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ABSTRACT
The existing convolutional neural network (CNN) based
methods still have limitations in model accuracy, latency and
computational cost for single channel speech enhancement.
In order to address these limitations, we propose a multi-
scale convolutional bidirectional long short-term memory
(BLSTM) recurrent neural network, which is named as Mcb-
Net, a deep learning framework for end-to-end single chan-
nel speech enhancement. The proposed McbNet enlarges the
receptive fields in two aspects. Firstly, every convolutional
layer employs filters with varied dimensions to capture local
and global information. Secondly, the BLSTM is applied to
evaluate the interdependency of past, current and future tem-
poral frames. The experimental results confirm the proposed
McbNet offers consistent improvement over the state-of-the-
art methods and public datasets.

Index Terms— CNN, single channel, speech enhance-
ment, BLSTM, McbNet, receptive field

1. INTRODUCTION

In the last decade, statistical signal processing [1], [2]
and computational auditory scene analysis (CASA) based
methods [3], [4] have been introduced for speech separation
and enhancement. Single channel speech enhancement is the
task of enhancing the intelligibility and quality of the target
speech extracted from noisy speech mixture that is recorded
by a single-microphone. It has been exploited in many real-
world applications such as mobile speech communication,
speech recognition and robotics [5]–[8].

In recent years, deep neural network (DNN) has become
a popular solution to single channel speech enhancement.
The DNN is introduced to estimate the mapping relation
between time-frequency (T-F) features of noisy mixture and
clean speech [9]. Furthermore, the DNN is employed as
a non-linear regression function to estimate the mapping
relation between the noisy mixture and target speech, which
ensures the powerful modelling capability [10]. The DNN
with skip connection is proposed to learn the residual re-
lation between the noisy mixture and target speech [11].
Alternatively, based on W-disjoint orthogonality, only one
source is predominantly active at each T-F point [12],

speech enhancement can be achieved by computing the
weight function (mask) of each T-F bin. This has led to
a variety of methods using, the ideal binary mask (IBM),
ideal ratio mask (IRM) and derverberation mask (DM) [13],
[14]. Recently, the long-short term memory (LSTM) RNN
provides better generalization of speaker independent speech
enhancement by exploiting the interdependency of past and
current temporal frames [15]. The magnitude spectrogram
is simply treated as an image by the convolutional encoder
decoder (CED). It is used to map the spectrogram of noisy
speech mixture to that of clean speech [16]. The LSTM
has been incorporated with the CNN provides a consistent
improvement over the CED and LSTM methods, which is
named as CRN [17].

The aforementioned methods have several limitations.
For example, the kernel size of CED and CRN is fixed,
which only captures the local information, while the global
information about the interdependency between long-term
temporal frames is not well utilized. Therefore the informa-
tion flow between input layer and output layer. In this paper,
we propose a multi-scale convolutional bidirectional LSTM
(BLSTM), in short as McbNet. Firstly, we introduce a multi-
scale CNN, where filters with varied sizes are employed
in every convolutional sub-layer, thus offering high-level
feature in different scales, which captures the interdepen-
dency between the local and global information. Secondly,
the dependency of past, current and future temporal frames
is captured by exploiting forward and backward LSTMs in
each BLSTM layers.

The remainder of the paper is organized as follows.
Section 2 describes the proposed McbNet method. The
experimental settings and results are given in Section 3.
Section 4 concludes the paper.

2. THE PROPOSED METHOD

2.1. Problem Statement

In single channel speech enhancement, the noisy speech
mixture can be written as:

y(m) = s(m) + n(m) (1)
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Fig. 1: Block diagram of the proposed McbNet architecture. Different colors represent different filter (kernel) sizes, which can be seen on every block. The
number of channels are listed on the bottom of diagram. The black lines denote the standard feed-forward transmission, and the red lines denote the skip
connection.
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Fig. 2: Block diagram of the three kernel sizes, the shaded blocks represent
the receptive fields of filter. The 1× 2 kernel size is used to capture the infor-
mation for adjacent two cells, which is more appropriate for local information
processing. The 4×4 kernel has larger repetitive filed, and global information
inside the 4×4 units is captured, with the trade off local information.

where y(m) denotes the noisy speech, s(m) and n(m)
represent the clean speech signal and noise at time m,
respectively. By using the short time Fourier Transform
(STFT), the spectrogram of noisy speech mixture at time
frame t and frequency bin f is obtained as:

