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Chapter 15

Instantaneous vs. 
Convolutive Non-Negative 

Matrix Factorization:
Models, Algorithms and Applications 

to Audio Pattern Separation

Wenwu Wang
University of Surrey, UK

intrOductiOn

Since the seminal paper published in 1999 by 
Lee and Seung, non-negative matrix factorization 
(NMF) has attracted tremendous research interests 
over the last decade. The earliest work in NMF 
is perhaps by (Paatero, 1997) and is then made 
popular by Lee and Seung due to their elegant 
multiplicative algorithms (Lee & Seung, 1999, 

Lee & Seung, 2001). The aim of NMF is to look 
for latent structures or features within a dataset, 
through the representation of a non-negative 
data matrix by a product of low rank matrices. 
It was found in (Lee & Seung, 1999) that NMF 
results in a “parts” based representation, due to 
the nonnegative constraint. This is because only 
additive operations are allowed in the learning 
process. Although later works in NMF may have 
mathematical operations that can lead to nega-
tive elements within the low-rank matrices, their 

abStract

Non-negative matrix factorization (NMF) is an emerging technique for data analysis and machine learn-
ing, which aims to find low-rank representations for non-negative data. Early works in NMF are mainly 
based on the instantaneous model, i.e. using a single basis matrix to represent the data. Recent works 
have shown that the instantaneous model may not be satisfactory for many audio application tasks. 
The convolutive NMF model, which has an advantage of revealing the temporal structure possessed by 
many signals, has been proposed. This chapter intends to provide a brief overview of the models and 
algorithms for both the instantaneous and the convolutive NMF, with a focus on the theoretical analysis 
and performance evaluation of the convolutive NMF algorithms, and their applications to audio pattern 
separation problems.
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non-negativity can be ensured by a projection 
operation (Zdenuk & Cichocki, 2007, Soltuz et 
al, 2008). Another interesting property with the 
NMF technique is that the decomposed low-rank 
matrices are usually sparse, and the degree of 
their sparseness can be explicitly controlled in 
the algorithm (Hoyer, 2004). Thanks to these 
promising properties, NMF has been applied to 
many problems in data analysis, signal processing, 
computer vision, and patter recognition, see, e.g. 
(Lee & Seung, 1999, Pauca et al, 2006, Smaragdis 
& Brown, 2003, Wang & Plumbley, 2005, Parry 
& Essa, 2007, FitzGerald et al, 2005, Wang et al, 
2006, Zou et al, 2008, Wang et al, 2009, Cichocki 
et al, 2006b).

In machine audition and audio signal pro-
cessing, NMF has also found applications in, 
for example, music transcription (Smaragdis & 
Brown, 2003, Wang et al, 2006) and audio source 
separation (Wang & Plumbley, 2005, Parry & 
Essa, 2007, FitzGerald et al, 2005, FitzGerald et 
al, 2006, Virtanen, 2007, Wang et al, 2009). In 
these applications, the raw audio data are usually 
transformed to the frequency domain to generate 
the spectrogram, i.e. the non-negative data matrix, 
which is then used as the input to the NMF algo-
rithm. The instantaneous NMF model given in 
(Lee & Seung, 1999, Lee & Seung, 2001) has been 
shown to be satisfactory in certain tasks in audio 
applications provided that the spectral frequencies 
of the analyzed signal do not change dramatically 
over time (Smaragdis, 2004, Smaragdis, 2007, 
Wang, 2007, Wang et al, 2009). However, this is 
not a case for many realistic audio signals whose 
frequencies do vary with time. The main limitation 
with the instantaneous NMF model is that only a 
single basis function is used, and therefore is not 
sufficient to capture the temporal dependency of 
the frequency patterns within the signal. To ad-
dress this issue, the convolutive NMF (or similar 
methods called shifted NMF) model has been 
introduced (Smaragdis, 2004, Smaragdis, 2007, 
Virtanen, 2007, FitzGerald et al, 2005, Morup 
et al, 2007, Schmidt & Morup, 2006, O’Grady 

