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Manifold-Based Visual Object Counting
Yi Wang , Yuexian Zou, Senior Member, IEEE, and Wenwu Wang, Senior Member, IEEE

Abstract— Visual object counting (VOC) is an emerging area in
computer vision which aims to estimate the number of objects of
interest in a given image or video. Recently, object density based
estimation method is shown to be promising for object counting
as well as rough instance localization. However, the performance
of this method tends to degrade when dealing with new objects
and scenes. To address this limitation, we propose a manifold-
based method for visual object counting (M-VOC), based on the
manifold assumption that similar image patches share similar
object densities. Firstly, the local geometry of a given image
patch is represented linearly by its neighbors using a predefined
patch training set, and the object density of this given image
patch is reconstructed by preserving the local geometry using
locally linear embedding. To improve the characterization of
local geometry, additional constraints such as sparsity and
non-negativity are also considered via regularization, nonlinear
mapping, and kernel trick. Compared with the state-of-the-art
VOC methods, our proposed M-VOC methods achieve compet-
itive performance on seven benchmark datasets. Experiments
verify that the proposed M-VOC methods have several favorable
properties, such as robustness to the variation in the size of
training dataset and image resolution, as often encountered in
real-world VOC applications.

Index Terms— Visual object counting, object density map
estimation, manifold-based, locally linear embedding, manifold
assumption, kernel method.

I. INTRODUCTION

V ISUAL object counting (VOC) is one of the most active
research areas in computer vision and signal process-

ing which aims to predict the number of objects in an
image or video, and to infer the statistics of the objects in
a given scene. This technique can be employed in a number
of applications, e.g. cell counting in medical imaging, bird
census in wild observation, and crowd monitoring in public
areas (see examples shown in Figure 1).
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Fig. 1. Illustration of object types: bees (upper left), pedestrians
(upper middle), fishes (upper right), seagulls (bottom left) and cells
(bottom right).

A. Related Work

Existing VOC methods are approximately categorized
into four types: (1) counting by detection; (2) counting
by trajectory-clustering; (3) counting by global regression;
(4) counting by object density estimation. The counting by
detection method has been used in pedestrian counting and
it works well when most people in the scene are separated
clearly, but its performance degrades significantly when the
objects get closer or are occluded by each other [1]–[4]. The
counting by trajectory-clustering method [5]–[7] is designed
to count crowded moving objects, thus it can only be
applied to videos or image sequences for acquiring desired
trajectories. Moreover, the clustering process often incurs
high computational cost. The counting by global regression
method yields fairly good estimation by using swift training
and testing procedure, however it relies heavily on feature
engineering [8]–[15], and cannot give specific object distri-
bution information.

The counting by object density estimation (DE-VOC) meth-
ods, introduced originally in [16], estimate a real-valued
density function of pixels in a given image by mapping the
local features of the image to its density map [16]–[22]. The
DE-VOC methods are usually composed of three common
elements: with manually labeled training images, the DE-VOC
methods firstly generate the ground truth density map, then
extract the local features and finally apply a regression model
to learn the mapping between the local features and its cor-
responding density map. Consequently, the learned regression
model can be used to estimate the density map of any given
image, and the corresponding object count is calculated as
the integral of the density map. Different from other VOC
methods [2], [5], [8]–[13], [23]–[25], the DE-VOC methods
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yield object density maps that are useful for the analysis of
object distributions across the whole image.

In [16], the ground truth object density map is generated by
convolving the object location map with a Gaussian kernel.
Then, the coded dense SIFT feature is taken to represent the
image, and finally a linear regression model is employed to
learn the mapping between the features and density maps.
The method was shown to be robust to additive local pertur-
bations [16]. This method has been further extended in [22]
by integrating the perspective map into the generation of the
ground truth density map, and in [19] for efficient implemen-
tation by using regression forests instead of linear regression.