Y (t, f) = S(t, f) +N(t, f) (2)

where S(t, f) and N(t, f) are the spectrograms of clean
speech signal and noise, respectively. The neural network
model is trained to find the mapping relation Gθ between the
magnitude spectrograms of clean speech signal |S(t, f)| and
noisy speech mixture |Y (t, f)|. Where Gθ is parametrized
by θ. The mapping function is estimated by optimizing the
loss function as:

Loss = min
θ

∑
t

∑
f

(Gθ(|Y (t, f)|)− |S(t, f)|)2

= min
θ

∑
t

∑
f

(|Ŝ(t, f)| − |S(t, f)|)
2

(3)

where |Ŝ(t, f)| is the magnitude spectrogram of the esti-
mated target speech, which is combined with phase infor-
mation of the noisy mixture to estimate the target speech.

2.2. Multi-scale Encoder Decoder

The block diagram of the proposed McbNet is shown in
Fig. 1. The proposed McbNet is an end-to-end framework
that estimates the spectral magnitude of target speech by
using non-linear mapping. The McbNet mainly includes
two blocks: multi-scale convolutional encoder-decoder, and
BLSTM layers. More specifically, the multi-scale convo-
lutional encoder is employed to extract high-level repre-
sentation from the magnitude spectrum of noisy speech
mixture. The multi-scale convolutional encoder (MCE) is
exploited to project this high-level representation back to
lower dimension. Empirically, every MCE layer consists
of six 2-D convolutional sub-layers with the different filter
(kernel) sizes. The filters of small size such as (1,2), (2,3)
and (3,4) are used to capture the local dependency between
the adjacent temporal frames, which is good at extracting
feature from the short duration vocal information. The filters
of large size (4,5), (7,7) and (7,15) are exploited to cap-
ture the global dependency of different frames, which has
an advantage in feature extraction from the long duration
speech. Then, the the output of convolutional sub-layers are
added together to obtain the output of one encoder layer.
The batch-normalization is followed after each convolutional
sub-layer. Different from the standard CNN that uses the
ReLU activation function, the proposed McbNet utilizes the
advanced activation function (leakyReLU), which provides
better generalization ability and accelerates the convergence
speed [18]. The multi-scale convolutional decoder (MCD)
has a symmetric structure with MCE, and every MCD layer
consists of multi-scale decovolutional sub-layers with varied
filter sizes. Also, the batch-normalization and LeakyReLU
are applied in MCD. The MCE and MCD are connected by
skip connection and two BLSTM layers. Note, the kernel
sizes and number of channels can be found in Fig. 1, and
the stride size of McbNet is fixed to (1,2).
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Table 1: Speech enhancement performance comparisons in terms of STOI over three noises with different state-of-the-art methods and SNR levels. Each result
is the average value of 100 experiments. Italic text refers to the proposed methods. Bold number indicates the best performance.

Measure STOI(%)
Scenarios Babble Leopard N56

Methods
SNR -5dB 0dB 5dB Avg. -5dB 0dB 5dB Avg. -5dB 0dB 5dB Avg.

Noisy Mixture 53.86 63.05 71.66 62.86 71.68 75.57 78.92 75.39 57.07 68.26 78.43 67.92
DNN [10] 66.36 72.91 79.26 72.83 77.11 80.55 83.26 80.30 72.59 79.44 84.07 78.70

S-DNN [11] 66.80 73.66 79.63 73.36 78.34 81.54 83.98 81.29 72.79 79.45 84.07 78.77
LSTM [15] 68.78 75.81 81.54 75.38 80.76 83.32 85.40 83.16 76.99 82.49 86.47 81.98
CRN [17] 70.10 76.95 81.88 76.31 81.20 84.02 85.80 83.67 78.49 83.37 87.09 82.98

CRN-BLSTM 70.30 77.08 81.96 76.45 81.20 84.20 85.90 83.77 78.62 83.53 87.20 83.11
McbNet 72.80 79.15 84.15 78.70 83.51 85.40 87.03 85.31 80.79 85.54 89.06 85.13

2.3. BLSTM Layers and Residual Multi-scale Output
layers

The BLSTM layer contains forward and backward
LSTM layers. Using the input sequence from c(1) to c(T ),
the forward LSTM outputs

