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Abstract—Deep neural networks based methods dominate re-
cent development in single channel speech enhancement. In this
paper, we propose a multi-scale feature recalibration convolutional
encoder-decoder with bidirectional gated recurrent unit (BGRU)
architecture for end-to-end speech enhancement. More specifically,
multi-scale recalibration 2-D convolutional layers are used to ex-
tract local and contextual features from the signal. In addition, a
gating mechanism is used in the recalibration network to control
the information flow among the layers, which enables the scaled
features to be weighted in order to retain speech and suppress
noise. The fully connected layer (FC) is then employed to compress
the output of the multi-scale 2-D convolutional layer with a small
number of neurons, thus capturing the global information and
improving parameter efficiency. The BGRU layers employ forward
and backward GRUs, which contain the reset, update, and output
gates, to exploit the interdependency among the past, current and
future frames to improve predictions. The experimental results
confirm that the proposed MCGN method outperforms several
state-of-the-art methods.

Index Terms—Bidirectional gated recurrent unit (BGRU),
feature recalibration, multi-scale convolutional layer, single
channel, speech enhancement.

I. INTRODUCTION

THE intelligibility and quality of the speech signal recorded
in a real acoustic scene are often degraded by the back-

ground noise and interfering sound in the environment. Speech
enhancement aims to recover the target speech by removing
the background noise and interfering sound from noisy speech
mixtures. Single channel speech enhancement refers to the
scenario, where only a single mixture is available, which is an
extreme case of the under-determined problem, i.e. the number
of sources is greater than the number of mixtures. Such a
problem can be found in many real-world applications, such
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as mobile communication, automatic speech recognition, and
robotics [1]–[5].

A wide variety of methods have been proposed for speech en-
hancement. Conventional methods include statistical methods,
such as Wiener filtering [6] and minimum mean-square error
(MMSE) estimation [7], based on statistical modelling of spatial,
spectral, or temporal features derived from the sensor signals.
For instance, the MMSE estimator achieves speech enhance-
ment by modeling the speech and noise spectral components as
statistically independent Gaussian random variables.

Deep neural networks (DNNs) are today considered state-of-
the-art in speech enhancement. Unlike the conventional meth-
ods, the DNNs based methods [8]–[10] aim to learn a mapping
or masking relationship between the representations of noisy
speech mixture and target speech, via a training process. Then,
the trained model is used to make prediction of the target speech
directly (via mapping) [11], or the T-F mask (via masking) [12]–
[14], where either ideal binary mask (IBM) or ideal ratio mask
(IRM) has been used as the training target. Recent results show
that the mapping based methods outperform the masking based
methods [15].

Different from vanilla DNNs, recurrent neural network
(RNN) has been used for temporal modelling of speech and
offers advantages in mismatched conditions [16]. In particular,
long short-term memory (LSTM) [17] employs the cell memory,
input, output and forget gates to capture the interdependency be-
tween the past and current frames, which improves the accuracy
of the estimation for the mask and mapping relations [18]. Pre-
vious results show that it improves enhancement performance in
the case of unseen speakers [15], [16]. As an extension to LSTM,
the bidirectional LSTM has been proposed to also considers
the impact of the future frames, thus capturing the long-term
interdependency among the past, current and future frames [15].

Another promising direction has been on the exploitation of
convolutional neural network (CNN), such as [19], where a con-
volutional encoder decoder (CED) is introduced to estimate the
mapping relation between the noisy mixture and target speech.
This is further improved for learning multi-resolution features,
with a multi-resolution convolutional auto-encoders (MCARE)
model [20], learning with dilated convolution to enlarge the
receptive fields of the network in Wavenet, and learning with
a gated mechanism to control the information flow among each
layer [21]. Furthermore, the gated recurrent network (GRN)
method is used with dilated 2-D convolutional layers to enlarge
the receptive fields in the time-frequency (T-F) domain [15].
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The recurrent and convolutional architectures have been used
together to further improve enhancement performance. For ex-
ample, in the convolutional recurrent network (CRN) [22], the
convolutional encoder-decoder is integrated with the LSTM,
where the CED is used to capture the local T-F patterns, and
the LSTM is used to capture long-term interdependency [22].
The CRN method was shown to perform better than the LSTM.

All the above methods are supervised methods where class la-
bels are required for training the model. In contrast, unsupervised
methods have also been proposed for speech enhancement with-
out the requirement of class labels. A well-known method is the
speech enhancement generative adversarial network (SEGAN)
method [23].

The aforementioned methods are promising and represent cur-
rent state-of-the-art. However, there are still several limitations.
For the CED and CRN methods, a fixed kernel (filter) size is
often used. The local information (i.e. feature) in the signal can
be extracted by using a kernel of small size, while the contex-
tual feature needs to be extracted with a larger kernel size. A
method that can extract both local and contextual information is
desired. In the LSTM and CRN models, causal systems are often
designed by considering only current and past samples from the
signal. However, in terms of [21], the prediction performance
of the model can be further improved by considering the future
samples. Therefore, in our work, the future information (i.e. a
non-causal system) is considered to improve the enhancement
performance.

