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ABSTRACT
Intensity Particle Flow (IPF) SMC-PHD has been proposed
recently for multi-target tracking. In this paper, we extend
IPF-SMC-PHD filter to distributed setting, and develop a
novel consensus method for fusing the estimates from indi-
vidual sensors, based on Arithmetic Average (AA) fusion.
Different from conventional AA method which may be de-
graded when unreliable estimates are presented, we develop
a novel arithmetic consensus method to fuse estimates from
each individual IPF-SMC-PHD filter with partial consen-
sus. The proposed method contains a scheme for evaluating
the reliability of the sensor nodes and preventing unreliable
sensor information to be used in fusion and communication
in sensor network, which help improve fusion accuracy and
reduce sensor communication costs. Numerical simulations
are performed to demonstrate the advantages of the proposed
algorithm over the uncooperative IPF-SMC-PHD and dis-
tributed particle-PHD with AA fusion.

Index Terms— Distributed tracking, consensus filter,
multi-target tracking, particle flow

1. INTRODUCTION

Multi-target tracking is a problem of estimating targets in
many engineering applications such as surveillance [1] and
audio-visual tracking [2]. In practice, the number of targets
and their states are often unknown and time-varying, with the
potential presence of clutter and mis-detection in the measure-
ments. A number of methods have been developed to address
the tracking problem in such a scenario, such as probability
hypothesis density (PHD) filter and its extension Cardinality
PHD (CPHD) [3]. There are two main types of PHD filtering
algorithms, namely, Gaussian Mixture PHD (GM-PHD) [4]
and Sequential Monte Carlo PHD (SMC-PHD) [5].
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In SMC-PHD, the target states are obtained by the pos-
terior density, which is estimated by the weighted particles.
However, this method can be limited by the weight degener-
acy problem where most weights become close to zero except
only few significant weights [6]. In a recent work, particle
flow [6] is used to address this problem, by migrating particles
from the prior distribution to the posterior distribution based
on a homotopy function. Several particle flow based SMC-
PHD filtering algorithms have been developed, using either
the zero diffusion particle flow (ZPF) [7], or non-zero diffu-
sion particle flow (NPF) [8], such as, ZPF-SMC-PHD [2, 9],
NPF-SMC-PHD [9, 10], and IPF-SMC-PHD [11].

Developing tracking systems with distributed sensors
has attracted increasing interest in recent years which could
achieve more accurate and reliable tracking [12]. In this pa-
per, we consider extending the IPF-SMC-PHD algorithm [11]
into a distributed setting. To integrate the estimates of states
from individual PHD filters, a popular choice is to use “geo-
metric average” (GA) fusion, such as the classical algorithm
based on covariance intersection [13, 14], where the mean
value and covariance of the target states are obtained from the
weighted average of the state estimates obtained by individ-
ual filters. This method performs well even when correlation
between the estimates is unknown. However, this method
could be degraded when different targets are close to each
other [15], and its performance is also sensitive to possible
clutter or mis-detection [16].

An alternative method is to use “arithmetic average” (AA)
fusion, where the average of shared estimates from individ-
ual filters is used to correct potential errors in local estimates.
As compared with the GA method, this method is shown to
improve the robustness by compensating a local posterior in
distributed PHD filtering, as demonstrated in [15, 17]. How-
ever, its accuracy might be degraded due to excessive dif-
ferences among local estimates in the number of targets and
their states. In a recent method for multi-target distributed
tracking [18], a distributed set-theoretic information flooding
(DSIF) algorithm is used to spread each local estimate across
the network, and the global estimates of the model parameters
are obtained by using an AA method. This method allows
tracking of multiple targets under partial consensus without
having to associate the estimates with the targets, however,
its tracking accuracy can be degraded by outliers in the local



estimates.
This paper presents a distributed IPF-SMC-PHD filter for

multi-target tracking, where a new AA fusion method is pro-
posed to reduce the adverse impact of outliers on the track-
ing performance. This is achieved by evaluating the quality
of the estimations with a confidence measure, via calculating
the distance between global and local estimates. This new
scheme is incorporated into DSIF, leading to an improved fu-
sion algorithm, called C-DSIF-AA, which can prevent unreli-
able estimates from being shared among the sensor nodes.