& Pearlmutter, 2006, Wang, 2007, Wang et al, 
2009). For the convolutive NMF, the data to be 
analyzed are modelled as a linear combination 
of shifted matrices, representing the time delays 
of multiple bases. Several algorithms have been 
developed based on this model, for example, the 
Kullback-Leibler (KL) divergence based multi-
plicative algorithm proposed in (Smaragdis, 2004, 
Smaragdis, 2007), the squared Euclidean distance 
based multiplicative algorithm proposed in (Wang, 
2007, Wang et al, 2009), the two-dimensional 
deconvolution algorithms proposed in (Schmidt & 
Morup, 2006), the logarithmic scaled spectrogram 
decomposition algorithm in (FitzGerald et al, 
2005), and the algorithm based on the constraints 
of the temporal continuity and sparseness of the 
signals in (Virtanen, 2007).

This chapter will briefly review the mathemati-
cal models for both instantaneous and convolutive 
NMF, some representative algorithms, and their 
applications to the machine audition problems, in 
particular, the problem of audio pattern separation 
and onset detection. This chapter also aims to 
serve as complementary material to our previous 
work in (Wang et al, 2009). To this end, we will 
provide a theoretical analysis of the convolutive 
NMF algorithm based on the squared Euclidean 
distance. These results can be readily extended to 
the KL divergence based algorithms. Moreover, 
we will provide several examples in addition to the 
simulations provided in (Wang et al, 2009). The 
remainder of the chapter is organised as follows. 
The next two sections will review the models and 
the algorithms of instantaneous and convolutive 
NMF, respectively. Then, we provide the theoreti-
cal analysis to the convolutive NMF algorithm 
based on the squared Euclidean distance. After 
this, we show some simulations to demonstrate the 
applicability of the NMF algorithms (both instan-
taneous and convolutive) to the machine audition 
problems including audio pattern separation and 
onset detection. In addition to the performance 
comparison between the three typical convolutive 
NMF algorithms, we will further compare their 
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performance based on the relative reconstruction 
errors and the rejection ratio. Finally, we discuss 
future research directions in this area.

inStantaneOuS nMf

The mathematical model of the instantaneous 
NMF can be described as follows. Given a non-
negative data matrix X ∈ ℜ+

×M N ,  find two matri-
ces W ∈ ℜ+

×M R  and H ∈ ℜ+
×R N  such that 

X WH» ,  where the factorization rank R is 
generally chosen to be smaller than M(or N), or 
akin to ( )M N R MN+ < . In other words, NMF 
aims to map the given data from a higher dimen-
sional space to a lower one. As a result, some 
redundancies within the data can be reduced and 
at the same time, some latent features can be 
extracted. In practice, such data can be an image 
(Lee & Seung, 1999), the spectrogram of an audio 
signal (Smaragdis & Brown, 2003), among many 
others, see e.g. (Berry, 2007) for a recent review. 
Several cost functions have been used in the lit-
erature for finding W and H, see e.g. (Paatero, 
1997, Lee & Seung, 1999, Lee & Seung, 2001, 
Hoyer, 2004, Cichocki et al, 2006a, Dhillon & 
Sra, 2006). One frequently used criterion is based 
on the mean squared reconstruction error defined 
as follows

( ˆ , ˆ ) argmin
,

W H X WH
W H

= −
1
2

2

F
 (1)

where *
F

 denotes the Frobenius norm, and Ŵ  

and Ĥ  are the estimated optimal values of W and 
H (when the algorithm converges). It is also re-
ferred to as the squared Euclidean distance based 
criterion. Another criterion is based on the ex-
tended KL divergence,

( ˆ , ˆ ) argmin log
,

W H X X
WH

X WH
W H

= •










 − +











=
∑
n

N

m 1==
∑

1

M
 

(2)

where ● denotes the element-wise multiplication, 
and the division also operates in element wise. If 
we denote WH as ˆ,X  then X̂  is the reconstruct-
ed data, which should ideally be equal to X. In 
practice, as shown in Equation (1) and (2), the 
difference between X̂ and X is used to find W 
and H.