In addition, the implementation of LSTM often involves com-
putational loads for calculating the input, output, forget gates
and cell memory [17], [24], sometimes, this can be problematic
when the models are deployed on resource-limited devices. It
would be desirable to use more efficient RNN models such as
GRU/BGRU, with performance comparable to LSTM/BLSTM
but less memory requirements. In addition, in the Inception
network [25], the features of different scales are concatenated
directly, and they are assigned with the equal weight. This means
that features are considered as equally important, which may
be problematic especially when the features are induced by
noise. This could be further improved by assigning features with
different weights, as shown in our work.

In this paper, we propose a multi-scale feature recalibration
convolutional bidirectional GRU network (MCGN), with fol-
lowing specific contributions.

First, we introduce a multi-scale feature recalibration (MCFR)
convolutional encoder-decoder module, where the kernels with
different sizes are exploited in each convolutional layer, to obtain
features in different scales. This helps capture the interdepen-
dency between the local and contextual information within the
signal, and allows the feature in each scale to be assigned with a
different weight in order to retain the components from speech
while suppressing the components from noise.

Second, the bottleneck convolutional layers are introduced,
which uses the 1-D convolutional layer with kernels of size (1,1)
to compress the information flow inside the proposed MCGN.

Third, connection layers are used in MCGN, including fully
connected (FC) layer and BGRU layers. The FC layer is ex-
ploited to reduce the dimension of encoder output. The BGRU
layers can capture the inter-dependencies among the past,

current and future temporal frames. Compared with BLSTM,
they offer similar performance but require fewer parameters.

Fourth, the multi-scale convolutional output layer is proposed
to accelerate the convergence. The output layer enables the
enhanced output with access to the different scale convolutional
operators, which facilitate network training.

The remainder of the paper is organized as follows. Section II
describes the proposed MCGN method. The experimental set-
tings and results are discussed in Section III. Section IV states
the conclusions.

II. PROPOSED METHOD

A. Problem Statement

In single channel speech enhancement, the noisy speech mix-
ture can be written as:

y(m) = s(m) + n(m) (1)

where y(m) denotes the noisy speech, s(m) and n(m) represent
the clean speech signal and noise at discrete time m, respec-
tively. By using the short-time Fourier Transform (STFT), the
noisy speech mixture at time frame t ∈ [1, 2, .., T − 1, T ] and
frequency bin f ∈ [1, 2, .., F − 1, F ] is represented as:

Yt,f = St,f +Nt,f (2)

where St,f and Nt,f are the STFT of the clean speech signal and
noise, respectively. The neural network model is trained to find
the mapping relation Gθ between the magnitude spectrum of the
clean speech signal |St,f | and the noisy speech mixture |Yt,f |,
Gθ is parametrized by θ. The mapping function is estimated by
optimizing the loss function as:

Loss =
1

TF

T∑

t=1

F∑

f=1

[Gθ(|Yt,f |)− |St,f |]2

=
1

TF

T∑

t=1

F∑

f=1

(|Ŝt,f | − |St,f |)2 (3)

where |Ŝt,f | is the magnitude spectrum of the estimated target
speech, which is combined with phase information of the noisy
mixture to recover the target speech.

B. Proposed Network Architecture

The details of the proposed MCGN architecture are shown
in Fig. 1. The MCGN contains four parts, i.e. convolutional en-
coder, convolutional decoder, connection layers, and multi-scale
convolutional output layers. The magnitude spectrum of the
noisy mixture is fed to the proposed MCGN, which outputs the
estimated magnitude spectrum of the target speech. The convo-
lutional encoder consists of six convolutional layers containing
four multi-scale convolutional layers, an input convolutional (the
first) layer and a bottleneck convolutional layer. The multi-scale
convolutional layers contain five sub convolutional blocks with
varied kernel sizes. Similarly, the convolutional decoder has a
symmetric structure with the convolutional encoder. The output
of the convolutional encoder is fed to the connection layers. After
processed by the connection layers, the information flow is fed
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Fig. 1. Architecture of the proposed MCGN. The components and their functions are shown at the left of the figure. The overlapped 3-D boxes represent the
multi-channel 2-D convolutional neural networks. The colored arrows and named circles represent the information flow and operations. The convolutional encoder
is on the left of the figure, and the convolutional decoder is on the right of the figure, connection layers are shown in the middle of figure. The figure is color-coded
to facilitate understanding.

to the convolutional decoder. In addition, the skip connections
are added among the convolutional encoder and decoder. The
layer hyper-parameters can be found in Fig. 1. The stride size
of all layers is (1,2), except the multi-scale output layer, which
has a fixed stride size (1,1).