2. PROBLEM DEFINITION AND BACKGROUND

2.1. System Model

In this section, we introduce a system model for multi-target
distributed tracking. There are S sensors in the network
which are indexed by s ∈ S = {1, 2, . . . , S} and each of
them can observe the whole tracking area. The network
topology can be represented by a time-varying graphG(S, E)
where edge sets E ⊆ S × S, each edge in E denotes the con-
nection state between sensors [19]. In a single target tracking
system, the target state at time k is defined as xk ∈ Rd where
d is dimension of the target state. The motion model f of
target is defined as:

xk+1 = f(xk) + uk, (1)

where uk is process noise at time k, often assumed as Gaus-
sian distributed. For multi-target tracking, the number of tar-
gets is unknown and time-varying. The random finite set
(RFS) theory [20] can be used to model multi-target track-
ing, where the collection of the target state is defined as Xk =
{x1

k,x
2
k, . . . ,x

Nk

k } where Nk = |Xk| is the number of targets
and | · | is the cardinality of the set. Assume that each target
only has one corresponding measurement in each sensor at
each time. In addition, the measurement in each sensor may
be different due to the use of different measurement methods
and measurement noise. Measurements collected by sensor
s can be described as RFS: Zs,k = {z1s,k, z2s,k, . . . , z

Ms,k

s,k },
where zms,k is the m-th measurement and Ms,k = |Zs,k| is the
number of measurements from sensor s at time k.

2.2. Intensity Particle Flow

In this section, we discuss an algorithm for multi-target track-
ing for a single sensor node. Given Zs,k, the SMC-PHD fil-
ter can be used to estimate target number N̂s,k+1 and target
states X̂s,k+1 for the sensor node s. To simplify notations,
sensor index s will be ignored in the following content of this
sub-section. The filtering result of SMC-PHD could be de-
graded by the weight degeneracy problem. NPF can mitigate
this problem [10], however, it is calculated for each particle
with only a single measurement, a data association algorithm
is required. In addition, the particles might be associated to

other targets or clutter when the target disappears. IPF is pro-
posed to address those problems [11]. Similar to other particle
flow algorithms [7, 8], IPF in each sensor is also defined by a
homotopy function [21] as follows

f i
k =− [

Mk∑
m=1

λpD,k
∇(∇hi,mk )

Gm
k

+∇(∇ln(wi
k|k−1))]

−1
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λpD,k
∇hi,mk
Gm

k

,
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where λpD,k
is the detection probability at each pseudo time

step, ∇ is the spatial vector differentiation operation ∂
∂x̃i

k−1

and x̃i
k−1 is the i-th particle state at time k − 1, wi

k|k−1 is the

weight, hi,mk is the likelihood of the i-th particle based on the
m-th measurement, and Gm

k is defined as:

Gm
k = kk +

Nk−1+NB∑
i=Nk−1+1

Si,m
k +

Nk−1∑
i=1

hi,m
k wi

k|k−1, (3)

where kk is the clutter intensity,NB is new born particle num-
bers, Si,m

k is the birth intensity function given as:

Si,m
k = γk(x̃

i,m
k|k−1) ∗max(0, 1−

Nk−1∑
i=1

hi,mk wi,m
k|k−1), (4)

in which x̃m is the particle state generated by the m-th mea-
surement, and γk is the born probability. These above equa-
tions are used to update the particles states and weights, and
more details can be found from Algorithm 2 in [11].

2.3. DSIF

To extend a single sensor system into a distributed sce-
nario, local estimates from the distributed sensors need to
be shared across sensors and then the estimates on each
sensor will be updated following a concensus process. To
achieve this, algorithms such as DSIF [18] could be used.
This is an iterative algorithm for sharing the local esti-
mates {N̂s,k+1, X̂s,k+1} at sensor s with other sensors. The
DSIF algorithm starts from iteration t = 0, with the ini-
tial set Is(0) = {N̂s,k+1, X̂s,k+1}, and the set Us(0) =
∪j∈AsIj(0), where As is a set containing the indices of the
sensors from which the s-th sensor can receive information
directly. In each iteration t, Is(t) is updated as:

Is(t) = Is(t− 1) ∪ Us(t− 1), (5)

and Us(t) is updated as:

Us(t) = ∪j∈As{Ij(t)\Ij(t− 1) }, (6)

where A\B is a set that contains the elements from A but
not from B. If consensus has been achieved at iteration t,
Us(t) should be ∅. The update process for Is(t) is repeated,
until a so-called Degree of Consensus (DoC) Co (as defined
in equation (13) in [18]) reaches a pre-defined threshold Tc.