To optimize the above cost functions, Lee 
and Seung have proposed simple yet efficient 
multiplicative algorithms based on the variable 
step-size normalization of each element of W 
and H (Lee & Seung, 1999, Lee & Seung, 2001), 
where W and H are updated alternately in each 
iteration, i.e. fixing W, updating H, then fixing 
H and updating W. Based on criterion (1), the 
update equations for W and H can be written as

H H W X
W W H

q q
q T

q T q q
+ = •1 ( )

( )
 (3)

W W X H
W H H

q q
q T

q q q T
+

+

+ +
= •1

1

1 1

( )

( )
 (4)

where (*)Tdenotes matrix transpose and q is the 
iteration number. Similarly, for criterion (2), we 
have the following update equations

H H
W X

W H
W E

q q

q T
q q

q T
+ = •1

( )

( )
 (5)

W W

X
W H

H

E H
q q q q

q T

q T
+

+

+
= •1

1

1

( )

( )
 (6)
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where E ∈ ℜ+
×M N is a matrix whose elements are 

all set to unity.
Since the publication of these multiplicative 

algorithms, there have been an increasing number 
of activities in developing new algorithms for 
NMF. These include using new cost functions 
(such as Csiszar’s divergence, alpha and beta 
divergence, Cichocki et al, 2006a, Cichocki et al, 
2006b, Cichocki et al, 2007), new adaptation al-
gorithms (such as the projected gradient methods, 
alternating least squares (ALS) method and the 
conjugate gradient algorithm, Lin, 2007, Zdenuk 
& Cichocki, 2007, Kim et al, 2007, Wang & Zou, 
2008), applying additional constraints (such as 
sparseness, smoothness, continuity, etc., Hoyer, 
2004, Virtanen, 2003, Virtanen, 2007). For a re-
view of recent development on NMF, please refer 
to e.g. (Albright et al, 2006, Berry et al, 2007).

Here we show the learning rules of ALS 
algorithm. The ALS method uses the following 
iterations to update W and H

H W W W Xq q T q q T+
−

= ( )1 1
( ) ( )  (7)

W X H H Hq q T q q T+ + + +
−

= ( )1 1 1 1 1
( ) ( )  (8)

The matrix inverse used in above equations 
may result in negative elements within W and H. 
In practice, the negative elements are projected 
back to the non-negative orthant. It was found in 
(Soltuz et al, 2009) that the ALS algorithm has 
fast convergence rate, however, its convergence 
performance is not consistent. The algorithm suf-
fers from instability and may diverge in practice. 
To improve its stability, one can combine the 
multiplicative algorithm due to (Lee & Seung, 
2001) with the ALS algorithm, as suggested in 
(Soltuz et al, 2009). For example, W and H can 
be updated in the following way,

H H W X
W W H

q q
q T

q T q q
+ = •1 ( )

( )
 (9)

W X H H Hq q T q q T+ + + +
−

= ( )1 1 1 1 1
( ) ( )  (10)

The hybrid algorithm provides a fast conver-
gence rate and at the same time offers good con-
vergence stability. More details of the theoretical 
and numerical analysis of this algorithm can be 
found in (Soltuz et al, 2009).

cOnvOlutive nMf

The instantaneous NMF has limitations in dealing 
with many non-stationary signals whose frequen-
cies change dramatically over time, since only a 
single basis is used in the model. To address this 
issue, Smaragdis extended the standard (instan-
taneous) NMF model to the convolutive case 
(Smaragdis, 2004). Rather than using ˆ , ˆ,X WH X=  
is represented by a sum of shifted matrix products, 
i.e.

ˆ ( )X W H=
→

=

−

∑ p
p

p

P

0

1

 (11)

where W( ) , , , ,p p PM R∈ ℜ = −+
× 1 1  are a set 

of bases, and H
p®

shifts the columns of H by p 

spots to the right. Similarly, H
¬ p

 shifts the columns 
of H by p spots to the left. The shifts are non-
circular, which means the elements of the columns 
shifted in from outside the matrix will be set to 
zeros (Smaragdis, 2004, Wang, 2007, Wang et al, 
2009). For example, suppose

H =





















2 1 7
9 9 3
4 5 8
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Then

H
0

2 1 7
9 9 3
4 5 8

→

=
















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


, H
1

0 2 1
0 9 9
0 4 5

→

=




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





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


,  

H
2
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→

=




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
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, H
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1
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
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
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2
7 0 0
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, H
←