C. Multi-Scale Feature Recalibration Convolutional Layer

The receptive field is a region where CNN can affect a
particular high-level feature. A small receptive field is feasible
to extract local information, and a large receptive field offers
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Fig. 2. Multi-scale feature recalibration network, where X , and D represent
the input and output of the MCFR module, respectively. The multi-scale con-
volution or decovolution is shown on top of the figure, the bottom of the figure
shows the feature recalibration module.

contextual information [15]. In conventional CNN, a fixed kernel
size is often used, as a result, it compromises between local and
contextual information extracted from the signal. To address
this limitation, a multi-scale convolutional feature recalibration
(MCFR) layer is designed to capture the information on different
scales and generate the multi-scaled feature. As shown in Fig. 2,
MCFR contains several convolutional operators, which use the
kernels of different sizes to capture the information with various
scales. The convolutional operators with the small kernel sizes
can extract the feature from the short duration speech, thus
capturing the adjacent T-F points local dependency. The smallest
kernel size (1,2) is employed, which allows the feature from two
adjacent T-F points to be extracted. The convolutional operators
with large kernel sizes offer large receptive fields and can ex-
tract features from long-duration speech. These features contain
contextual information compared with the feature extracted by
kernels with smaller sizes. The batch-normalization is used after
each convolutional operator. Different from the standard CNN,
which uses the ReLU activation function [26], our proposed
MCGN utilizes the activation function LeakyReLU [27]. Then,
we concatenate the outputs of each convolutional operator into a
single output vector, forming the input of the next stage, as shown
in Fig. 2. The multi-scale decovolutional layer has a similar
structure as the one in MCFR, by replacing the convolutional
operators with deconvolutional operators.

After the features at different scales are extracted by using
the convolutional operators with varied kernel sizes, a feature
recalibration module is introduced to help the network to be
selective when using these scaled features, i.e. by assigning
different weights to features. It is shown on the bottom of
Fig. 2. We refer to the proposed multi-scale convolutional feature
recalibration layer as the MCFR layer. In the MCFR layer, we use

n sub-convolutional blocks, and each block has the same number
of channels but different kernel sizes to capture the features in
different scales. The input of the multi-scale layer is X, and
the output is K = [k1,k2, ..,kn], where kn is captured by the
n-th sub 2-D convolutional block that has different kernel size
compared with other 2-D convolutional blocks.

There are several operations for estimating the recalibration
coefficients, based on two criteria: the recalibration coefficient
could capture the nonlinear relation inside the multi-scaled
feature, and allocate relatively higher weights to speech compo-
nents and lower weights to noise components within the feature.
We use the following operations to meet these criteria: two FC
layers, ReLU and Sigmoid activations. These operations are
shown as follows,

c1n = w1n � kn + b1n (4)

an = max[0, c1n] (5)

c2n = w2n � an + b2n (6)

rsn =
ec2n

ec2n + j
(7)

where w1n, w2n denote the weight parameters, � denotes
element-wise multiplication, b1n, b2n represent the biases.
c1n and c2n represent the operations in FC1 and FC2 layers,
respectively. j = [1, 1, . . ., 1], and it has the same dimension as
c2n. The exponential function e is operated element-wise on
c2n, so is the division in the right hand side of equation (7).
The vector rsn contains the recalibration coefficient of the n-th
scaled feature. Empirically, we opt for the ReLU function as (5),
which is employed as a non-negative constraint. Inspired by the
success of the gating mechanism, we introduce Sigmoid as a
gating function to control the information flow, which aims to
assign different weights to speech and noise components. The
rescaled n-th feature is:

pn = kn � rsn (8)

Therefore, the rescaled multi-scale feature is P =
[p1,p2, . . .,pn]. We introduce deep skip connection (as in
residual learning [28]) inside the MCFR layer. In addition, the
residual learning does not introduce any additional parameters.
Mathematically, the original relation for the MCFR layer is
D = P, by using the residual learning and the ReLU function,
the relation becomes:

D = max[0,K+P] (9)

Following the extraction of multi-scale features, the proposed
MCGN learns the weights and applies them to these features
which help retain speech components and suppresses the noise
components in the noisy mixture.

D. Bottlenecks Convolutioal Layers

One of the practical problems in multi-scale convolutional
layers that need to be solved is the concatenation of the multi-
scale features, which would increase the dimension of the fea-
tures and cause an increase in computational cost. Therefore, a
structure that can retain the information while reducing the com-
plexity (e.g. dimension) is needed. Inspired by the embedding
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techniques that a low dimensional embedding might contain
sufficient information about a relatively large patch [25], [29],
we introduce the bottleneck convolutional layers in the proposed
MCGN architecture. The bottleneck convolutional layer is a
2-D convolutional layer with (1,1) kernels and 64 channels,
followed by the batch-normalization and LeakeyReLU [27].
It is located before the last convolutional encoder layer and
the first decoder layer, as shown in Fig. 1 (red convolutional
blocks). The first bottleneck convolutional layer reduces the
dimension from 640-D to 64-D for the last encoder layer, and
the second bottleneck convolutional layer reduces the dimension
from 128-D to 64-D for the first decoder layer.

E. Connection Layers

The original convolutional encoder-decoder does not well
utilized the long-term temporal information, which, neverthe-
less, may be valuable in speech enhancement [16], [22]. The
CRN method uses the LSTM to capture the long-term inter-
dependency between the past and current temporal frames.
However, CRN is designed for the casual problem, which utilizes
long-term interdependency between past and current temporal
frames. According to [21], the future frames could be used to
improve enhancement performance. In our work, we introduce
BGRU to capture the long-term interdependency among the
past, current and future temporal frames. In comparison, GRU
offers comparable performance to LSTM [24], [30], [31], but
has an advantage in parameter efficiency. However, the merging
of the multi-scaled convolutional sub-blocks would lead to an
inevitable increase in its dimension. Therefore, it is necessary
to find a way to retain the information and, at the same time, to
reduce the dimension and computational cost. To address this,
we use a fully connected (FC) layer, as the number of parameters
of the fully connected dense layer is smaller than that of the RNN
based layer, leading to a reduced dimension in the output of the
FC layer, as compared with the output of the encoder.

