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Abstract

Convolutional neural network (CNN) based methods, such as the convolutional encoder-decoder net-

work, offer state-of-the-art results in monaural speech enhancement. In the conventional encoder-

decoder network, large kernel size is often used to enhance the model capacity, which, however, re-

sults in low parameter efficiency. This could be addressed by using group convolution, as in AlexNet,

where group convolutions are performed in parallel in each layer, before their outputs are concatenated.

However, with the simple concatenation, the inter-channel dependency information may be lost. To

address this, the Shuffle network re-arranges the outputs of each group before concatenating them, by

taking part of the whole input sequence as the input to each group of convolution. In this work, we

propose a new convolutional fusion network (CFN) for monaural speech enhancement by improving

model performance, inter-channel dependency, information reuse and parameter efficiency. First,

a new group convolutional fusion unit (GCFU) consisting of the standard and depth-wise separable

CNN is used to reconstruct the signal. Second, the whole input sequence (full information) is fed

simultaneously to two convolution networks in parallel, and their outputs are re-arranged (shuffled)

and then concatenated, in order to exploit the inter-channel dependency within the network. Third,

the intra skip connection mechanism is used to connect different layers inside the encoder as well as

decoder to further improve the model performance. Extensive experiments are performed to show the

improved performance of the proposed method as compared with three recent baseline methods.
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1. Introduction

Speech enhancement aims to reduce interference from noisy speech mixture and improve

the intelligibility and quality of target speech. Monaural speech enhancement is an extreme

case, where only single channel noisy speech mixture (e.g. recorded by a single microphone)

is available, and both target speech and noise are unknown. This problem is widely found in

real-world scenarios such as speech communication, automatic speech recognition, and robotics

[1, 2, 3, 4].

Many methods have been proposed to address the problem of monaural speech enhance-

ment. Recently, the deep neural networks (DNN) based methods [5] show great potential in

monaural speech enhancement. The DNN based methods can be divided into two categories

i.e. mapping-based [6, 7] and masking-based methods [8, 9, 10, 11]. Typically, the time-

frequency (T-F) representations of noisy speech mixtures and target speeches are provided

to train the DNN which learns the masking or mapping relation between them. Then, the

trained DNN is used to estimate the target speech from the noisy speech mixture [12]. In the

mapping-based methods, the DNN is used to learn the non-linear mapping between the T-F

representation of the target speech and that of the noisy speech mixture. In the masking-

based methods, the DNN is used to estimate the T-F mask, which is a matrix of weights

indicating the probability of the source being present in the noisy speech mixture at each T-F

point. Recent research has suggested that the mapping-based methods perform better than

the masking-based methods [13].

Although the vanilla DNN is a powerful model, the inter-dependency between the neighbor-

ing temporal frames is not considered explicitly, which may limit its performance in mismatch

conditions e.g. speaker-independent or noise-independent cases [14, 15]. To address this prob-

lem, the recurrent neural network (RNN) based methods i.e. deep RNN (DRNN) is introduced,

where the information from the past frames is exploited along with that of the current frame

in the DRNN units [16]. In addition, by using the input, forget and output gates, the long

short-term memory (LSTM) is capable of controlling how much past information from longer

time frames can be used to update the current frame. The LSTM has been shown to offer

advantages over the DNN-based methods for the mismatch conditions [15].

Recently, convolutional neural networks (CNN) have been used for speech enhancement.

Motivated by CNN-based image processing methods, in speech enhancement, the T-F rep-
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resentation of a noisy speech mixture is taken as an input to the CNN, to estimate the tar-

get speech [17]. Inspired by the Inception Network (InceptionNet) [18], the multi-resolution

features are also introduced for speech enhancement by using multiple filters with various

sizes in each layer of multi-resolution convolutional encoder-decoder (MHCED) network [19].

An autoencoder convolutional neural network (AECNN) is proposed to estimate the target

speech [20], by using mean absolute error (MAE) as the cost function. In the phase-and-

harmonics-aware speech enhancement network (PHASEN), two streams are used to predict

the amplitude and phase, which exploits phase information to boost the performance of am-

plitude based speech enhancement [21]. Dilated CNN has been used to enlarge the receptive

fields and capture the interdependency among different frames. For example, gated residual

network (GRN) [13] has been used for speech enhancement with dilated CNN, showing better

performance than RNN based methods. In addition, temporal convolutional neural network

(TCNN) [22] and Conv-TasNet [23] exploit dilated CNN for time-domain speech enhancement

and separation. Another direction is to scale up CNN by improving the parameter efficiency

of CNN, using the factorized convolutions and aggressive regularization, such as AlexNet [24],

InceptionNets [25, 26], and ShuffleNet [27]. In ShuffleNet, group convolution and channel shuf-

fle are introduced to reduce computational cost while maintaining accuracy [27]. In addition,

the depth-wise separable convolution is proposed to replace the standard convolution, which

shows advantages in parameter efficiency [28, 29].

The aforementioned methods, however, still have limitations. For instance, although a large

kernel size used can enlarge the receptive fields of the model in the conventional convolutional

encoder-decoder network, it increases the computational cost [20]. The InceptionNet and

MHCED utilize multiple kernels of various sizes to improve the model capacity, and the use

of large kernel sizes [19] will likely decrease the parameter efficiency and limit its applicability

in resource-limited applications. The AlexNet uses two group convolutions in parallel at each

layer, with each group taking half of the input sequence [24]. However, for each group of

convolution, only part of the input sequence is used, which may limit each kernel to only

obtaining partial information from the full input sequence and potentially degrade the model

performance. The channel shuffle is proposed to re-arrange channels of group convolution in

ShuffleNet [27], which is helpful in enabling the channels to be related with each other. In

addition, the ShuffleNet employs sequential standard convolution and depth-wise convolution

3



to generate a single feature, which can be further improved by preserving two different feature

maps of standard and depthwise convolutions. The AECNN model only employs the skip

connections between the encoder and decoder, which feeds the information flow from the

encoder layers to their corresponding decoder layers [20]. However, the information flow reuse

within the encoder/decoder has not been explored, despite its potential benefit for improving

enhancement performance.