3. DISTRIBUTED IPF-SMC-PHD

This section presents a distributed IPF-SMC-PHD filter with
a novel AA fusion method for a multi-target distributed track-
ing system. We denote the measurements at time k collected
by the s-th sensor as I = Zs,k. We assume that the local
estimates {N̂s,k+1, X̂s,k+1} by each sensor at time k are ob-
tained independently. In practice, local estimates from unre-
liable sensors may adversely impact on the tracking accuracy
and potentially increase communication cost if such estimates
are propagated among the sensors. To address this limitation,
we propose a new scheme to evaluate the reliability of the lo-
cal estimates with a confidence measure. This scheme allows
those reliable sensors to be selected and communicated for
reaching consensus {N̂k+1, X̂k+1} in order to obtain global
estimates.

3.1. AA Fusion with Confidence Measure

Assume that the local estimates by sensor s at time k have
been shared using the DSIF algorithm at the t-th iteration, the
classical AA fusion gives a global estimate for the cardinality
and target state at time k + 1 as follows:

N̂k+1(t) =
1

|Is(t)|
∑

N̂s,k+1∈Is(t)

N̂s,k+1, (7)

x̂k+1(t) =
1

|Is(t)|
∑

x̂s,k+1∈Is(t)

x̂s,k+1, (8)

where x̂k+1(t) is an element in X̂k+1(t). From these two
equations, it is clear that {N̂s,k+1, X̂s,k+1} from unre-
liable sensors may degrade the performance of the AA
fusion. Next, we discuss how to obtain more accurate
{N̂s,k+1(t), X̂s,k+1(t)}.

3.1.1. Consensus on Cardinality Estimation

Assume all the sensors can observe the entire scene. We
achieve consensus on cardinality at time k, by finding the
mode ˆ̇Nk+1(t) of the cardinality estimates in Is(t). If
the number of appearances of the mode is higher than
a pre-defined threshold, with respect to the |Is(t)|, e.g.
0.6, the mode can be considered as the global cardinality
estimate: N̂k+1(t) = ˆ̇Nk+1(t); Otherwise; N̂k+1(t) =

1
|Is(t)|

∑
N̂s,k+1∈Is(t) N̂s,k+1(t). Note that N̂k+1(t) should

be rounded to its nearest integer.

3.1.2. Consensus on Target State Estimation

In the set Is, some local estimates may not be reliable and
could degrade the quality of the global estimate. To address
this issue, we propose a method to identify the potential out-
liers in the local estimates collected by sensor s. In an ideal

scenario, the state estimation corresponding to the same target
provided by the sensors should be close in space. Therefore,
the distance between the estimate will be relatively small.
With this in mind, we can form a matrix Ds, whose ab-th
element da,b is calculated as a distance between the estimates
from sensors a and b: da,b = ||x̂a − x̂b||2. Note the time
k and iteration t have been dropped from Is(t) for simplic-
ity. We then compare da,b against a pre-defined threshold
ε, e.g. the radius of the particle birth region in SMC-PHD,
and if da,b < ε, these two estimates are considered close in
space. The s-th column of the matrix Ds shows the distance
of estimations between sensor s and other sensors in Is, if
most elements (e.g. 80% elements) in this column are con-
sidered close, the estimation given by sensor s is considered
as reliable and noted as ˆ̇xs; otherwise, x̂s will be consid-
ered as outliers. Moreover, only reliable estimation ˆ̇xs will
be used for obtaining consensus on the state x̂ by weighted
average and the indices of reliable sensors are placed in set
Ls. The weight corresponding to each reliable estimation ˆ̇x
is calculated as ws = os/

∑
b∈L ob, where os = 1/

∑
dx̂s,a,

and a, b ∈ L, a 6= s. As a result, the final fusion is obtained as
ˆ̇x =

∑
ws

ˆ̇xs, which forms X̂k+1(t) = {ˆ̇x1, ˆ̇x2, . . . , ˆ̇xN̂k+1}
at time k.

3.2. Confidence-Informed DSIF Algorithm: C-DSIF

After obtaining the global estimate N̂k+1 and X̂k+1, we can
determine whether the local estimates {N̂s,k+1, X̂s,k+1} at
each sensor s are reliable or not. This can be achieved by
a confidence measure in terms of the difference (or distance)
between global estimate and local estimates, i.e. dN̂s = |N̂s−
N̂ |, and dˆ̇xs = ||x̂s − ˆ̇x||2. If dN̂s > dT , where dT is a pre-
defined threshold, or if dˆ̇xs > ε, the sensor s is considered as
unreliable, and the local estimates N̂s and x̂s from sensor s
will not be shared with other sensors at the time k + 1. A
flag Rk+1 will be assigned as TRUE. A re-initialization is
then required for the local IPF-SMC-PHD filter in sensor s.
Algorithm 1 shows the overall process of the D-IPF-SMC-
PHD algorithm which includes the new consensus algorithm
C-DSIF-AA.