F. Multi-Scale Output Layer

We add the skip connection from the input to the multi-scale
output layer, as shown at the bottom of Fig. 1. As a result, the
multi-scale output layer can estimate the magnitude of the target
speech from the previous layer’s information flow and the input
magnitude of the noisy mixture. The multi-scale output layer
is a 2-D deconvolutional layer, which contains five sub-blocks,
and the kernel sizes of these sub-layers are different. Unlike the
MCFR layer, these varying scaled features are concatenated,
the different scaled features are summed together to generate
an output matrix with the same size as the input matrix. Thus,
the multi-scale output layer utilizes local and contextual in-
formation. The stride size of the output layer is set to (1,1).
Batch-normalization and linear activation are followed.

III. EXPERIMENTAL EVALUATIONS

A. Datasets

We evaluate our system with three experiments using three
different datasets. In the first experiment, we use 1000 clean
utterances mixed with 20 noise signals to generate the training

set in our first experiment. The clean utterances are randomly
selected from the TIMIT corpus [32], and noise files are selected
from Non-Speech Sounds [33] and NOISEX-92 [34] datasets.
Similarly, 100 clean utterances are mixed with 6 noise signals
to generate the testing datasets. To better evaluate enhancement
performance, the speakers in the training set are different from
the speakers in the testing dataset. Meanwhile, the testing noisy
interferences are categorized into two types, the seen noises
(Babble, Leopard, F16) and the unseen noises (N56, N72,
White). Babble, Leopard, F16, N56, N72 are non-stationary
noises, and White is stationary noise. N56 and N72 are wind
and water sounds, respectively. The noisy mixtures are generated
by mixing the clean utterances and noises at -5 dB, 0 dB and
5 dB signal-to-noise ratio (SNR) levels. In total, about 50 hours
(3×3× 1000× 20÷3600) noisy mixtures are used to train the
networks.

In the second experiment, we evaluate the proposed method
on a published dataset [21], [23]. The datasets are generated
by using the VCTK corpus [35] and Environment Multichannel
Acoustic Noise Database [36]. The utterances from 28 speakers
and 2 speakers are used for training and testing, respectively.
Each speaker has spoken around 400 sentences. The training
utterances are mixed with 10 types of noise in four SNR levels
(0 dB, 5 dB, 10 dB and 15 dB). In total, there are 11 572 noisy
mixtures for training. Similarly, the testing utterances are mixed
with 5 types of noise in four SNR levels (2.5 dB, 7.5 dB, 12.5 dB
and 17.5 dB). In total, the testing set includes 824 noisy mixtures,
where both the speakers and noises are unseen in the training
set.

In the third experiment, we evaluate the proposed MCGN
method with a larger dataset. For the training set, we ran-
domly select 2500 clean utterances from the TIMIT [32] and
VCTK [35] corpora, mix them with 20 different noise signals
selected from the Non-Speech Sounds [33] and NOISEX-92 [34]
datasets, to generate 50 000 training mixtures for each SNR
level (-5 dB, 0 dB, and 5 dB). Similarly, for the testing set,
we randomly select 500 clean utterances and mix them with 5
different noise signals, to generate 2500 noisy mixtures for each
SNR level. The speakers of the training dataset are different from
those in the testing dataset. The Babble, Leopard, F16 are seen
noises, while N56 and N72 are unseen noises.

The signal to distortion ratio improvement (ΔSDR) [37], per-
ceptual evaluation of speech quality (PESQ) [38] and short-time
objective intelligibility (STOI) [39] are used to measure the
performance. The ΔSDR is equal to the SDR of the estimated
speech minus the SDR of the unprocessed noisy mixture. The
PESQ ranges from -0.5 to 4.5, which indicates the speech
perception quality score. The STOI ranges from zero to one,
which indicates the intelligibility quality of human speech. The
higher values of the measurements indicate better enhancement
performance.

B. Baselines and Parameters

The proposed MCGN is compared with seven baseline meth-
ods, including the standard DNN method from [11], the DNN
method with skip connection S-DNN from [10], the LSTM
model used in [16], the BLSTM model used in [15], the CNN
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Fig. 3. Speech enhancement performance comparison in terms of ΔSDR for three types of seen noises with different methods and SNR levels. Each result is the
averaged value of 100 independent experiments.

based methods, the MRCAE method from [20], and the GRN
method in [15]. The parameters of the CRN model are set by
following [22]. LSTM and BLSTM have four hidden layers,
where each hidden layer contains 1024 units with a dropout rate
of 0.2, and the output layer is a dense layer. The MRCAE is
a five-layered 1-D convolutional encoder decoder. The encoder
consists of two multi-resolution 1-D convolutional layers, and
the decoder mirrors the encoder. A deconvolutional layer is
used as the output layer of MRCAE. The CRN consists of
the 2-D convolutional encoder, two-layered LSTM and 2-D
convolutional decoder, which are connected by standard feed-
forward connections and skip connections. The GRN is a 62-
layered fully connected dilated convolutional neural network
with the residual. The aforementioned baseline methods and
proposed MCGN method take the STFT magnitude spectrum
of the noisy speech mixture as the input features, and output
the corresponding magnitude spectrum of the estimated target
speech. The estimated magnitude spectrum is combined with
the noisy phase to re-synthesize the estimated target speech
waveform. Furthermore, the proposed MCGN model trained on
the published dataset [21], [23] is compared with the SEGAN
and Wavenet. The SEGAN employs generator and discriminator
to learn and judge the input data distribution, which uses the
adversarial training [23]. The Wavenet is a 30-layered fully
connected convolutional neural network [21].