In this paper, we propose a new framework, namely, convolutional fusion network (CFN)

to mitigate some of these limitations. More specifically, we have following contributions.

First, we propose a convolutional fusion unit consisting of standard convolution and depth-

wise separable convolution with smaller kernel size. The weighted outputs from these two con-

volutions are concatenated as the output of the convolutional fusion unit. The convolutional

fusion units are used to build the encoder, instead of using only standard (vanilla) convolution.

Second, we propose a novel decoder with deconvolution, depth-wise separable convolution

and upsampling layers to improve the model capacity, which is also capable of reducing the

dimension of the encoder output.

Third, channel shuffling is introduced to exploit the inter-channel dependency. More specif-

ically, the full input sequence is fed to standard convolution and depth-wise separable convo-

lution, and their outputs are re-arranged and concatenated to utilize the inter-channel depen-

dency according to the channel order. As a result, both groups of convolution can exploit the

information from the full input sequence.

Lastly, we apply an intra skip connection mechanism inside the encoder and decoder. With

intra skip connection, the ability of reusing information flow within the encoder and decoder

is refined.

The remainder of the paper is organized as follows. Section 2 provides a statement of

monaural speech enhancement problem. Section 3 presents the proposed CFN method. The

experimental settings and results are discussed in Section 4. Section 5 draws the conclusions.

2. Problem Statement

In monaural speech enhancement, the aim is to recover the clean speech from a noisy

speech mixture, written as:

y(m) = s(m) + n(m) (1)
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where y(m) denotes the noisy speech mixture which is recorded using a single microphone,

s(m) and n(m) represent the clean speech signal and noise at discrete time m, respectively.

By using the short-time Fourier Transform (STFT), the spectrum of noisy speech mixture at

time frame t and frequency bin f is represented as:

Yt,f = St,f +Nt,f (2)

where St,f and Nt,f are the STFT of the clean speech signal and noise, respectively. For conve-

nience, the indices t ∈ [1, T ] and f ∈ [1, F ] are omitted hereafter, unless specified. The neural

network model is trained to learn the mapping relation Gθ between the magnitude spectra of

the clean speech signal |S| and the noisy speech mixture |Y |, where Gθ is parametrized by θ.

The mapping function is estimated by optimizing the loss function as:

Loss = min
θ

1

TF

T∑
1

F∑
1

|(Gθ(|Y |)− |S|)|

= min
θ

1

TF

T∑
1

F∑
1

|(|Ŝ| − |S|)| (3)

where |Ŝ| is the magnitude spectrum of the estimated target speech, which is combined with

the phase information of the noisy mixture to reconstruct the target speech.

3. System Description

3.1. Proposed Network Architecture

The proposed CFN is a convolutional encoder-decoder structure with multiple skip con-

nections for monaural speech enhancement. The details of the proposed CFN are shown in

Fig. 1. The proposed CFN takes the magnitude spectrum of the noisy mixture as input, and

outputs the magnitude spectrum of estimated target speech. The estimated target speech is

reconstructed using the estimated magnitude of the target speech and the phase information of

the noisy speech mixture. The encoder has multiple layers of group convolutional fusion units

(GCFU), and each unit includes standard convolution and depth-wise separable convolution.

The number of output channels of the GCFU is increased from 16 to 128 in the encoder. The

encoder is applied to reduce the dimension of input sequence by using the strides in GCFU.
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Figure 1: The architecture diagram of the proposed CFN. The components and their functions are listed at
the bottom of Fig. 1. For example, E64 represents GCFU with 64 output channels in the encoder, and D64
represents GDFU in the decoder. The encoder is on the top of the figure, and the decoder is on the bottom of
the figure. The kernel sizes of standard convolution and deconvolution are set to (1,3), and their strides sizes
are set to (1,2). The kernel size of depth-wise separable convolution is set to (3,3), and stride size is (1,1). The
pooling layer with stride size (1,2) is used to reduce the dimension of the depth-wise separable convolution
output in GCFU, and upsampling layer with size (1,2) is employed to increase its dimension in GDFU. The last
layer of the encoder uses stride size (1,1) for convolution and depth-wise separable convolution, and pooling
with stride size (1,1) for depth-wise separable convolution.

The decoder has a mirror structure with the encoder, and each group deconvolutional fusion

unit (GDFU) consists of standard deconvolution and depth-wise separable deconvolution. The

decoder is used to recover the dimension of the encoder output and generate the final out-

put. In addition, multiple types of skip connections are applied to improve feature reuse.

More specifically, the GDFU is connected with the output from the corresponding symmetric

GCFU by skip connection. Furthermore, the skip connections are used to connect different

group convolutional/deconvolutional fusion units inside the encoder/decoder.

3.2. Group Convolutional Fusion Units

The proposed CFN employs GCFU including two different convolutions, i.e. standard

convolution and depth-wise separable convolution. The outputs of the two convolutions are

concatenated together. The proposed GCFU is shown in Fig. 2. For every GCFU, we set the

input matrix X with height H, width W , and channel M , i.e. X ∈ RH×W×M .

A standard 2D-convolutional layer can be characterized by an input X, and a bank of
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filters F. More specifically, for the filter F ∈ RK×L×M×N , N represents the number of filters

i.e. the number of output channels of the standard 2D-convolutional layer. The operation of

the standard 2D-convolutional layer is:

C(k,l,n) =
K∑
i=1

L∑
j=1

M∑
m=1

F(i,j,m,n)X(k+i−1,l+j−1,m) (4)

The output of the standard 2D-convolutional layer is C ∈ RH×W×N . Also, we can use the

stride sizes to control the output size of C. The batch-normalization and activation function

LeakyReLU [30] are followed to generate the 2D-convolution output.