=





















3
0 0 0
0 0 0
0 0 0

 

Using the convolutive model (11) and the 
extended KL divergence based criterion (2), 
Smaragdis obtained the following multiplicative 
learning algorithm

H H
W X

X
W

q q

q T
q

p

q T

p

p
+

←

= •










1

( ( ))
ˆ

( ( )) •
 (12)

W W

X
X

H

H

q q
q

q
p

T

q
p

T

p p+

+
→

+
→

= •










1

1

1

( ) ( )
ˆ
( )

( )•
 (13)

As in our previous work (Wang, 2009), we refer 
to this algorithm as ConvNMF-KL in this chapter.

Recently, using the same convolutive model 
(11), we have derived a new algorithm using the 
squared Euclidean distance based criterion (1), see 
details in (Wang et al, 2009). In this algorithm, 
the update equations for W(p) and H are given as

W W
X H

X H

q q

q
p T

q q
p T

p p+

→

→
= •























1( ) ( )

ˆ

 (14)

H H W X

W X

q q
q T

p

q T
p

p

p

+
+

←

+
←

= •1
1

1

( ( ))

( ( )) ˆ
 (15)

The update Equation (15) may lead to a biased 
estimate of H. To address this issue, in practice, 
H can be further modified as

H H W X

W X

q q
q T

p

q T
p

pP
p

p

+
+

←

+
←

=

= •













1
1

1

1 ( ( ))

( ( )) ˆ00

1P−

∑  (16)

To improve the computational efficiency of 
the proposed algorithm, we have introduced a 
recursive update method for X̂  as follows

ˆ ˆ ( ) ( ) ( , , )X X W H W Hq q q q
p

q q
p

p p p P= − + = −
→

+
→

1 0 1

 
(17)

The subtraction used in (17) may result in 
negative values of the elements in ˆ .Xq  We use the 
following projection to prevent this

ˆ max( , ˆ )
, ,

X Xi j
q

i j
q= ε  (18)

where ˆ
,

X i j
q  is the ij-th element of the matrix X̂  

at iteration q, and ε is a floor constant, and typi-
cally, we choose ε = 10-9 in our implementations. 
Same as in our previous work (Wang et al, 2009), 
we denote the algorithm described above as 
ConvNMF-ED. The implementation details of 
ConvNMF-ED can be found in (Wang et al, 2009) 
and are omitted in this chapter.
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It is worth noting that there is another method 
considering the convolutive model, i.e. SNMF2D 
developed in (Schmidt & Morup, 2006, Morup & 
Schmidt, 2006). This algorithm can be regarded as 
an extension of Smaragdis’s work by considering a 
two-dimensional deconvolution scheme, together 
with sparseness constraints (Morup & Schmidt, 
2006), where both the extended KL divergence 
and the least squares criterion are considered. For 
their least square criterion based approach, denoted 
as SNMF2D-LS in this chapter, the shifted ver-
sions of Wqand Hq at all time lags p = 0, …, P - 1 
are used for updating Wq(p) and Hq(p), with an 
individual time lag at each iteration. The update 
equation for Hq is given as

H H
X X

X

q q
q T p

q T p

q T p
q

W W P

W W

+

+
←

+
←

+
←

= •
( ) + + −( )

( ) + +

1
1 1

1

0 1

0

( ) ( )

( ) ˆ





++
←

−( )1 1( ) ˆP
T p

X

 

(19)

The advantage of this formulation is the in-
creased sparseness that may be achieved for the 
decomposition matrices. For audio pattern sepa-
ration purpose, however, this representation may 
break the structure of audio objects which makes 
event or onset detection directly from Wq(p) and 
Hq even more difficult (Wang et al, 2009). Another 
issue with this formulation is the over-shifting ef-
fect (Wang et al, 2009) where the time-frequency 
signature in the data has been shifted more than 
it actually requires in the sense of audio object 
separation. Also the computational load with the 
above formulation is higher as compared with 
the ConvNMF-ED algorithm. In this chapter, 
as a compliment to the results in (Wang et al, 
2009), we will show additional simulations and 
comparisons between the above methods in the 
subsequent sections.