The input and output layers for all methods contain 257 units.
The baseline methods and proposed MCGN method are trained
with the Adam optimization algorithm [40]. The initial learning
rate is set to 0.0001. The mean square error (MSE) is employed as
the objective function for the baseline and the proposed MCGN
methods. The dropout rate is fixed to 0.2. The sample rate of
noisy speech mixtures is 16 kHz, and the window length is
512. The time resolution is 32 ms, and frequency resolution
is 32.15 Hz. The next two sections (i.e. Sections III.C and
III.D) report the results based on the first dataset, while Section
III.E and III.F present results for the second and third dataset,
respectively.

C. Unseen Speakers With Seen Noises

Fig. 3 and Table I provide experimental results in terms of
ΔSDR, STOI and PESQ for the baseline and the proposed
methods with real-world noises. The speakers used in testing are

unseen in the training data. The noises used in testing include
Babble, Leopard, and F16.

The DNN generates, on average, ΔSDR = 5.49 dB, STOI =
76.26% and PESQ = 2.07, which offers the worst enhance-
ment performance across all the compared methods. These
results show that effectiveness of DNN remains insufficient.
The S-DNN slightly outperforms the DNN, because S-DNN
explicates the skip connection. The MRCAE method uses the
multi-resolution 1-D convolutional encoder decoder and offers
a small improvement over the DNN in terms of ΔSDR, and
PESQ.

The LSTM generates, on average, ΔSDR = 8.03 dB, STOI
= 78.77% and PESQ = 2.33, which shows advantages over
the DNN, S-DNN and MRCAE. Unlike the DNN, S-DNN and
MRCAE method, the LSTM exploits the memory cell to keep the
hidden states from the past temporal frame. The interdependency
between them are captured by the LSTM, incorporating the
past and current temporal frames. The BLSTM outperforms
the LSTM, due to the use of forward-LSTM and backward-
LSTM in every BLSTM layer. The forward-LSTM is the same
as the standard LSTM, which captures the interdependency
between the past and current temporal frames. However, the
backward-LSTM is fed by reverse input sequence, and thus the
interdependency between current and future temporal frames is
also utilized to achieve further improvement over the LSTM.

The CRN obtains, on average, ΔSDR = 8.81 dB, STOI =
79.49% and PESQ = 2.39, which provides more significant
improvements over the DNN, S-DNN and LSTM methods.
Since the CRN captures local spatial patterns of the input
magnitude spectrum, it can leverage the T-F structure of the
magnitude spectrum. Moreover, the LSTM layers inside the
CRN exploit the temporal dependency by using past and current
temporal frames. In addition, we perform experiments for the
non-casual version of CRN, namely CRBN, where the BLSTM
layers replace LSTM layers. The experimental results show that
the CRBN offers slight improvements over the CRN method,
which confirms that the interdependency between the current
and future frames improves predictions by the model. The GRN
outperforms the CRN by using the dilated convolutional layers.

The proposed MCGN gets the highest improvements over
the baseline methods, and it achieves, on average, ΔSDR =
10.88 dB, STOI = 82.42% and PESQ = 2.58, which are almost
1.7 dB, 2.53% and 0.16 higher than those achieved by the CRN
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TABLE I
SPEECH ENHANCEMENT PERFORMANCE COMPARISONS IN TERMS OF STOI AND PESQ OVER THREE DIFFERENT TYPES OF SEEN NOISES WITH DIFFERENT

BASELINE METHODS AND SNR LEVELS. EACH RESULT IS THE AVERAGE VALUE OF 100 EXPERIMENTS. Italic TEXT REFERS TO THE PROPOSED METHODS.
BOLD NUMBER INDICATES THE BEST PERFORMANCE

TABLE II
p-VALUE OF THE T-TEST AT 5% SIGNIFICANCE LEVEL, BETWEEN THE

PROPOSED METHOD AND THE BASELINE METHODS. H0 DENOTES THE NULL

HYPOTHESIS, AND (+) INDICATES THAT THE DIFFERENCE AMONG THE PAIR IS

STATISTICALLY SIGNIFICANT AT THE 95% CONFIDENCE LEVEL

method. The MCGN encodes the input magnitude spectrum in
different scales. The local interdependency is captured by the
convolutional sub-layers with small kernel sizes. The convo-
lutional sub-layers with large kernel sizes are used to find the
interdependency from the larger regions. By using the small and
large size kernels, the receptive field of MCGN is enlarged, and
the different scaled features are assigned with different weights.
Furthermore, the BGRU layers are introduced to connect the
multi-scale encoder and multi-scale decoder, which are capable
of exploiting the interdependency of the past, current and future
temporal frames. Besides, the raw data is fed to the output layer
of the MCGN to learn the residual mapping relation.