Unlike the standard 2D-convolution, the depth-wise separable convolution has two steps:

depth-wise convolution i.e. a spatial convolution performed independently over every input

channel, and the point-wise convolution i.e. a standard convolution, which projects every

channel’s output of the depth-wise convolution to a new channel space. Mathematically, we

can spilt the filter F into two filters, the depth-wise filter D ∈ RK×L×1×1, and point-wise filter

P ∈ R1×1×M×N .

S(k,l,n) =
K∑
i=1

L∑
j=1

M∑
m=1

F(i,j,m,n)X(k+i−1,l+j−1,m)

=
K∑
i=1

L∑
j=1

M∑
m=1

D(i,j,m)P(m,n)X(k+i−1,l+j−1,m)

=
M∑
m=1

P(m,n)

(
K∑
i=1

L∑
j=1

D(i,j,m)X(k−i,l−j,m)

)
(5)

The output of the depth-wise separable convolutional layer is S ∈ RH×W×N . Similarly, the

batch-normalization and activation function LeakyReLU [30] are followed after depth-wise

separable convolutional layers. In addition, the max pooling operation is used to down-

sample the output of the depth-wise separable convolution. Different from the conventional

residual structure that sums two output convolutions [13], the convolutional fusion is realized

by concatenating the weighted outputs of the two convolutions:

B = [α1C, α2S] (6)
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Figure 2: (a) Group convolution that consists of the standard convolution and depth-wise separable convo-
lution. 2N represents the number of output channels of convolutional layers. The standard convolution and
depth-wise separable convolution take half input sequence as input, and each of them generates output with
2N channels. Then outputs of convolution and depth-wise separable convolution are concatenated directly.
(b) Group convolution with channel shuffle. The input sequence is divided into two parts based on channel
index, where the first part of the input sequence is feed to the standard convolution, and the second part of
the input sequence is fed to the depth-wise separable convolution layer. Their outputs are re-arranged and
concatenated using the channel shuffle, and final output has 4N channels. (c) Proposed GCFU with channel
shuffle. The full input sequence (full information) is fed to the N channel standard convolution and N channel
depth-wise separable convolution. Their outputs are re-arranged and concatenated using the channel shuffle,
and final output has dimension 2N .

where α1 and α2 represent the weight parameters of the standard and depth-wise separable

convolutions, respectively. They can assign weights to two kinds of convolutions.

3.3. Channel Shuffle

Group convolution is motivated by the original idea of AlexNet [24], where two convolution

filter groups are employed in parallel in each layer to improve network efficiency. In Fig. 2(a),

the input sequence is distributed to parallel convolutions. For the next layer with similar

structure, the output of a particular channel is only related to a small fraction of the input

channels, and information flow between channels is limited [27]. Therefore, we introduce

channel shuffle to re-arrange group channels in the proposed CFN model, which entangles

the outputs of the two kinds of convolutions. In addition, the input and output of this layer

will be related. In Fig. 2(b), the input sequence is divided into two parts based on channel

index, where the first part is fed to the standard convolution, and the second part is fed to the

depth-wise separable convolution. As a result, neither the standard convolution nor depth-
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wise separable convolution has utilized the full input sequence, which may limit their model

performance due to the use of partial input. To address this problem, in our proposed GCFU,

we design a new structure to exploit the full sequence and channel shuffle, as shown in Fig.

2(c). The full input sequence is fed to both standard convolution and depth-wise separable

convolution. They are employed to generate different feature maps for the full input sequence.

The outputs of standard convolution and depth-wise separable convolution are re-arranged

and concatenated according to their channel numbers.

Both the standard convolution and depth-wise separable convolution have N output chan-

nels, and they can be represented as C = [C1,C2...,CN ] and S = [S1,S2, ...,SN ]. The full

information channel shuffle of GCFU is:

Bs = [α1C1, α2S1, ..., α1CN , α2SN ] (7)

where Bs represents the channel shuffled group convolution. By using the full information

channel shuffle, the output of the standard convolution and depth-wise convolution are fully

related, and the next layers can obtain the shuffled information flow.

3.4. Group Deconvolutional Fusion Units

For convolutional encoder-decoder, the decoder is exploited to map the low dimension

encoder output to a higher dimension that is equal to the original dimension of the input

sequence. The standard decoder uses deconvolutional layers to up-sample the encoder output.

However, there is no depth-wise separable deconvolution structure. To address this issue, we

propose group deconvolutional fusion unit (GDFU) to up-sample the encoded feature map,

and generate the input to the next GDFU layer. The GDFU architecture is shown in Fig.

3. The lower dimensional feature map is fed to deconvolutional and depth-wise separable

convolutional layers respectively, to generate the dense feature maps. Batch-normalization

and LeakeyRelu [30] steps are followed. Inspired by the work [31], which uses the transferred

pooling layers and standard convolutional layers to build the convolutional decoder, we use an

upsampling layer to up-sample feature map of the depth-wise separable convolutional layer.

Finally, channel shuffle is exploited to re-arrange outputs of the two streams as shown in Fig.

3.
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Figure 3: Structure diagram of the proposed GDFU with channel shuffle. The full input sequence is fed to
the standard deconvolution and depth-wise separable convolution. N Deconv represents N channel standard
deconvolution, and N D-S Conv denotes the N channel depth-wise separable convolution.