As in instantaneous NMF, one can also consider 
sparseness constraint within the convolutive NMF 
algorithm. For example, we can enforce sparseness 
constraint on H using the following cost function,

( ˆ , ˆ ) argmin ˆ
,

W H X X H
W H

= − + ∑F ij
ij

2
λ  

(20)

where X̂  takes the form of (11), and λ is a regu-
larization constant which controls the amount of 
sparseness constraints. To optimize this cost func-
tion, we can use the same expression as (14) for 
the update of W(p). However, H needs to be 
updated as follows (Wang, 2008)

H H
W X

W X

q q

q T
p

q T q
p

p

p

+

+
←

+
←

= •











+





1

1

1

( ( ))

( ( )) ˆ λž






 (21)

cOnvergence analySiS Of the 
cOnvOlutive nMf algOrithM

The exact convergence analysis of the proposed 
algorithm would be difficult. However, the over-
all performance can be approximated by the key 
updating Equations (14) and (15). As we know 
that, when P = 1, ConvNMF-ED is approximately 
equivalent to the instantaneous NMF (i.e. the 
algorithm based on update Equations (3) and 
(4)). This implies that we can effectively follow 
the method used in (Lee & Seung, 2001) for the 
convergence analysis of the proposed algorithm 
in terms of (14) and (15). Similarly, we have the 
following lemma.

Lemma 1: The squared Euclidean distance 
Á  is non-increasing under the learning rules (14) 
and (15).

Proof: Suppose G(w, wq) is an auxiliary function 

for ℑ = −
1
2

2
X X̂ ,

F
 then according to (Lee & 

Seung, 2001), the conditions G q( , ) ( )w w w≥ ℑ , 
G( , ) ( )w w w= ℑ  should be satisfied, and Á  is 
n o n - i n c r e a s i n g  u n d e r  t h e  u p d a t e 
w w wq qG+ =1 argmin ( , ) , where w is a vector 
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derived from the matrix W(p) by stacking its 
columns together into one column vector, i.e. the 
vectorization of matrix W(p), and q is again the 
iteration index. Likewise, w can be replaced by 
the vector h in order to prove the convergence 
property of the learning rule of H, where h can 
be obtained in the same way as w using vectoriza-
tion. Correspondingly, Á  is represented as a 
function of w, i.e.Á( )w , instead of W(p). To 
proceed the proof, we need the following deriva-

tives, 
∂

∂
∂ℑ

∂

ˆ

( )
’

( )
,,

, ,

X
W W

i j

m n m np p
 and the components 

of the Hessian tensor

Πm n m n
m n m n

p
p p, , ,

, ,

( )
( ) ( )

,′ ′
′ ′

=
∂ ℑ

∂ ∂

2

W W
 

where the sub-script denotes the specific element 
of a matrix; for example, Wm, n(p) represents the 
mn-th element of the matrix W(p), and the same 
notation is used for other matrices throughout 
the chapter.

In terms of Equation (11), we have the follow-
ing derivative (see the Appendix for its derivation)

∂

∂
=

→ˆ

( )
,

,
, ,

X
W

Hi j

m n
i m

p

n j
p

δ  (22)

where δi, m is denoted as

δi m
i m
i m,

,

,
=

=
≠








1
0

 (23)

Similary, according to Equation (1) and (22), 
we have (see the Appendix for details)

∂ℑ
∂

= −
→

∑W
X X H

m n
m j m j

p

n j
jp

,
, , ,

( )
( ˆ )  (24)

Based on Equations (1) (22) (24), the compo-
nents of the Hessian tensor Πm n m n p, , ,

( )′ ′  can be 
derived as (refer to the Appendix for details)

Πm n m n m m

p

n j

p

n j
j

p
, , , , , ,( )′ ′ ′

→ →

′= ∑δ H H  (25)

Let λ = { , }m n , ′ = ′ ′λ { , }m n , so that the 
tensor Πm n m n p, , ,

( )′ ′  can be compressed as a matrix 

with elements denoted as Tλ λ, ( )′ p . With these 
derivatives, we are now ready for the whole proof 
using a procedure similar to that in (Lee & Seung, 
2001, Morup & Schmidt, 2006). First, we can 
expand Á  in terms of a second order Taylor series, 
i.e.