We also perform the t-test between the proposed MCGN
method and baseline methods, noisy mixtures for the unseen
speakers with seen noises cases. The t-test results are shown in
Table II. The p-values are all smaller than 0.05 and all the null
hypothesis is (+), which indicates that the proposed MCGN
method yields a statistically significant improvement over the
baseline methods.

D. Unseen Speaker With Unseen Noises

Fig. 4 and Table III provide experimental results in terms of
ΔSDR, STOI and PESQ for the proposed MCGN and baseline
methods with unseen noises. The testing speakers are unseen in
training data. The unseen testing noises are N56, N72 and White
noises.

The DNN method offers slight improvements over the noisy
mixture. The MRCAE outperforms the DNN method in terms
of ΔSDR and PESQ, but its STOI performance is worse than
that of DNN and S-DNN. These results show that the shallow
structure and small channel numbers can limit the performance
of MRCAE. Besides, the large size filters increase computational
cost. The skip connection in S-DNN boosts enhancement perfor-
mance compared to the DNN methods. The LSTM obtains fur-
ther improvement by incorporating the past and current temporal
information. The utilization of past, current and future temporal
information in BLSTM shows advantages over the LSTM and
DNN based method. The CRN method incorporates the con-
volutional encoder-decoder with the LSTM. The convolutional
encoder-encoder takes advantage of the convolutional layer and
batch normalization to provide a high-level representation of the
input feature, which improves the enhancement performance.
Incorporating of the BLSTM layers, the CRBN offers higher
improvements over the CRN method in terms of ΔSDR, STOI
and PESQ. The GRN method uses gated linear units to control
the information flow, and dilated convolutional layers to expand
the receptive fields. These strategies enable the GRN method to
outperform the methods above.

The proposed MCGN method provides the highest improve-
ments over all the baseline methods in terms of ΔSDR, STOI
and PESQ. The t-test results in Table IV also show that the
improvement of the proposed MCGN methods is statistically
significant.
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Fig. 4. Speech enhancement performance comparison in terms of ΔSDR for three unseen noises with different methods and SNR levels. Each result is the
averaged value of 100 experiments.

TABLE III
SPEECH ENHANCEMENT PERFORMANCE COMPARISONS IN TERMS OF STOI AND PESQ OVER THREE TYPES OF UNSEEN NOISES WITH BASELINE METHODS AND

SNR LEVELS. EACH RESULT IS THE AVERAGED VALUE OF 100 EXPERIMENTS. Italic TEXT REFERS TO THE PROPOSED METHODS. BOLD NUMBER

INDICATES THE BEST PERFORMANCE

TABLE IV
p-VALUE OF THE T-TEST AT 5% SIGNIFICANCE LEVEL, COMPARISON OF

PROPOSED METHOD WITH THE BASELINE METHODS. H0 DENOTES THE NULL

HYPOTHESIS, AND (+) INDICATES THE IMPROVEMENT OF TWO PAIRS IS

STATISTICALLY SIGNIFICANT AT THE 95% CONFIDENCE LEVEL

The proposed MCGN method provides the highest improve-
ments over all the baseline methods in terms of ΔSDR, STOI
and PESQ. The t-test results in Table IV also show that the
improvement of the proposed MCGN methods is statistically
significant.

Fig. 5. Speech enhancement comparison in terms of ΔSDR and ΔPESQ for
SEGAN [23], Wavenet [21] and the proposed MCGN. The enhancement results
are the averaged value of 824 noisy mixtures.

E. Experiments on Published Dataset

We also evaluate the proposed MCGN method on the second
dataset that we mentioned earlier, i.e. the published dataset
generated by the VCTK corpus. Fig. 5 shows experimental
results. Note that the model size (i.e. the number of parame-
ters) of SEGAN, Wavenet and the proposed MCGN is 193 M,
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Fig. 6. Speech enhancement performance comparison in terms of ΔSDR for three types of noise with different methods and SNR levels. Each result is the
averaged value of 500 experiments.

TABLE V
SPEECH ENHANCEMENT PERFORMANCE COMPARISONS IN TERMS OF STOI AND PESQ OVER THREE DIFFERENT TYPES OF SEEN NOISES WITH DIFFERENT

BASELINE METHODS AND SNR LEVELS. EACH RESULT IS THE AVERAGED VALUE OF 500 EXPERIMENTS. Italic TEXT REFERS TO THE PROPOSED METHOD.
BOLD NUMBER INDICATES THE BEST PERFORMANCE

34.3 M, 77.5 M respectively. The no-casual, dilated convolutions
controlled by the Sigmoid gate in every layer help to enlarge
the receptive fields of every kernel, and thus to utilize the
interdependency among input features. The future samples help
the Wavenet to perform better. Our MCGN method produces
substantially better enhancement performance, since the MCFR
model provides weighted multi-scale feature in every layer, and
captures the interdependency among different frames including
future frames.