Recently, convolutional neural networks (CNN) have been
applied to solve the VOC problem [26]–[28]. Compared
with conventional DE-VOC methods, the feature engineering
process is replaced by feature learning in a supervised manner.
One example is presented in [27], which gave the state-of-
the-art performance with about 4K manually labeled frames
in a 200K pedestrians dataset in 2015. It is noted that the
CNN based VOC methods are facilitated by the availability
of large scale training data and high performance computa-
tional resources e.g. graphical processing units (GPUs). For
many real applications, however, only relatively small datasets
are available, and this motivates us to develop an effective
DE-VOC method with limited training data instead of the CNN
based methods with large scale training data.

B. Motivations

The performance of the DE-VOC methods, however,
tends to degrade when dealing with new objects and
scenes [16], [17]. To address this limitation, in this paper,
we propose a novel manifold-based DE-VOC method
(M-VOC), where the object density map is estimated from a
training dataset, based on the manifold assumption [29], [30]
that the neighboring image patches are more likely to share
similar density patches while the distant ones are less likely
to. This assumption is made based on the observation that
the image of objects shares the same information as its
density map regarding the location of the objects in space, and
recurrent patterns appear everywhere in natural swarm scenes
such as crowds and birds.

In our proposed M-VOC, the density map of a given image
patch is reconstructed based on its local geometry since the
image patches that lie in a manifold share a similar local
geometry as the manifold formed by their object density maps.
As a result, the VOC problem is converted to the problem of
characterizing the local geometry of the given image patch. For
this reason, the proposed method is robust against features
used and image resolution.

To capture the local geometry of the input image patch,
the locally linear embedding (LLE) method, which has been
extensively studied in manifold learning [31], [32], is adopted
in the proposed M-VOC. The LLE method has been applied
to multi-view and cross-modal applications [33]–[36], where
multi-modal features are exploited for image retrieval, classi-
fication or regression problems. Different from these works,
however, the proposed M-VOC method focuses on modelling

and deriving the correspondence from images to their density
maps. To our knowledge, it is the first time that the LLE
method is used in a VOC problem.

To further improve the performance of LLE, additional
regularizations, namely, energy, sparsity, and non-negativity
constraints are considered. With these regularizations, how-
ever, it becomes less trivial to compute the local geometry.
To address this limitation, nonlinear mapping based on a
kernel method can be incorporated into the proposed M-VOC,
which we name as the KM-VOC method. With this method,
no regularization terms will be required and the algorithm
becomes more tractable. Specific kernels such as the Radial
Basis Function (RBF) is used to induce non-negativity and
sparsity simultaneously in the local geometry. Although the
regularized and kernel versions of LLE have been studied
in [37]–[40], they have not been applied to the VOC problem.
We show that the kernel and regularized LLE is highly relevant
to the VOC problem. The kernel method offers an efficient
solution to the regularized LLE, while the regularization on
LLE renders desirable properties in the VOC problem such as
sparsity and non-negativity.

In addition, to find similar patches more efficiently, instead
of using conventional nearest neighbor searching algorithms,
a hierarchical searching method is developed which uses a
simple tree structure to convert the complexity of the problem
from O(N) to O(log N), where N is the number of samples
in the training data. To further improve the computational
efficiency, a pre-trained local regression method [41]–[43] is
adopted to approximate the desired local geometry in our
KM-VOC method, which is able to eliminate the neighborhood
search process.

It is worth pointing out that the proposed M-VOC essentially
differs from the conventional DE-VOC methods in the follow-
ing two aspects. The manifold assumption is firstly introduced
to solve the VOC problem. In addition, the proposed M-VOC
method is a nonparametric approach while the mainstream
DE-VOC methods use parametric regression models.

C. Contributions

To make it clear, our contributions in this work are summa-
rized as follows:

1) Based on the manifold assumption for the VOC problem,
a novel manifold-based VOC method (M-VOC) has been
proposed for generic object counting, by exploiting the sim-
ilarity in the local geometry between the images and their
corresponding density maps.

2) To better characterizing the local geometry, sparse and
non-negative representations are also considered via regular-
izations and nonlinear mapping with kernel trick, which leads
to several variants of the proposed method.

3) The local pattern learning and hierarchical searching have
been employed to further improve the computational efficiency
of the proposed M-VOC method and its variants.