ℑ = ℑ + −
∂ℑ
∂

+ − −( ) ( ) ( )
( )

( ) ( )w w w w
W

w w T w wq q q T q

p
1
2

 

(26)

Then, let G(w, wq) take the following form

G
p

q q q q T q q( , ) ( ) ( )
( )

( ) ( )( )w w w w w
W

w w K w w w= ℑ + −
∂ℑ
∂

+ − −
1
2

 

(27)

where K(wq) is a diagonal matrix defined as

K
Tw
wλ λ λ λ

λ

λ

δ
, ,

( )

( )′ ′=
q

q
 (28)

According to the same method as in (Lee & 
Seung, 2001), it is straightforward to show that

( )( ( ) )( )w w K w T w w− − − ≥q q q 0  (29)

Therefore, we have G q( , ) ( )w w w≥ ℑ  in terms 
of G q( , ) ( )w w w−ℑ  computed from Equations 
(26) (27). It is also straightforward to prove that 
G( , ) ( )w w w= ℑ  in terms of Equations (26) and 
(27). Finally, we need to show that the learning 
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rules (14) were obtained when the gradient of 
G(w, wq) with respect to w equals to zero, i.e.

∂
∂
=

∂
∂

=
G G

pm nw W
,
( )

0  (30)

According to Equation (25), we have (see the 
derivation in the Appendix)
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Expanding (30) and incorporating (31), we 
obtain the following element-wise adaptation 
equation

W W
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(32)

Apparently, Equation (32) is an element-wise 
operation of (14). Consequently, Á  is non-in-
creasing under the update (32), as it is obtained 
by the minimization of G q( , )w w . Similarly, Á  
is non-increasing under the update Equation (15). 
This concludes the proof of Lemma 1. Obvi-
ously, the distance Á  is invariant under these 
updates if and only if W(p) and H are at a limit 
point of the distance. However, as in instantaneous 
NMF, whether any limit point is always stationary 
remains an open issue, see, e.g. (Lin, 2007) and 
therefore is an interesting topic for future research.

aPPlicatiOnS tO audiO 
Pattern SeParatiOn

In this section, we show an example of applying 
the ConvNMF-ED algorithm to the audio object 
separation problem using artificially generated 

audio signals. More application examples to real 
music audio signals can be found in (Wang, 2007, 
Wang et al, 2009), and are not included in this 
chapter. We generate the audio signal in the same 
way as used in our previous work (Wang, 2007). 
First, we generated two audio signals, with one 
containing five repeating patterns whose frequen-
cies changing linearly with time from 320Hz to 
270Hz, and the other containing four repeating 
patterns whose frequencies change linearly from 
500Hz to 600Hz. The sampling frequency fs for 
both signals is 1500Hz. These two signals were 
added together to generate a mixture. The length 
of the signal is 30 seconds. Then, this mixture 
was transformed into the frequency domain by the 
procedure described in (Wang et al, 2006, Wang, 
2007, Wang et al, 2008, Wang et al, 2009), where 
the frame length T of the fast Fourier transform 
(FFT) was set to 2048 samples, i.e., the fre-
quency resolution is approximately 0.73Hz. The 
signal was segmented by a Hamming window 
with the window size being set to 600 samples 
(400ms), and the time shift to 250 samples (ap-
proximately 167ms), that is, an overlap between 
the neighboring frames was used. Each segment 
was zero-padded to have the same size as T for 
the FFT operation. The generated matrix X is 
visualized in Figure 1. Note that the parameters 
used for generating X are identical to those used 
in (Wang, 2007).