3.5. Skip Connection inside Encoder or Decoder

The input sequence is processed with many layers in convolutional encoder-decoder. Some

information may be lost due to the variations in the dimension of feature representation of the

signal [20]. To address this issue, the skip connections between the encoder and decoder are in-

troduced to improve the feature reuse. This is achieved by connecting the encoder layers with

their corresponding decoder layers. Nevertheless, the feature reuse within the encoder/decoder

has not been explored, despite its potential benefits in boosting the enhancement performance.

On the other hand, densely connecting all the layers inside the encoder/decoder will substan-

tially increase the computational cost. Here, we propose block dense connections to facilitate

the feature reuse inside the encoder/decoder, as shown in Fig. 1, where the encoder layers

with the same number of output channels are set as a block, e.g. block-16, block-32, block-

64 and block-128. For instance, the output of block-16 is fed to the other blocks (block-32,

block-64 and block-128) of the encoder. Since GCFU has stride size (1, 2) in the encoder

layers, the output sizes of different layers are varied, and as a result, the output of block-16

cannot be directly concatenated with the output of the other blocks. Therefore, we design a

new mechanism to down-sample the features of block-16 using a max-pooling layer with stride

size (1, 8). Then, the down-sampled output is concatenated with the output block-32, the

concatenated representation is fed to block-64. Similarly, we develop other skip connections

within the encoder, as shown in Fig. 1. On the contrary, the layers are up-sampled in the
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decoder to match the size of the skip connections.

4. Experiments

4.1. Data and Setup

We use clean utterances from TIMIT [32] and IEEE [33] corpora, together with the environ-

mental noises from the NOISEX-92 [34] and Non-Speech Sounds [35] datasets to build training

and testing datasets. The TIMIT database consists of 6300 utterances, spoken by 630 male

and female speakers, and the IEEE corpus contains 720 utterances spoken by a male speaker.

The Non-Speech Sounds dataset contains 100 environmental noises. For speaker-independent

case, We randomly select 1500 utterances from TIMIT and IEEE corpora as the training utter-

ances. In addition, we choose 100 utterances from TIMIT corpus as the testing utterances, and

the speakers of testing utterances are different from the speakers of training utterances, which

represents a speaker-independent case. The training and testing utterances are mixed with the

Babble, Artillery, Airplane, Factory, Tank, and White noises from NOISEX-92 [34] dataset.

The noises’ names indicate their recording environments, and they are four minutes long. The

training and testing datasets are generated with three signal-to-noise ratio (SNR) levels i.e.

-5dB, 0dB and 5dB. Furthermore, we also evaluate our proposed method with speaker- and

noise-independent cases. These experiments aim to assess the performance of the proposed

method under challenging mismatch conditions. We randomly select 200 utterances from the

TIMIT corpus [32] as the training utterances, and 100 utterances from the TIMIT corpus as

the testing utterances, and the speakers of testing utterances are different from the speakers of

training utterances. Three types of unseen noise i.e. Water, Wind and Pink noises, are chosen

as the testing noises from the Non-Speech Sounds [35] and NOISEX-92 [34] datasets. We use

108 noises in training, which consist of 98 noises from Non-Speech Sounds dataset and 10

noises from NOISEX-92 dataset. The training noises are mixed with the training speeches in

SNR levels of -5dB, 0dB and 5dB. Similarly, the testing speeches are mixed with three unseen

environmental noises at SNR levels of -5dB, 0dB and 5dB to generate the testing dataset.

In total, we use about 60 hours (1500×6×3×2.5÷3600+200×100×3×2.5÷3600=60.42) noisy

speech mixtures to train our model, and about 2 hours noisy speech mixtures to test our

model.

In additional experiments, we compare the proposed CFN methods with ShuffleNet [27],
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Conv-TasNet [23] and TCNN [22] methods. For training dataset, we used 15660 noisy mixtures

for each SNR level (-5dB, 0dB, 5dB). These mixtures were generated by mixing 580 clean

utterances from TIMIT [32] and VCTK [36] corpora with 27 noises from NOISEX-92 [34] and

Non-speech Sound [35] databases. The testing dataset includes 240 noisy mixtures with 6

noises for each SNR level. In total, 46980 noisy mixtures are exploited to train the proposed

CFN and baseline methods, and 720 noisy mixtures are used to test baseline and proposed

methods. The testing speakers are unseen in the training set.

The parameters of the CFN are shown in Fig. 1. The signals in the training and testing

datasets are re-sampled at 16 kHz. The magnitude spectrum of these signals is obtained

using Short Time Fourier Transform (STFT) with Hanning window of 512 samples and 50%

overlap between the neighboring windows, and then log-compressed. The MAE is used as

the cost function for the baselines (discussed in the next sub-section) and the proposed CFN

methods. The Adam optimization algorithm with 0.0001 initial learning rate [37] is employed.

The best models are selected. For quantitative evaluation, short-time objective intelligibility

(STOI) [38] and perceptual evaluation of speech quality (PESQ) [39] are used to measure

the enhancement performance. The STOI indicates the intelligibility quality of the estimated

target speech, which ranges in (0, 1), and the PESQ shows the perceptual quality of the

estimated speech which ranges in (0, 4.5). The higher value of the measurements indicates

better enhancement performance.

4.2. Baseline Methods

We use three state-of-the-art methods as the baselines, and they are, respectively, the DNN

in [7], GRN in [13], and AECNN in [20]. DNN is a fundamental method in deep learning, and

the GRN and AECNN show advantages over RNN. DNN has four hidden layers, and each

hidden layer has 1024 units. Also, the dropout with a rate of 0.2 is used in DNN to reduce

the over-fitting [40]. The output layer of DNN has the same number of units as the length

of the input sequence. The GRN model is a 62-layered deep fully connected convolutional

model with residual connections. The stacked convolutional layers use gated convolution with

an increased dilated ratio. The dilated convolution offers larger receptive fields, which enables

each kernel to filter out information on longer-term of the sequence than standard convolution.