Preliminary results of our work can be found
in [44] and [45]. Current work adds to the initial version
in several significant aspects. Firstly, more local geometry
regularizations have been investigated, and theoretical
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Fig. 2. The generation of ground truth density map. (a) Left: A pedestrian
image with user annotations on object locations (red stars); (b) Right: the
generated density map (displayed in jet colormap).

analysis and experimental validation are given to illustrate
the performance improvement of the proposed method.
Secondly, by introducing the kernel method, the original local
geometry constraints, such as non-negativity and sparsity can
be achieved implicitly, which not only gives a more compact
and uniform formulation but also boosts the performance in
object counting. Thirdly, our experiments are extended from
pedestrian and cell datasets to insect, fish and bird datasets,
and substantial new analyses are provided to the initial results
as well as to the new experimental results.

D. Paper Organization

The remainder of the paper is organized as follows:
Section II presents the idea, formulations, and the algorith-
mic implementations of our proposed M-VOC method; in
Section III, extensive experiments are conducted on bench-
mark datasets to evaluate the performance of our M-VOC,
as compared with several state-of-the-art VOC methods.
Lastly, Section IV concludes the paper.

II. PROPOSED METHOD AND ALGORITHM

In a conventional DE-VOC method, for a given image X ,
the density map Xd is estimated first before the object counts
c(X) is computed by taking the integral over Xd .

In this section, from a new perspective, we proposed a
novel approach to estimate the density map Xd and derive
several variants based on how to regularize the local geom-
etry to obtain effective local linear representation and their
corresponding solutions. As our method estimates object den-
sity using manifold learning techniques under a manifold
assumption, it is named as manifold-based visual object
counting (M-VOC).

A. The Main Assumption and Key Ideas

Our method is inspired by two key observations. To explain
this, in Figures 2 and 3, we show two example images and
one produced density map (generated by using the algorithm
in [16], more details are given in Section II.B). From Figure 2,
it is noted that the image of objects shares the same object
location information with its density map in spatial space.
In Figure 3, many image patches share similarity in the count-
ing scene, indicating that recurrent patterns are everywhere in
natural swarm scenes such as crowds and birds. With these
two observations, we make the manifold assumption in the
counting problems: the similar image patches are more likely
to share similar density patches while the dissimilar ones are

Fig. 3. An illustration about recurrent patterns in the counting scene. The
regions marked by the same color share the same pattern.

Fig. 4. An illustration of the manifold assumption made in our proposed
M-VOC method. The test image patch is shown on the top left marked by blue
dash bounding box. Each cross represents the “image patch similarity score
obtained from x and yi versus the “density patch similarity score obtained
from xd and yi

d . The five training patches, which are most similar to the test
image patch in terms of the “image patch similarity” measure, are shown
on the top left (below the test image patch), whose similarity scores are
highlighted with red circles. Here showing the similarities between the input
patch and all the training patches is to demonstrate the fact that, although
some training patches are most similar to the input image patch, their density
patches may not be the ones that are most similar to the density patch of the
input image patch.

less likely to. Under this assumption, the image patches and
their corresponding density patches could be viewed as lying
in two manifolds that share a similar local geometry.

Let x be the image patch extracted from X , while its
density patch be xd . Denote the annotated training images
as I i (i = 1, 2, . . . , N), and the set of image patches as
Y = { y1, y2, . . . , yM }, where yi ∈ R

q1 . Accordingly, the set
of the density patches of the corresponding image patches
is denoted as Y d = { y1

d , y2
d , . . . , yM

d } where yi
d ∈ R

q2 are
extracted from I i

d (i = 1, 2, . . . , N). The aim of the M-VOC
method is to estimate xd for a given x.