The ConvNMF-ED algorithm was then applied 
to X. In this algorithm, the factorization rank R 
was set to two, i.e., exactly the same as the total 
number of the signals in the mixture. The matrices 
W(p) and H were initialized as the absolute val-
ues of random matrices with elements drawn from 
a standardized Gaussian probability density func-
tion. P was set to six (in order for the object to be 
separated, P should be sufficiently large to cover 
the length of the object in the signal). All tests 
were run on a computer whose CPU speed is 
1.8GHz. Figure 2 and Figure 3 show Ho and Wo(p), 
i.e. optimal values of H and W(p), respectively. 
It is clear from these figures that the audio objects 
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with repeating patterns are successfully separated 
by the ConvNMF-ED algorithm, with Wo(p) be-
ing the time-frequency representation of the re-
peating patterns, and Ho containing the temporal 
structure of these patterns, i.e., the occurrence 
time of individual patterns. We should note that 
the instantaneous NMF described by the learning 
rules (3) and (4) (as well as (5) and (6)), how-
ever, totally fails for separating the audio objects 
in these tests. ConvNMF-KL offers similar results 
to ConvNMF-ED, see e.g. (Wang, 2007, Wang et 
al 2009) for comparisons. We have extensively 
tested the algorithm for different set-ups of the 
parameters, including other randomly initialized 
matrices W and H, and found similar separation 
performance.

aPPlicatiOnS tO MuSic OnSet 
detectiOn

Onset detection is an important issue for ma-
chine perception of music audio signal. It aims 
to detect the starting point of a noticeable change 

in intensity, pitch and timbre of musical sound. 
It usually involves several steps including pre-
processing, construction of detection function 
and peak picking. We have shown in (Wang et 
al, 2008) that the linear temporal bases obtained 
by an NMF algorithm (e.g. Lee & Seung 2001) 
can be used to construct a detection function. An 
advantage of constructing the detection function 
using the NMF bases is that no prior knowledge 
or statistical information is required. We have 
demonstrated in (Wang et al, 2006, Wang et al, 
2008) that different types of detection functions 
can be constructed from Ho, including the first-
order difference function, the psychoacoustically 
motivated relative difference function, and the 
constant-balanced relative difference function. Re-
cently, we have also shown application examples 
of convolutive NMF algorithms for onset detec-
tion, see e.g. (Wang et al, 2009), where we have 
compared the performance of applying different 
convolutive NMF algorithms to onset detection. 
Details of these results can be found in (Wang et 
al, 2009) and will not be exhaustively repeated 
in this chapter.

Figure 1. The contour plot of the magnitude spectrum matrix X generated from the artificial audio data
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evaluatiOnS Of the 
cOnvOlutive nMf algOrithMS

In this section, we evaluate the performance 
of the three convolutive NMF algorithms, i.e. 
ConvNMF-ED, ConvNMF-KL and SNMF2D-LS. 
In (Wang et al, 2009), we have already evaluated 

the three algorithms from several aspects includ-
ing convergence performance, computational 
efficiency, and note onset detection performance. 
Here, we intend to provide more evaluation results, 
some of which are complementary to those given 
in (Wang et al, 2009). For example, Figure 4 shows 
a typical convergence curve of the ConvNMF-ED 

Figure 2. Visualisation of the two rows of matrix Ho with each row in one sub-plot

Figure 3. Visualisation of the two columns of all matrices Wo(p), p = 0, …, 5 as a collection, with each 
column visualized in one sub-plot
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algorithm obtained by a single run of the algorithm 
with a random initialization, while a comparison 
of the average convergence performance between 
the three algorithms is given in (Wang et al, 2009).

Now, we study two more aspects of the three 
algorithms using the following performance in-
dices. One is the rejection ratio (RR). Let us 
represent X̂  as the combination of R factorized 
components, i.e.

ˆ ˆ( )X X=
=
∑ i
i

R

1

 (33)

Then, we can define the RR as follows

RR cor i j
j i

( ) log ˆ( ), ˆ( )dB = ( )








∀ ≠

∑10 10 X X  

(34)

where cor denotes the correlation. This perfor-
mance index can measure approximately the ac-

curacy of the separation performance for which 
a lower value represents a better performance. 
The other is the relative estimation error (REE),

REE F

F

( ) log
ˆ

dB =
−

10 10

X X

X
 (35)