F. Additional Experiments

Figs. 6& 7 and Tables V &VI provide experimental results in
terms of ΔSDR, STOI and PESQ for the proposed MCGN and
four baseline methods (i.e. LSTM, BLSTM, CRN and GRN)
with seen and unseen noises, for the larger dataset (i.e. 50 000
training signals and 2500 testing signals for each SNR level,
described in Section III.A).

It can be observed that the proposed MCGN method performs
better than all the baseline methods, and shows similar trends as
for the smaller dataset tested earlier. All the methods provide
some improvements over the noisy mixtures, which indicate
that they are effective for speech enhancement with seen and
unseen noises. The BLSTM provides more improvements than
LSTM, since it uses additional information from the future
frames, in contrast to the information from only current and
previous frames used in LSTM. The CRN uses the CED to

Fig. 7. Speech enhancement performance comparison in terms of ΔSDR for
two unseen noises with different methods and SNR levels. Each result is the
averaged value of 500 experiments.

capture local T-F patterns from input noisy mixtures, also uses
the LSTM layers to relate the past frames with current frames,
thus offering higher improvements than the LSTM and BLSTM.
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TABLE VI
SPEECH ENHANCEMENT PERFORMANCE COMPARISONS IN TERMS OF STOI

AND PESQ OVER TWO DIFFERENT TYPES OF UNSEEN NOISES WITH BASELINE

METHODS AND SNR LEVELS. EACH RESULT IS THE AVERAGED VALUE OF

500 EXPERIMENTS. Italic TEXT REFERS TO THE PROPOSED METHOD.
BOLD NUMBER INDICATES THE BEST PERFORMANCE

Fig. 8. Mean squared errors over training epochs for S-DNN, LSTM, BLSTM,
CRN, GRN, MCGN, and MCGN(NM) on the testing set. The MCGN(NM)
represents the delete the multi-scale output layers, only use the normal output
layer. All models are evaluated with a testing set of unseen speakers.

The GRN shows advantage over LSTM, BLTM and CRN, due
to the employment of the dilated 2-D convolutional layers for
expanding the receptive fields in the T-F domain, and the gated
convolution to control the information flow between layers.

The proposed MCGN method employs multi-scale 2D-
convolutional layers to enlarge the receptive fields in the T-F
domain, as a result, the features extracted are in different scales,
capturing both local and contextual information. The multi-scale
feature is assigned with different weights to provide a better fea-
ture representation. Furthermore, the BGRU layers are utilized
to model the interdependency among the past, current and future
frames. In summary, these results further confirm that the MCGN
outperforms baseline methods.

G. Convergence Lines and Spectrums

Fig. 8 demonstrates the testing MSEs of the baseline methods
and the proposed MCGN and MCGN without multi-scale output
(MCGN(NM)) layers over epochs. It can be seen that the MCGN
converges faster than the baseline methods and reaches the low-
est MSE. After 20 epochs training, the MCGN and MCGN(NM)
offer similar MSEs, but the convergence speech of MCGN is
faster than MCGN(NM) at 1-5 epochs. This suggests that the

TABLE VII
COMPONENT ANALYSIS

multi-scale feature representation may also help improve the
convergence speed of the algorithm, apart from improving its
enhancement performance.

We plot a set of spectrums in Fig. 9. It can be seen that
the baseline methods and the proposed MCGN method provide
different enhancement performance in terms of reconstruction
of target speech. The spectrums of the proposed MCGN method
are closer to the spectrums of the target speech, which again
confirms that the MCGN outperforms the baseline methods.

H. Component Analysis

We also conduct a series of experiments to investigate the
efficiency of different components in the proposed model. In
the component analysis, the ablation experiments are performed
by removing different components to show how it affects the
enhancement performance.

Table VII provides the experimental results of using vari-
ous components in terms of the ΔSDR, STOI, PESQ and the
parameters (million). Full means the full MCGN framework.
No bottleneck represents removing the bottleneck layers in
MCGN. No FC represents removing the fully connected layers
in MCGN. No MCFR means using the single kernel in each
encoder-decoder layer. No CL represents removing the connec-
tion layers that include a dense layer and two BGRU layers.
No FR denotes removing feature recalibration, which means
that the different scaled features use the same weight and are
concatenated directly.

The bottleneck layers employ fewer channels than previous
layers to compress the information from previous convolutional
layers, and this can reduce the computational cost with slight
information loss, as shown in the experimental results. Unlike
bottleneck layers in the convolutional encoder and decoder,
the FC layer with non-linear activation can produce a compact
representation of the encoder output before the BGRU layer
is applied. The bottleneck and FC layers help capture global
information from the mixture. In addition, the interdependency
among the past, current and future frames is captured by the
BGRU layers. Therefore, the CL can employ BGRU and FC
layers to provide improvements of enhancement performance
and parameter efficiency. The results also show that the MCFR
module can improve the performance by capturing the features
in different scales using paralleled kernels of different size.

Fig. 10 shows the weights obtained by feature recalibration
in the last layer of the multi-scale decovolutional layer. The
color-bar shows the weight values, and the deeper color repre-
sents a smaller value. Comparing Fig. 10 with Fig. 9 (A), (B),
we can observe that the weights of high values capture the target

Authorized licensed use limited to: University of Surrey. Downloaded on March 08,2021 at 12:27:59 UTC from IEEE Xplore.  Restrictions apply. 