With the manifold assumption, x and xd share the similar
local geometry. This means that, if x can be represented by
its neighbors in a certain way in order to capture the local
geometry, then xd can also be represented by its neighbors in
the same way. The similarity on the local geometry between
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Fig. 5. The pipeline of the proposed manifold-based visual object counting. All the testing procedures are in orange boxes (in the upper left of the figure)
while the training ones are in red boxes (the remaining part).

x and xd can be expressed as:{
x = Dw

xd = Ddw
(1)

where D = [ yt1, yt2, . . . , ytT ] is the subset formed by the
T nearest neighbors of x from Y , Dd = [ yt1

d , yt2
d , . . . , ytT

d ]
is the subset of density patches corresponding to D, and w

is the weight vector describing the local geometry of x and
xd . In theory, w can be jointly computed from (x, D) and
(xd , Dd ). In practice, however, xd is unknown and needs to
be predicted from x. As a result, it is not a trivial task, if not
impossible, to estimate w jointly from (x, D) and (xd , Dd ).

To further clarify the manifold assumption, we illustrate
the relation of the density patch similarity to image patch
similarity using a plot. Figure 4 is generated using the Seagull
dataset [46]. First, we choose a cropped test image patch
x of size at 9 × 9 pixels, as shown on the top left side
of the figure (highlighted with blue dash bounding box),
and 23180 image patches yi , (i = 1, 2, . . . , 23180) from a
training set. We measure the image patch similarity between
x and yi by their Euclidean distance as si = ||x − yi ||2,
i = 1, . . . , 23180, which is shown along the horizontal axis
of the figure. Define the density patch of x and yi as xd

and yi
d , respectively. The density patch similarity between

xd and yi
d is also measured by their Euclidean distance

denoted as dsi = ||xd − yi
d ||2, i = 1, . . . , 23180, which

is shown along the vertical axis. A lower Euclidean dis-
tance indicates a higher similarity. In this figure, we show
23180 cross points (si , dsi ), i = 1, . . . , 23180. In addition,
we highlight five crosses using red circles at the bottom left
whose si values are the five highest among the 23180 crosses.
Carefully examining these five crosses, we get the following
paired values of (si , dsi ): (1.2261, 0.0089), (1.2467, 0.0108),
(1.2973, 0.0085), (1.4215, 0.0020) and (1.4661, 0.0119),
respectively. It is noted that dsi for these five points ranges
from 0.002 to 0.011 while si ranges from 1.2 to 1.47. This
experimental result shows that similar image patches tend to
give similar density patches, and vice versa. This validates the
manifold assumption that we have made.

B. The Pipeline of the Proposed M-VOC Method

The whole pipeline of our proposed M-VOC is given
in Figure 5 which contains four key steps as follows:
1) the ground truth density map generation (in the bottom-left
corner of Figure 5); 2) feature engineering; 3) building search
structure (in the top-right corner of Figure 5); 4) density map
reconstruction (in top-left corner of Figure 5). The details of
each step will be discussed in the following subsection. The
main novel contributions of our work are in steps 3 and 4,
while in steps 1 and 2, existing techniques are used.

1) The Generation of the Ground Truth Density Maps:
There are several methods that have been proposed to estimate
the density map [16], [17], which will be reviewed briefly
for presentation clarity. Usually, the annotations by users on
object locations are discrete 2D points in the image as shown
in Figure 2(a). In order to make the object locations change
continuously, the object location map is kernelized to obtain
a smoothed object distribution [41]. Suppose a set of N
manually annotated images I1, I2, . . . , I N are pre-allocated.
Then, the ground truth density maps I i

d are usually defined as
a sum of 2D kernels of the object locations [16], as:

I i
d (z) =

∑
U∈U i N (z; U, σ 212×2) (2)

where Id indicates the ground truth density map of I , z is
the pixel index of image I i , i is the image index, U is
the user-annotated dot, and U i is a 2D points set marking
all object locations in I i . Moreover, N is the normalized
2D Gaussian kernel function. σ 2 is the variance of N for
smoothing the local distribution, and is set according to
the size of objects (approximately 1/2 size of objects). One
example of the generated ground truth density map can be
found in Figure 2(b).