4. NUMERICAL RESULTS

We simulated four targets moving in a squared region of 40
m × 40 m, with 20 time frames. Each target follows the con-
stant velocity model as in (1). There are 20 sensors in the
network, and the maximum connection hop is 5. Each sensor
follows a measurement model: zk = fz(xk) + vk with dif-
ferent measurement noise vk. Tc is set as 0.5, which means at
most half of the sensors will be utilized for consensus. Other
parameters are given as: ε = 6, dT = 2. The proposed algo-
rithm (D-IPF-SMC-PHD) is compared with an uncooperative
method (IPF-SMC-PHD in a single sensor), IPF-SMC-PHD
with complete average consensus using all the sensors (CA-



Algorithm 1 D-IPF-SMC-PHD
Input: {Z1,k, · · · ,ZS,k}, {A1, · · · AS}, k, S, Tc, ε, dT , Rk

Output: N̂k+1, X̂k+1, Rk+1

1: Use IPF-SMC-PHD to estimate {N̂s,k+1, X̂s,k+1} from
{Zs,k}, for all s = 1, ..., S.

2: t← 0; Co(0)← 0; Is(t)← {N̂s,k+1, X̂s,k+1}, ∀s.
3: if Rk == TRUE then
4: Is(t)← ∅.
5: end if
6: while Co(t) < Tc do
7: t← t+ 1.
8: if t == 1 then
9: Is(t)← Is(t− 1) ∪ {∪∀j∈AsIj(t− 1)}.

10: else
11: Calculate Us(t) using (6).
12: Update Is(t) using (5).
13: end if
14: Calculate Co(t).
15: end while
16: Calculate N̂k+1 and X̂k+1 as discussed in Section 3.1.
17: if Rk == FALSE then
18: Calculate Rk+1 as discussed in Section 3.2.
19: else
20: Set Rk+1 = FALSE.
21: end if
22: Return N̂k+1, X̂k+1, Rk+1.

IPF-SMC-PHD), and distributed particle-PHD with DSIF on
GM parameters (D-particle-PHD) [22]. Each algorithm was
run 100 times independently in the above simulation scenario
with the same ground truth. In each run, the measurement
might be slightly different, but the measurements given to
each algorithm compared are the same.

Figure 1a shows the average of the estimated number of
targets by each algorithm over 100 runs at each time frame.
The numbers are not in integers after averaging over the 100
tests. It can be observed that the estimate given by our pro-
posed algorithm resembles more closely with ground truth
than IPF-SMC-PHD and D-particle-PHD. The difference be-
tween CA-IPF-SMC-PHD and D-IPF-SMC-PHD is not sig-
nificant. Considering the fact that our proposed algorithm
reaches consensus under partial consensus, not every sensor
will be used for consensus. Hence, our proposed algorithm
provides improved robustness over the complete average con-
sensus, as it can be used for the scenario when some sensors
in the network fail.

Figure 1b shows the tracking performance of the pro-
posed method, in terms of OSPA [23], as compared with the
baselines. Clearly, our proposed algorithm provides better
accuracy than IPF-SMC-PHD and D-particle-PHD; the av-
erage OSPA of D-IPF-SMC-PHD fluctuates in the range of
[0.5, 1.2]. The average OSPA of D-particle-PHD fluctuates

more drastically over the time frames, than the proposed
method. D-IPF-SMC-PHD performs similarly to CA-IPF-
SMC-PHD, but uses less information. Regarding the effi-
ciency, our proposed method runs under partial consensus
condition, thus we can reduce half communication cost in
complete consensus. The average number of communication
iterations of D-IPF-SMC-PHD, D-particle-PHD and CA-IPF-
SMC-PHD is 4.4, 5.1, and 6.3, respectively, in each sensor.
The average time cost of D-IPF-SMC-PHD, D-particle-PHD,
and CA-IPF-SMC-PHD is 41.414s, 41.99s, and 42.21s, re-
spectively. Noted that the local filters were not run in parallel,
which consumed the biggest portion of time in simulations.
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Fig. 1: Simulation results for all the compared algorithms.

5. CONCLUSION

We have presented a novel AA fusion method to extend IPF-
SMC-PHD into a distributed version under partial consen-
sus condition, with improved tracking accuracy and reduced
computational/communication cost. Simulation results show
that the proposed method outperforms several recent baseline
methods. In the future, we will study the performance of D-
IPF-SMC-PHD for target tracking when sensor nodes are lim-
ited in sensing range.
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