The Sigmoid activation function follows the dilated convolution to build a gate mechanism

to control the information flow in GRN. Finally, the prediction module takes the information
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flow from the stacked dilated convolution layers by the feed-forward and skip connections, and

generates the magnitude spectrum of the estimated target speech.

The AECNN is an 18-layered convolutional encoder-decoder structure. The convolutional

encoder is exploited to reduce the dimension of the input magnitude spectrum by using the

convolutional layers with strides sized 2. The deconvolutional decoder has a mirror structure

with the convolutional encoder, which is employed to recover the dimension of the output of the

convolutional encoder to the original dimension i.e same as the input noisy speech magnitude

spectrum. The number of output channels of the convolutional encoder is increased from

64 to 256, but the number of channels of the convolution decoder is reduced from 256 to

64, and the output layer of the AECNN has one channel. The layers of the encoder are

connected with layers of the decoder that have the same number of the output channels by

skip connections. The MAE between the magnitude spectrum of noisy speech and that of the

estimated target speech is employed in AECNN. Magnitude spectrum of 257 units are fed into

the baseline methods and the proposed CFN, and they output the magnitude of estimated

target speech. The same training and testing datasets are employed for the baselines and the

proposed method. The number of parameters for the baseline methods are respectively, DNN

(5.5 Million), GRN (2.5 Million), AECNN (6.4 Million), and the number of parameters of the

proposed CFN is 3.5 Million.

In additional experiments, we introduce three baseline methods. They are ShuffleNet [27],

TCNN [22] and Conv-TasNet [23]. The ShuffleNet was originally proposed for computer vi-

sion problems, which was built by 15 stacking convolutional shuffle units. We have modified

the structure of ShufffleNet to fit the length of the speech signal. The TCNN is a 40-layered

convolutional encoder-decoder model, operated in time domain. They are connected using

dilated convolutional layers to enlarge the receptive fields. The Conv-TasNet is a convolu-

tional encoder-decoder model, which includes three modules: encoder, separation, and decoder

module. The separation module estimates the mask to separate the target speech. The Conv-

TasNet is trained and tested in time domain. The number of parameters of these baseline

methods are, respectively, ShuffleNet (4.0 Million), TCNN (5.1 Million), and Conv-TasNet

(5.1 Million).
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4.3. Experimental Results for Seen Noises

Tables 1 and 2 provide comparisons among the proposed CFN and the baseline methods in

terms of STOI and PESQ for speaker-independent case with seen Babble, Artillery, Airplane,

Factory, Tank, and White noises. The DNN offers, on average, STOI = 75.39% and PESQ =

2.14, which provides the lowest improvement over the noisy speech mixture across all compared

methods. The results show that the DNN provides limited enhancement performance for

speaker-independent speech enhancement, where the speakers in the test set are different

Table 1: Speech enhancement performance comparison in terms of STOI and PESQ for speaker-independent
case with Babble, Artillery, Airplane noises. Italic text is the proposed method. Bold number indicates the
best performance.

Measures STOI(%)
Noises Babble Artillery Airplane

XXXXXXXXXXXXMethods
SNR

-5dB 0dB 5dB Avg. -5dB 0dB 5dB Avg. -5dB 0dB 5dB Avg.

Noisy Mixture 54.62 63.82 72.47 63.64 65.34 73.02 79.66 72.67 54.57 64.13 73.42 64.04
DNN 68.89 72.98 79.69 73.85 74.62 79.29 82.92 78.94 68.18 74.85 80.48 74.50
GRN 69.76 76.89 81.42 76.02 77.80 82.31 85.10 81.74 72.70 78.60 83.10 78.13

AECNN 72.01 77.78 82.51 77.43 79.62 83.68 86.59 83.30 73.87 77.99 84.43 78.76
CFN 75.67 80.33 83.85 79.95 81.81 85.88 87.43 85.04 77.55 82.15 85.56 81.77

Measures PESQ
Noises Babble Artillery Airplane

XXXXXXXXXXXXMethods
SNR

-5dB 0dB 5dB Avg. -5dB 0dB 5dB Avg. -5dB 0dB 5dB Avg.

Noisy Mixture 1.37 1.63 1.92 1.64 1.66 1.94 2.18 1.93 1.36 1.59 1.87 1.61
DNN 1.77 2.08 2.34 2.06 2.10 2.33 2.54 2.32 1.78 2.12 2.37 2.09
GRN 1.86 2.16 2.42 2.15 2.20 2.47 2.70 2.46 1.93 2.25 2.55 2.24

AECNN 1.92 2.19 2.45 2.19 2.32 2.55 2.75 2.54 2.03 2.32 2.57 2.31
CFN 2.16 2.41 2.62 2.40 2.49 2.68 2.86 2.68 2.24 2.51 2.73 2.49

Table 2: Speech enhancement performance comparison in terms of STOI and PESQ for speaker-independent
case with Factory, Tank, White noises. Italic text is the proposed method. Bold number indicates the best
performance.

Measures STOI(%)
Noises Factory Tank White

XXXXXXXXXXXXMethods
SNR

-5dB 0dB 5dB Avg. -5dB 0dB 5dB Avg. -5dB 0dB 5dB Avg.

Noisy Mixture 54.17 63.57 74.07 63.94 72.24 76.17 79.54 75.98 53.26 62.56 72.42 62.75
DNN 62.00 69.76 76.09 69.28 80.34 82.67 83.14 82.05 67.28 74.10 79.90 73.76
GRN 68.06 74.98 80.42 74.49 81.37 83.86 85.42 83.55 72.32 78.36 82.50 77.73

AECNN 69.72 75.77 81.72 75.74 83.57 84.67 86.17 84.48 73.11 79.34 83.00 78.48
CFN 71.61 78.19 86.20 78.67 84.64 86.26 87.31 86.07 76.29 81.01 85.02 80.77

Measures PESQ
Noises Factory Tank White

XXXXXXXXXXXXMethods
SNR

-5dB 0dB 5dB Avg. -5dB 0dB 5dB Avg. -5dB 0dB 5dB Avg.