With I i
d , the object count c(I i ) is given by:

c(I i ) =
∑

z∈I i
d

I i
d(z) (3)

2) Feature Engineering: As discussed above,
the existing DE-VOC methods require sophisticated
hand-crafted or learned local features from images. For
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generalization purpose, simple or less feature engineering is
desired since feature engineering is usually application and
scene dependent. Here, we seek methods to preserve object
distribution information. Our preliminary research shows
that raw image data feature is an appropriate candidate. To
increase sampling densities in feature space and reduce the
computational burden, the raw data features in patch form
are centralized, normalized and dimension-reduced by PCA.
However, we also considered engineered features in our
experiments in Section III. B. 7.

3) Building Searching Structure: The realization of locality
(i.e. the construction of D in (1)) is usually achieved by search-
ing the whole example space, which is time-consuming even
with advanced search structure like KD-Tree [47]. To acceler-
ate the M-VOC in its testing phase, we compromise its training
time with a hierarchical search structure whose nodes are
generated by clustering, similar to the idea used in [48]. In our
study, a two-layer hierarchical search scheme is employed.
Without loss of generality, assume Y has K clusters. Then,
there are

√
K nodes in the first layer, which are the centroids

of the
√

K clusters of Y obtained by the K-Means algorithm.
For the second layer, each node in the first layer has

√
K

children nodes, which are the centroids of the
√

K clusters of
the image patches from Y assigned to their feature nodes.

4) Density Map Reconstruction: In this subsection, different
from the aforementioned mainstream DE-VOC methods that
use the regression model to compute xd from x, or Xd from
X , we present a nonparametric method based on the manifold
assumption to learn the weight vector w for x firstly, then use
w to estimate xd .

Let J (w|x, D) denote the cost function for computing w

based on x and D. For each input patch x extracted from
the test image X , w is obtained by solving the following
optimization problem, expressed as

w∗ = arg min
w

J (w|x, D) s.t . 1Tw = 1 (4)

Then, the estimation of xd can be computed by:

xd ∼= Ddw∗ (5)

Finally, xd is put into Xd at the same position as x in
X . After each patch in X is processed, the density map Xd

is estimated, and the count of X is obtained as c(X) =∑
z∈Xd

Xd (z).

C. Proposed M-VOC Algorithm

From (1), the key is to minimize the linear reconstruction
error J (w|x, D) = ‖x − Dw‖2

2 between x and Dw. Hence,
the solution of w is expressed as

w∗ = arg min
w

‖x − Dw‖2
2 s.t . 1Tw = 1 (6)

It is noted that (6) is a standard least squares problem,
therefore, if DT D is positive definite, w can be solved
efficiently as:

w∗ = 1

Z
(DT D)−1 DTx (7)

where Z is a normalization factor. The M-VOC method using
(7) for computing w is termed as M-VOC(LS).

However, computing the local weights using (7) is unstable
when q1 > T , because DT D is not positive definite under this
circumstance. Hence, some regularizations are introduced as
follows to achieve more reliable local linear representation.

1) Energy: To produce more stable local weights, w can be
constrained by its energy, indicating that the possible w will
be limited [41].

2) Sparsity: The performance of M-VOC is often affected
by the neighborhood size T . Specifically, if T is too small,
the neighbors selected are not enough to characterize the
local geometry; on the contrary, the neighbors with different
geometries tend to be selected, as a result, M-VOC fails to
characterize the local geometry. Clearly, a preset T will lead
to unstable performance of the M-VOC for different VOC
applications.

To address this problem, inspired by the properties
of sparsity and its applications in manifold
learning [11], [18], [19], we improve the model in (6) by
imposing the locality and sparsity constraints simultaneously.
This encourages as few neighbors of x to be selected
as possible with the same or similar geometry in feature
space. Through the improved model, the local geometry
can be learned properly, and as a result, setting T becomes
unnecessary.