−→
h (1) to

−→
h (T ). Each forward

LSTM block not only receives sequence from encoder, but
also receives sequence from the previous forward LSTM
block within the same layer. Therefore, the forward LSTM
layer is capable of utilizing the interdependency of past and
current temporal frames. Similarly, the backward LSTM can
capture the interdependency of current and future temporal
frames, and outputs

←−
h (1) to

←−
h (T ). Then, the

−→
h (t) and←−

h (t) are fed into the merge block, which gives the final
output of BLSTM layers. Empirically, we select the sum-
mation function, so the output of BLSTM layer becomes:

h(t) =
−→
h (t) +

←−
h (t) (4)

To overcome the potential overfitting, we add the skip
connection from the input to the multi-scale output layers.
Therefore, the multi-scale output layer can estimate the
magnitude of the target speech from the information flow
of previous layer and input magnitude of the noisy mixture.
Similarly, the multi-scale output layer is 2D-deconvolutional
layer, which contains six sub-layers, and the kernel sizes of
these sub-layers are different. Thus, the multi-scale output
layer utilizes the local and global information. The stride size
of the output layer is set to (1,1), and batch-normalization
and linear activation are followed.

3. EXPERIMENTAL EVALUATIONS

3.1. Datasets

In our experiments, 1000 and 100 clean utterances are
used to generate the training and testing datasets, which are
randomly selected from the TIMIT corpus [19]. The TIMIT
database contains 6300 utterances which are spoken by 630
speakers. For training, 20 training noise interferences are
randomly selected from the None-Speech Sounds [20] and
NOISEX-92 [21] datasets. The testing noise interferences
are categorized into two scenarios, the seen noise interfer-
ences (Babble, Leopard) and the unseen noise interference
(N56). The noisy mixtures are generated by mixing the clean

utterances and noise interferences at -5dB, 0dB and 5dB
signal-to-noise ratio (SNR) levels. In total, 20,000 noisy
mixtures in the training dataset, and 300 noisy mixtures in
the testing dataset are used.

The signal to distortion ratio improvement (∆SDR) [22],
perceptual evaluation of speech quality (PESQ) [23] and
short-time objective intelligibility (STOI) [24] are used to
measure the performance. The ∆SDR is equal to SDR of
the estimated speech minus SDR of the unprocessed noisy
mixture, which is used to evaluate the overall enhancement
performance. The PESQ ranges from zero to five, which
indicates the intelligibility score of speech. The STOI ranges
from zero to one, which indicates human speech quality
score. The higher value of measurement indicates a better
enhancement performance.

3.2. Baselines and Parameters

The proposed McbNet is compared with four state-of-
the-art methods, the standard DNN method in [10]; the
DNN method with skip connection S-DNN in [11]; and
the LSTM model used in [15], these all methods have four
hidden layers that contain 1024 units. The parameters of the
CRN model are set by following [17]. The input and output
layers for all methods are 257 units. The Adam optimization
algorithm and mean square error (MSE) are employed in the
baseline and the proposed methods. The dropout rate is fixed
to 0.2. The sample rate is 16,000 Hz, and the window length
is 512. Further parameters is provided in Fig. 1.

3.3. Experimental Results

Fig. 3 and Tables 1 & 2 provide experimental results in
terms of ∆SDR, STOI and PESQ for the baseline and the
proposed methods with unseen and seen noises. The testing
speakers are different from the training speakers.

The DNN generates, on average, 5.36dB ∆SDR, 77.27%
STOI and 2.04 PESQ, which provides the lowest improve-
ments over the unprocessed noisy mixture. These results
show that the generalization of DNN remains insufficient.
The S-DNN slightly outperforms the DNN. Since the S-
DNN employs the skip connection to learn the residual
mapping form the noisy mixture.

The LSTM generates, on average, 6.81dB ∆SDR,
80.27% STOI and 2.30 PESQ score, which shows better
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Table 2: Speech enhancement performance comparisons in terms of PESQ over three noises with different state-of-the-art methods and SNR levels. Each result
is the average value of 100 experiments. Italic text refers to the proposed method. Bold number indicates the best performance.

Measure PESQ
Scenarios Babble Leopard N56

Methods
SNR -5dB 0dB 5dB Avg. -5dB 0dB 5dB Avg. -5dB 0dB 5dB Avg.