XIAN et al.: MULTI-SCALE FEATURE RECALIBRATION NETWORK FOR END-TO-END SINGLE CHANNEL SPEECH ENHANCEMENT 153

Fig. 9. Spectrums of different signals: (A) clean speech; (B) noisy speech mixture; (C) enhanced speech by S-DNN [10]; (D) enhanced speech by LSTM [16];
(E) enhanced speech by BLSTM [15]; (F) enhanced speech by the proposed MRCAE [20] (G) enhanced speech by the proposed CRN [22]; (H) enhanced speech
by the proposed CRBN; and (I) enhanced speech by the proposed GRN [15]. (J) enhanced speech by the proposed MCGN.

Fig. 10. Weights obtained by feature recalibration are shown as a hot-map,
where the horizontal and vertical axis denote the time and frequency, respec-
tively, and the color-bar shows the values of the weights.

TABLE VIII
KERNEL SIZE ANALYSIS

speech very well. For example, the areas highlighted with the red
blocks represent speech components, while those highlighted
with yellow blocks represent components from noise. It can
be observed that the feature recalibration tends to assign the
features from speech with higher weights, and features from
noise with lower weights. Therefore, the feature recalibration
helps suppress noise and improve reconstruction of the target
speech.

I. Kernel Size Analysis

We perform further experiments to analyse the relation be-
tween enhancement performance and kernel sizes with unseen
noises. These experiments use kernel size varied from 1× 2
to 11× 11, thus exploiting different receptive fields in the T-F
domain. Table VIII provides the experimental results in terms

of ΔSDR, STOI, and PESQ. The enhancement performances
increase with the increase in the kernel size, e.g. from 1× 2
to 7× 7, but then starts to saturate for the further increase to
11× 11. However, the performance difference is relatively
small.

A larger kernel size, such as 7× 7, can provide a larger
receptive field, which generates the T-F feature map from a larger
region i.e. contextual information, which may be effective in
mitigating noise, and a smaller kernel size such as 1× 2 captures
the feature map among a smaller region i.e. local information,
thus effective in retaining the detailed T-F structure. This appears
to be consistent with the analysis in [15], [22]. Unlike the
BGRU layers which capture the interdependency among time
frames (i.e. time-domain), the 2D-convolutional layers allow
the expansion along both time and frequency.

As shown in Table VIII, the performance is also dependent on
the choice of the kernel size. When the kernel size is larger than
7× 7, performance may decrease in terms of STOI and PESQ.
Using paralleled multi-kernel helps the model to capture the fea-
tures in different scales, thus exploiting both local and contextual
information, and to offer better enhancement performance with
unseen noises, as in our proposed method.

To interpret the use of different kernel sizes, we have provided
an example of the feature map obtained by using kernels of
different sizes in the first multi-scale convolutional layer, as
shown in Fig. 11, using kernels of size 1× 2, 3× 4, and 7× 7.
It can be seen, although the kernel at each scale extracted
both speech and noise components, as shown in the regions
highlighted with blue and black, the feature maps obtained
with these kernels characterise different receptive fields, for
example, with the large kernel, more heavy smoothing is applied
which is effective in mitigating the impact of noise, while
the use of a small kernel can retain the fine structure of the
spectrum. Therefore, using a bank of kernels, the system has
a better chance to capture and distinguish the features from
speech and noise, thus further improves the speech enhancement
performance.
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Fig. 11. Feature maps in MCGN with different kernel sizes. Also, the mag-
nitude spectra of target speech and noisy mixture are provided. The horizontal
and vertical axes denote the time and frequency, respectively. The color-bar
shows the L2-normalized values. Example of components of speech and noise
are highlighted with black and blue blocks, respectively.

IV. CONCLUSION

We have presented a new framework for single channel speech
enhancement. The proposed MCGN introduced several novel
strategies to improve the enhancement performance and com-
putational efficiency of the neural network algorithm. Firstly, we
introduced the MCFR structure to extract the features in differ-
ent scales, capturing both the local and contextual information
from the speech mixtures. In addition, the feature recalibration
network was implemented using a gating function to control
the information flow, which assigns higher weights to speech
components and lower weights to noise components, and thus
improves the reconstruction of target speech by suppressing
the noise from noisy mixtures. Secondly, we introduced the
bottleneck convolutional and deconvolutional layers to reduce
information flow dimension in encoder and decoder, but to retain
the information. Thirdly, the efficiency connection module was
introduced. The fully connected layer was used to reduce the
dimension of the output of the convolutional encoder. The BGRU
was exploited to capture the interdependency among the past,
current and future temporal frames, which provides compara-
ble performance with fewer parameters than BLSTM. Finally,
we introduced the multi-scale convolutional output layer, then
summed the multi-scale outputs to accelerate the convergence
speed. A variety of noises were used to examine the enhance-
ment performance of the system. The unseen speakers with the
seen and unseen noises were exploited to evaluate the efficacy
of the proposed method. The experimental results confirmed
the improved performance of the proposed method overs the
state-of-the-art baseline methods.
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