Noisy Mixture 1.33 1.61 1.88 1.61 1.76 1.99 2.21 1.99 1.13 1.31 1.57 1.34
DNN 1.67 1.97 2.22 1.95 2.37 2.57 2.60 2.51 1.72 2.05 1.95 1.91
GRN 1.78 2.09 2.35 2.07 2.43 2.60 2.74 2.59 1.81 2.17 2.38 2.12

AECNN 1.80 2.10 2.40 2.10 2.58 2.76 2.83 2.72 1.95 2.25 2.40 2.20
CFN 1.98 2.24 2.63 2.28 2.72 2.86 2.99 2.86 2.20 2.44 2.64 2.63
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Table 3: The p-value of the t-test at 5% Significance Level, and comparison of proposed method with the base-
line methods for speaker-independent case. H0 denotes the null hypothesis, and (+) indicates the improvement
of two pairs is statistically significant at the 95% confidence level.

Measures STOI PESQ
p-value H0 p-value H0

Noisy 1.63E-10 (+) 1.29E-14 (+)
DNN 1.75E-10 (+) 5.34E-12 (+)
GRN 4.33E-10 (+) 1.85E-12 (+)

AECNN 1.21E-07 (+) 5.53E-12 (+)

from those in the training set, compared with other methods, including the proposed method.

The GRN provides, on average, STOI = 78.69% and PESQ = 2.27. The GRN offers

further improvements over the DNN methods. The GRN utilizes the dilated convolutional

layers to enlarge the receptive fields, which means one kernel (filter) can take information

from a larger region and generate the output. Therefore, the temporal information from the

long-term frames is captured. The convolutional layer with Sigmoid is employed to build

the gate mechanism to control the information flow in GRN. Besides, residual learning is

employed by using the skip connections among the different layers of GRN. By joint using

these strategies, the GRN offers a better enhancement performance in terms of STOI and

PESQ than DNN in the speaker-independent speech enhancement.

The AECNN provides, on average, STOI = 79.75% and PESQ = 2.34, which outperforms

GRN and DNN methods, which is consistent with the finding in [20]. The AECNN employs a

speech encoder-decoder structure to estimate the magnitude spectrum of target speech. The

convolutional encoder takes the magnitude spectrum of the noisy speech mixture as input,

which generates an output of lower dimension. The convolutional decoder is utilized to recover

the dimension of the encoder output. In addition, MAE between the magnitude spectra of

the estimated target speech and the original target speech is used as the cost function. The

experimental results show that the AECNN i.e. convolutional encoder-decoder is an advanced

method over DNN and GRN methods.

The proposed CFN method offers, on average, STOI = 82.20% and PESQ = 2.52, which

provides 2.45% STOI improvement and 0.17 PESQ improvement over the AECNN, GRN and

DNN methods. These results prove that the CFN shows advantages in processing speaker-

independent speech enhancement. Meanwhile, the CFN uses fewer parameters, thus offering

a higher parameter efficiency. The reason will be discussed in the next subsection.

To further evaluate whether the improvement in terms of STOI and PESQ is statistically
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Table 4: Speech enhancement performance comparison in terms of STOI and PESQ for speaker- and noise-
independent cases with Water, Wind and Pink noises. Italic text is the proposed method. Bold number
indicates the best performance.

Measures STOI(%)
Noises Water Wind Pink

XXXXXXXXXXXXMethods
SNR

-5dB 0dB 5dB Avg. -5dB 0dB 5dB Avg. -5dB 0dB 5dB Avg.

Noisy Mixture 56.10 67.18 77.22 66.83 71.50 77.37 82.35 77.07 53.75 63.17 72.67 63.20
DNN 72.36 78.08 82.95 77.80 74.75 80.68 84.70 80.04 60.91 66.64 74.97 67.51
GRN 74.85 80.00 86.04 80.29 76.55 82.24 87.13 82.01 63.79 70.97 76.37 70.37

AECNN 76.76 81.78 87.09 81.88 78.72 84.55 87.68 83.65 64.97 71.45 78.65 71.69
CFN 79.58 84.12 88.22 83.98 82.57 86.32 88.90 85.93 69.33 75.60 82.02 75.65

Measures PESQ
Noises Water Wind Pink

XXXXXXXXXXXXMethods
SNR

-5dB 0dB 5dB Avg. -5dB 0dB 5dB Avg. -5dB 0dB 5dB Avg.

Noisy Mixture 1.22 1.36 1.60 1.40 1.54 1.75 1.95 1.75 1.38 1.44 1.75 1.52
DNN 1.77 1,97 2.15 1.96 1.76 1.99 2.18 1.98 1.56 1.79 2.06 1.80
GRN 1.79 2.00 2.28 2.02 1.82 2.02 2.24 2.02 1.66 1.90 2.18 1.91

AECNN 1.86 2.05 2.32 2.07 1.89 2.09 2.27 2.08 1.79 2.02 2.26 2.02
CFN 2.03 2.22 2.44 2.23 2.04 2.27 2.46 2.26 1.92 2.20 2.45 2.19

significant, we compare the performance of the proposed CFN with baseline methods and

noisy speech mixture using t-test at a significant level of 0.05 in Table 3. The t-test is

performed following statistical analysis in [41]. When p-values smaller than 0.05, it means

there is statistical significant difference between the results of the two groups. We observed

all p-values are smaller than 0.05, and all H0 are +, which confirms that the improvements by

the proposed CFN over the baselines are statistically significant.