Noisy Mixture 1.28 1.52 1.81 1.53 1.75 1.99 2.22 1.97 1.14 1.31 1.57 1.34
DNN [10] 1.58 1.90 2.20 1.89 2.03 2.31 2.50 2.28 1.70 1.98 2.16 1.95

S-DNN [11] 1.69 2.00 2.28 1.99 2.25 2.45 2.67 2.46 1.74 2.00 2.20 1.98
LSTM [15] 1.82 2.15 2.44 2.14 2.41 2.61 2.80 2.61 1.93 2.17 2.36 2.15
CRN [17] 1.92 2.22 2.49 2.21 2.49 2.70 2.89 2.69 1.99 2.22 2.40 2.20

CRN-BLSTM 1.93 2.23 2.50 2.22 2.51 2.72 2.90 2.71 2.01 2.25 2.44 2.23
McbNet 2.10 2.35 2.59 2.35 2.67 2.85 3.01 2.84 2.12 2.32 2.52 2.32

Babble 

-5dB 0dB 5dB

SNR Level (dB)

4

6

8

10

12

14

16

 S
D

R
 (

dB
)

Leopard

-5dB 0dB 5dB

SNR Level (dB)

N56

-5dB 0dB 5dB

SNR Level (dB)

DNN[10]

S-DNN[11]

LSTM[15]

CRN[17]

CRN-BLSTM

McbNet

Fig. 3: Speech enhancement performance comparison in terms of ∆SDR for three types of noises with different methods and SNR levels. Each result is the
average value of 100 experiments.

generalization ability over the DNN and S-DNN. Unlike the
DNN and S-DNN, the LSTM receives not only sequence
of the previous layer, but also the hidden state of previous
block within the same layer. Therefore, the LSTM exploits
combined information of past and current temporal frames.

The CRN obtains, on average, 8.70dB ∆SDR, 80.98%
STOI and 2.36 PESQ, which provides higher improvements
over the DNN, S-DNN and LSTM methods. Since the local
spatial patterns of the input magnitude spectrum are captured
by CRN, it is capable of leveraging the T-F structure of mag-
nitude spectrum. Moreover, the LSTM layers inside the CRN
exploit the temporal dependency by using past and current
temporal frames. The CRN-BLSTM offers improvements
over the CRN, because the past, current, future temporal
frames are utilized by BLSTM layers.

The proposed McbNet gets the highest improvements
over the baseline methods, and it obtains, on average,
10.59dB ∆SDR, 83.05% STOI and 2.50 PESQ. The McbNet
gets almost 1.89dB ∆SDR, 2.07% STOI improvement and
0.14 PESQ improvement over the CRN method. The Mcb-
Net using the MC to encode the input magnitude spectrum
in different scales. The local interdependency is captured
by the convolutional sub-layers with small kernel sizes. The
convolutional sub-layers with large kernel sizes is used to
find the interdependency between the remote frames. By
using the small and large size filters, the receptive field of
McbNet is enlarged and the T-F structure of the magnitude
spectrum is leveraged. Furthermore, the BLSTM layers are
introduced to connect the MCE and MCD, which are capable
of exploiting the interdependency of past, current and future
temporal frames. Besides, the raw data is fed to the output
layer of the McbNet to learn the residual mapping relation.

For the noise-independent case (N56), the McbNet pro-
vides consistent improvement over baseline methods, which
shows that the McbNet has better generalization ability to
unseen speaker and noise.

(A)

(C)

(E)

(F) (G)

(F)

(D)

(B)

Fig. 4: Spectrograms of different signals: (A) clean speech; (B) noisy speech
mixture; (C) enhanced speech by DNN [10]; (D) enhanced speech by S-DNN
[11]; (E) enhanced speech by LSTM [15]. (F) enhanced speech by CRN [17].
(G) enhanced speech by CRN-BLSTM. (H) enhanced speech by the proposed
McbNet.

4. CONCLUSIONS

In this paper, an McbNet framework was proposed to
solve speaker independent single channel speech enhance-
ment with seen and unseen noises. The McbNet with varied
kernel sizes was used to find interdependencies between the
temporal frames. More specifically, the small size kernel
was applied to capture the local information, which includes
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interdependency of adjacent temporal frames. Moreover,
large size kernel was used to capture the global information,
which contains interdependency between long-term temporal
frames. Furthermore, the BLSTM layers and residual learn-
ing were introduce to utilize maximum information flow.
The experimental results show that the proposed McbNet
enlarged the receptive fields and outperformed the state-of-
the-art methods with unseen speakers and noise.
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