0.013 0.283 0.294 0.217 0.326 0.347 0.051

is that the performance was almost the same if there is no de-
noising (or dropout) operation (denoted as aAE-ReLU50) in the
ordinary auto-encoder. The reason is that the baseline DNN is
well trained on MFBs with the binary cross-entropy as the loss
function.

E. Evaluations for the Size of the Training Dataset

In the preceding experiments, ‘CHiME-Home-raw’ dataset
was used to train the DNN, GMM and SVM models. Here,
to evaluate the performance using different training data sizes,
DNNs were trained based on ‘CHiME-Home-raw’ or ‘CHiME-
Home-refined’ alternatively while keeping the same testing set.
MFBs were used as the input features for the DNN classifier.

Table V shows the EERs for Fold 1 across seven tags with
the DNNs trained on the ‘CHiME-Home-raw’ set and ‘CHiME-
Home-refined’ set. It can be clearly found that the DNN trained
on the ‘CHiME-Home-raw’ set is better than the DNN trained
on the ‘CHiME-Home-refined’ set, although part of the labels of
the ‘CHiME-Home-raw’ set are not accurate. This indicates that
DNN has fault-tolerant capability which suggests that the labels
for the tags can not be refined with much annotators’ effort.
The size of the training set is crucial for the DNN training.
Nonetheless the GMM method is sensitive to the inaccurate
labels. The increased training data with inaccurate tag labels
does not help to improve the performance of GMMs.

F. Further Discussions on the Deep Auto-Encoder Features

Fig. 10 presents the audio spectrogram of the deep asy-
DAE features, which can be regarded as the new non-negative
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Fig. 10. The audio spectrogram of the deep asymmetric DAE (asyDAE)
features with the non-negative representation.

representation or optimized feature of the original MFBs. The
units of the bottleneck layer in the deep asyDAE are all acti-
vated by the ReLU functions as mentioned in Sec. III. Hence,
the values of the learned feature are all non-negative, leading
to a non-negative representation of the original MFBs. Such
a non-negative representation can then be multiplied with the
weights in the decoding part of the DAE to obtain the re-
constructed MFBs. It is also adopted to replace the MFBs
as the input to the DNN classifier to make a better predic-
tion for the tags. The pure blue area at some dimensions
in Fig. 10 indicates the zero values in the ReLU activation
function.

VI. CONCLUSION

In this paper we have studied the acoustic modeling and fea-
ture learning issues in audio tagging. We have proposed a DNN
incorporating unsupervised feature learning based approach to
handle audio tagging with weak labels, in the sense that only
the chunk-level instead of the frame-level labels are available.
A deep asymmetric DAE with untied weights based unsuper-
vised feature learning was also proposed to generate a new fea-
ture with non-negative representations. The DAE can generate
smoothed feature against the disordered background noise and
also give a compact representation of the contextual frames.
We tested our approach on the dataset of the Task 4 of the
DCASE 2016 challenge, and obtained significant improvements
over the two baselines, namely GMM and SVM. The proposed
unsupervised feature learning method can get a relative 6.7%
EER reduction compared with the strong DNN baseline on the
development set. We also get the state-of-the-art performance
with 0.148 EER on the evaluation set compared with the lat-
est results [45], [19], [18] from the DCASE 2016 challenge.
For the future work, we will use convolutional neural network
(CNN) to extract more robust high-level features for the au-
dio tagging task. Larger dataset, such as Yahoo Flickr Creative
Commons 100 Million (YFCC100m) dataset [47] and YouTube-
8M dataset [48] will be considered to further evaluate the
proposed algorithms.

APPENDIX

Two baseline methods compared in our work are briefly
summarized below.

A. Audio Tagging Using Gaussian Mixture Models

GMMs are a commonly used generative classifier. To imple-
ment multi-label classification with simple event tags, a binary
classifier is built associating with each audio event class in the
training step. For a specific event class, all audio frames in an
audio chunk labeled with this event are categorized into a posi-
tive class, whereas the remaining features are categorized into a
negative class. On the classification stage, given an audio chunk
Ci , the likelihoods of each audio frame xij , (j ∈ {1 · · ·LCi

})
are calculated for the two class models, respectively. Given au-
dio event class k and chunk Ci , the classification score SCi k

is
obtained as log-likelihood ratio:

SCi k
=

∑

j

log(f(xij ,Θpos))−
∑

j

log(f(xij ,Θneg)) (14)

B. Audio Tagging Using Multiple Instance SVM

Multiple instance learning is described in terms of bags B.
The jth instance in the ith bag, Bi , is defined as xij where
j ∈ I = {1 · · · li}, and li is the number of instances in Bi . Bi’s
label is Yi ∈ {−1, 1}. If Yi = −1, then xij = −1 for all j. If
Yi = 1, then at least one instance xij ∈ Bi is a positive example
of the underlying concept [49].

As MI-SVM is the bag-level MIL support vector machine to
maximize the bag margin, we define the functional margin of a
bag with respect to a hyper-plane as:

γi = Yi max
j∈I

(〈w,xij 〉+ b) (15)

Using the above notion, MI-SVM can be defined as:

min
w ,b,ξ

1
2
‖w2‖+ A

∑

i

ξi

subject to : ∀i : γi ≥ 1− ξi, ξi ≥ 0 (16)

where w is the weight vector, b is bias, ξ is margin violation,
and A is a regularization parameter.

Classification with MI-SVM proceeds in two steps. In the
first step, xi is initialized as the centroid for every positive bag
Bi as follows

xi =
∑

j∈I

xij /li (17)

The second step is an iterative procedure in order to optimize
the parameters.

Firstly, w and b are computed for the data set with positive
samples {xI : Yi = 1}.

Secondly, we compute

fij = 〈w,xij 〉+ b, xij ∈ Bi

Thirdly, we change xi by

xi = xj

j = arg max
j∈I

fij ,∀I, YI = 1

The iteration in this step will stop when there is no change of
xi . The optimized parameters will be used for testing.
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