This performance index is less sensitive to the 
signal dynamics as compared with the absolute 
estimation error due to the adopted normalization. 
It measures approximately the accuracy of the 
factorization and a lower value represents a better 
performance. We ran ConvNMF-ED, ConvNMF-
KL, and SNMF2D-LS for five random tests for 
each T, where T is the FFT frame size, and was 
set to be 256, 512, 1024, 2048 and 4096 respec-
tively. Note that the results shown in (Wang et al, 
2009) were based on 50 (instead of 5) random 
tests. The results of these five tests, together with 
their average are shown in Figure 5 and Figure 6, 
respectively. Several interesting points can be 

Figure 4. A typical convergence curve of the ConvNMF-ED algorithm measured by the reconstruction 
error versus the iteration number, where the reconstruction error is the absolute estimation error of X̂



364

Instantaneous vs. Convolutive Non-Negative Matrix Factorization

Figure 5. The RR comparison between the algorithms ConvNMF-ED (a), ConvNMF-KL (b) and SN-
MF2D-LS (c). The FFF frame length T was chosen to be 256, 512, 1024, 2048, and 4096 respectively. 
For each T, five random tests were performed, and the RR was plotted as the average of the five tests, 
with individual test results plotted on the error bars.

Figure 6. The REE comparison between the algorithms ConvNMF-ED (a), ConvNMF-KL (b) and 
SNMF2D-LS (c). The FFF frame length T was chosen to be 256, 512, 1024, 2048, and 4096 respectively. 
For each T, five random tests were performed, and the RR was plotted as the average of the five tests, 
with individual test results plotted on the error bars.
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observed from these figures. First, both ConvN-
MF-ED and ConvNMF-KL are relatively sensitive 
to different initializations, which is a common 
issue for many NMF algorithms and how to find 
a performance independent initialization method 
remains an open problem. Second, from the test 
results, we notice that the algorithm ConvNMF-
ED performs approximately equally well as 
ConvNMF-KL, although it is less accurate in 
terms of RR measurement. This suggests that the 
KL divergence may be advantageous for the 
separation of signals in the convolutive case. 
However, according to the REE measurement, 
ConvNMF-ED performs much better for recon-
structing the original data. These observations 
somehow coincide with the findings for instan-
taneous NMF algorithms. One thing to note is 
that RR can be informative for the performance 
evaluation of signal separation. Therefore, SN-
MF2D-LS performs best in this experiment from 
the viewpoint of signal separation. However, it is 
clear from the results shown in our previous work 
in (Wang et al, 2009) that note events represented 
by Wo(p) and Ho (optimal values of W(p) and H) 
obtained by the SNMF2D-LS algorithm are actu-
ally far from similar to the original events (e.g. 
the onset locations and the time-frequency signa-
tures). This is because X̂  is a convolution of 
Wo(p) and Ho, and consequently X̂  remains 
unchanged if both Wo(p) and Ho are over-shifted 
to the same extent. This implies that even though 
an algorithm reconstructs X̂  perfectly close to 
the original data X, the obtained decomposition 
Wo(p) and Ho may not provide a meaningful in-
terpretation to the original data. As a consequence, 
the REE and RR reveal only a part of the picture 
of the behavior of the algorithms.

future reSearch directiOnS

Although NMF has shown to be useful for audio 
pattern separation (more broadly machine audio 
perception), there are still many open issues that 

require more research efforts. One of them is au-
tomatic rank selection. The decomposition rank 
is an important parameter for the application of 
an NMF algorithm. Its selection affects the results 
that can be achieved by the NMF algorithm and 
how the results might be interpreted. The convolu-
tive NMF model involves the multiplications and 
additions of the multiple delayed components, 
current algorithms seem to be unsuitable for 
real-time applications, and more computation-
ally efficient algorithms are required for such an 
application scenario. Most existing algorithms 
process the signal as a whole block. This may be 
a problem for long audio signals, as the generated 
non-negative matrix from the long signal can be 
of a high dimension. It is therefore desirable if we 
could develop adaptive or sequential algorithms 
to process the signals in shorter blocks and then 
apply the NMF algorithms for each of these blocks.
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Derivation of Equation (24)
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Derivation of Equation (25)
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Derivation of Equation (31)
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