4.4. Experimental Results for Unseen Noises

Table 4 provides comparisons among the proposed CFN and baseline methods in terms of

STOI and PESQ for speaker- and noise-independent cases with unseen Water, Wind, Pink

noises. Similarly, experimental results of speaker- and noise-independent cases show similar

trends of enhancement performances. The DNN offers the worst enhancement performance in

terms of STOI and PESQ, which demonstrates the limitation of DNN in processing challenging

speech enhancement problems. The GRN provides improvements over the DNN method. Also,

the AECNN outperforms DNN and GRN methods, which yields, on average, STOI = 79.07%

and PESQ = 2.06.

The proposed CFN method yields the best enhancement performance, on average, STOI =

81.85% and PESQ = 2.25. Several contributions are exploited to boost enhancement perfor-

mance. The CFN uses standard convolution and depth-wise separable convolution to produce

different feature maps, reinforcing the model capacity of the proposed CFN method. More-
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Table 5: The p-value of the t-test at 5% Significance Level, and comparison of the proposed method with the
baseline methods for speaker- and noise-independent cases. H0 denotes the null hypothesis, and (+) indicates
the improvement of two pairs is statistically significant at the 95% confidence level.

Measures STOI PESQ
p-value H0 p-value H0

Noisy 7.03E-5 (+) 1.04E-06 (+)
DNN 1.21E-06 (+) 2.68E-07 (+)
GRN 2.24E-05 (+) 8.63E-08 (+)

AECNN 1.45E-04 (+) 5.55E-8 (+)

over, a novel decoder that consists of deconvolution and depth-wise separable convolution

is employed to up-sample the encoder output. In addition, full information channel shuffle

structure is designed to reduce the number of parameters and exploit the relations across the

channels. Also, two types of skip connections are introduced to enhance the feature reuse, es-

pecially intra skip connections within the encoder/decoder, which makes proceeding layers of

the encoder receive more information from previous layers of the encoder/decoder. With the

contributions above, the CFN shows advantages over the DNN, GRN and AECNN for noise-

and speaker-independent cases. In addition, the results of the t-test in Table 5 demonstrate

that the proposed CFN method yields statistically significant improvements over the baseline

methods.

4.5. Additional Experiments

We perform the additional experiments to compare the proposed CFN with ShuffleNet,

TCNN and Conv-TasNet methods. The results are shown in Table 6. All methods offer

improvements over the noisy speech mixtures, which show that they are feasible to address

the speech enhancement problem. The ShuffleNet provides the lowest improvements over the

other methods. The TCNN provides improvements over the ShuffleNet in terms of STOI

and PESQ. The TCNN exploits the encoder to generate a low dimensional representation of

the input. The temporal convolutional module used the dilated convolution to enlarge the

Table 6: Speech enhancement performance comparison in terms of STOI and PESQ. Italic text is the proposed
method. Bold number indicates the best performance.

Noises STOI PESQ
XXXXXXXXXXXXMethods

SNR
-5dB 0dB 5dB Avg. -5dB 0dB 5dB Avg.

Noisy Mixture 59.21 68.41 76.94 68.19 1.28 1.59 1.71 1.53
ShuffleNet 68.24 75.75 81.30 75.10 1.56 1.89 2.11 1.85

TCNN 71.46 78.75 83.48 77.84 1.87 2.04 2.27 2.06
Conv-TasNet 71.02 80.10 85.11 78.74 1.61 1.96 2.29 1.95

CFN 75.71 81.19 85.29 80.73 1.94 2.17 2.37 2.16
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receptive fields. Then, the decoder is used to reconstruct the enhanced frame. Furthermore,

the Conv-TasNet offers improvements over the TCNN and ShuffleNet in terms of STOI, which

is also operated in the time-domain. The Conv-TasNet uses the linear encoder to generate the

representation of speech, which is fed to separation module to produce the mask. Finally, the

weighted encoder output is converted to the speech using the decoder. The proposed CFN

offers the most significant improvements over the baseline methods.

4.6. Ablation Analysis and Scalar Parameters

We perform the ablation analysis in Table 7 to show the contribution of every component

in the proposed CFN. Full denotes the results of the proposed CFN method using all the

components. No SC denotes deleting the standard convolution from the proposed method. No

D-SC represents ablating the depth-wise separable convolution. No GDFU Decoder represents

replacing the GDFU decoder by the standard deconvolutional decoder. No FICS represents

the proposed method without using the full information channel shuffle. No CS denotes

removing channel shuffle in the proposed method. No ISCED denotes removing the intra-skip

connections of encoder/decoder.

Table 7: Ablation analysis in terms of STOI, PESQ and number of parameters.

Measures STOI PESQ No. of Parameters(Million)
Full 70.18 1.73 3.5

No SC 65.89 1.57 1.2
No D-SC 66.12 1.55 0.6

No GDFU Decoder 68.31 1.64 1.8
No FICS 70.36 1.71 6.6
No CS 69.54 1.72 3.5

No ISCED 69.31 1.70 3.1

We observed that the standard convolution yields the most improvements in terms of

STOI and PESQ, which proves the standard convolution has a better model capacity over the

depth-wise separable convolution in the proposed CFN. Meanwhile, the depth-wise separable

convolution has similar importance when compared with standard convolution. However, we

observed that there are about 4% STOI and 0.2 PESQ performance decrease when using the

standard convolution or depth-wise separable convolution. These results confirm the standard

convolution and depth-wise separable convolution are limited in processing mismatch speech

enhancement, but the proposed CFN is capable to provide a better model capacity for speech

enhancement. In addition, we replace the GDFU decoder by standard decoder, which seems

to result in lower STOI and PESQ scores. These results show that the proposed GDFU offers
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better performance when compared with the standard convolutional decoder. The number of

channels used in the method No FICS has been doubled as compared with that in the proposed

FCN, as shown in Fig. 2 (a). As a result, the proposed FCN offers a reduction of 3.1 million

parameters, compared with the method No FICS. In addition, the proposed FCN slightly

boosts the PESQ performance and maintains the STOI performance. Therefore, the proposed

full information channel shuffle helps improve the parameter efficiency while maintaining the

enhancement performance.

The channel shuffle re-arranges the outputs of two convolutional layers, which makes them

related and improves enhancement performance. The layers of CFN may not well reconstruct

the input sequence, with the intra skip connections of encoder or decoder, more information

from previous layers is exploited due to the feature reuse in the proposed CFN model. However,

the performance improvements by the intra skip connections are relatively small as compared

with those by convolutional/decovolutional fusion units and channel shuffle.

Table 8: Scale Parameters Analysis in terms of STOI and PESQ

Scale Parameters STOI PESQ
Unprocessed 50.76 1.19

α1 = α2 = 1 (CFN) 70.18 1.73
α1 = α2 = 0.5 69.77 1.71
α1 = α2 = 2 69.97 1.73
α1 = α2 = 1.5 69.89 1.71
α1 = 0.5, α2 = 1 69.62 1.71
α1 = 1, α2 = 0.5 70.14 1.72

We evaluate the performance of the proposed CFN method on speech enhancement tasks

as a function of varied scale parameters. Table 8 shows the enhancement performance in

terms of STOI and PESQ, which is used to demonstrate the performance differences caused

by adjusting α1 and α2. From this table, we can observe that the best performance is obtained

by using α1 = α2 = 1, as employed in the proposed CFN method, which drops for other values

of the scale parameters.

Fig. 4 shows the spectra of target speech, noisy mixture and enhanced speech of different

methods. DNN, GRN, AECNN and the proposed CFN remove most of the noise from the

noisy mixture, while some noise in the low frequency region remains in the enhanced speech

by DNN, GRN and AECNN. The enhanced spectrum of CFN appears to be most similar to

that of target speech, which further confirms its improved performance.
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Figure 4: Spectra of different signals: (a) target speech, (b) noisy speech mixture, (c) enhanced speech by
DNN, (d) enhanced speech by GRN, (e) enhanced speech by AECNN, (f) enhanced speech by CFN.

4.7. Time Domain and T-F Domain Compassion

We have also performed experiments to compare the performance difference of AECNN in

time-domain and time-frequency (T-F) domain, as shown in Table 9. The AECNN in the T-F

domain performs better than that in the time domain in terms of PESQ. These results show the

advantage of applying AECNN in the T-F domain. The proposed CFN offers improvements

over AECNN-T and AECNN-TF in terms of STOI and PESQ.

Table 9: Speech enhancement performance comparison between the time domain and T-F domain. Italic text
is the proposed method. Bold number indicates the best performance.

Noises STOI PESQ
XXXXXXXXXXXXMethods

SNR
-5dB 0dB 5dB Avg. -5dB 0dB 5dB Avg.

Noisy Mixture 61.44 70.14 78.27 69.95 1.42 1.57 1.77 1.59
AECNN-T 72.18 79.33 84.33 78.61 1.58 1.90 2.22 1.90

AECNN-TF 72.78 79.01 83.82 78.54 1.79 2.01 2.22 2.01
CFN 75.78 81.38 85.34 80.83 1.89 2.15 2.31 2.11

4.8. Depth Multiplier of Depth-wise Separable Convolution

We also perform experiments to analyze the effects of depth multiplier in depth-wise sep-

arable convolution. The depth multiplier represents the number of depth-wise convolution

output channels for each input channel. These experiments aim to find the balance between

speech enhancement performance and depth multiplier i.e parameter efficiency. The exper-

imental results are shown in Fig. 5. With the increase in D value, speech enhancement

performance in terms of STOI and PESQ is improved. However, a larger number of param-

eters is needed, which means it will need more computational resource. D = 1 offers, on
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Figure 5: The STOI performance, PESQ performance and the number of parameters with different depth
multipliers. The depth multiplier D is changed from 1 to 11 with a step of 2.

average, STOI = 75.18% and PESQ = 2.10, which provides the lowest enhancement perfor-

mance but requires the smallest number of parameters around 1.7 Million. However, when

we set D = 11, it provides, on average, STOI=76.83% and PESQ = 2.17, which offers the

highest enhancement performance but needs more parameters around 6.3 Million. When D

is increased to 3, significant improvements are observed in terms of STOI and PESQ. If D

larger than 5, the improvements of STOI and PESQ become stable. For example, D = 5

offers on average STOI=76.27%, and D = 7 offers STOI= 76.35%. In summary, considering

the number of parameters, memory size and enhancement performance, we select D = 5 in

the proposed CFN model.

5. Conclusions

We have presented a novel convolutional model, named convolutional fusion network

(CFN), to address the monaural speech enhancement problem. Speech enhancement was

considered as a sequence-to-sequence problem by the CFN, where the magnitude spectrum of

the noisy speech mixture is taken as the input, for estimating the magnitude spectrum of the

target speech. The proposed CFN model improves the model capacity, inter-channel depen-

dency, parameter efficiency and feature reuse. With the proposed group convolutional fusion

units, the standard convolution and depth-wise separable convolution were used to reinforce

the model capacity of CFN. Then, the novel decoder allowed the CFN to take the advantages

of two different convolutions. This has been confirmed by the experimental results that the

group convolutional model had better model capacity than standard convolution. The channel
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shuffle structure is introduce to exploit the information about inter-channel dependency. In

addition, utilizing skip connections inside the encoder and decoder can promote feature reuse

and improve the performance.

Interesting aspects for future study include the use of adaptive weights in the depth-wise

separable and vanilla convolutions for each time-frequency point, and the use of spatial and

contextual information under the current framework.
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