3) Non-Negativity: In (6), due to the fact that
1Tw = 1, applying the non-negativity constraint on w

will lead to a convex combination of the most similar training
image patches or density patches. Thus, the reconstructed
input image patch Dw∗ is the one obtained using the
most similar training image patches. Further, when the
manifold assumption holds (i.e. the local geometry between
image patches and that between density patches are similar),
the estimated input density patch Ddw∗ is also the interpolated
one based on the used training density patches. As a result,
both the reconstructed input image patch and the estimated
density patch are not novel to the training image patches
and density patches. As observed in our experiments, this
will improve the counting performance, since only the
known image patch space and density patch space are
used for inferring the density patch of the input image
patch. In addition, the non-negativity constraint helps to
improve the sparsity of w [49], as shown in Figure 6 (b).
From Figure 6 (a) and (c), we can see that, without the
non-negativity constraint, some of the local weights obtained
by the optimization become negative. Incorporating the
non-negativity constraint, we obtain non-negative weights as
shown in Figure 6 (b), which are also more sparse than those
in Figure 6 (a). This helps to improve the counting accuracy
as observed empirically in our experiments.

4) Locality: As D used for reconstructing x is cho-
sen from the neighborhood of x, locality is assumed
implicitly.

Based on the aforementioned four constraints, the optimal
w is reformulated from (6) as:

w∗ = arg min
w

‖x − Dw‖2
2+ λ1‖w‖2

2 + λ2‖w‖1 + λ3(w − 0)

s.t . 1Tw = 1 and λ1, λ2, λ3 ≥ 0 (8)
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Fig. 6. The distributions of the weight coefficients (w∗) obtained by using different kernels. (a) Linear kernel (M-VOC with energy constraint); (b) linear
kernel (M-VOC with nonnegativity constraint); (c) linear kernel (M-VOC with sparsity constraint); (d) polynomial kernel (q = 2, 8, or 16); (e) RBF kernel
(μ = 0.35, 0.17, or 0.08); (d) Laplacian kernel (μ = 0.35, 0.17, or 0.08).

where λ1, λ2, and λ3 are regularization parameters. The second
term enforces w with low energy while the third term enforces
the sparsity for selecting potential candidates. The fourth term
ensures that w is positive. The sparsity constraint eliminates
the choice of the neighborhood size by using neighbors as few
as possible which essentially favors the neighbors with similar
structure [50], [51]. With the joint constraints on energy,
sparsity, non-negativity and locality, the selected neighboring
candidates tend to share the same or similar geometry.

To get more insights from (8), by setting different λ1, λ2,
and λ3, three variants are obtained as follows:

1) Let λ2 = 0 and λ3 = 0, then (8) is reduced to

w∗ = arg min
w

‖x − Dw‖2
2 + λ1‖w‖2

2

s.t . 1Tw = 1 and λ1 ≥ 0 (9)

With q1 > T , (9) is of a constrained least squares form and
it has an analytical solution as:

w∗ = 1

Z
(DT D + λ1 I)−1 DT x (10)

In this study, M-VOC using (10) for computing w is termed
as M-VOC(e).

2) Let λ1 = 0 and λ3 = 0, then (8) becomes

w∗ = arg min
w

‖x − Dw‖2
2 + λ2‖w‖1

s.t . 1Tw = 1 and λ2 ≥ 0 (11)

Equation (11) can be solved by Lasso or the basis pursuit
algorithms [52]. The sparsity yielded by the l1-norm constraint

avoids the choice of T since (11) guarantees that the smallest
T is used. Similarly, M-VOC using (11) for computing w is
termed as M-VOC(s).

3) Let λ1 = 0 and λ2 = 0, then energy and sparsity will
have no effects on w, so (8) gives:

w∗ = arg min
w

‖x − Dw‖2
2

s.t . 1Tw = 1 and w ≥ 0 (12)

Equation (12) is actually a non-negative least squares (NNLS)
formulation, which can be solved effectively by quadratic
programming (QP) tools.

The introduction of non-negativity to the local geometry
also induces sparsity according to [49] and [53], which will
be shown in Section III.B. The M-VOC method using (12) for
computing w is termed as M-VOC (nn).

We have just given formulations on how to estimate w (and
then xd ) when x is given. Therefore, the way to estimate Xd

from the whole image X is summarized in Algorithm 1.

D. Proposed KM-VOC Algorithm

Image patches contain numerous variations like shapes and
textures, and a linear representation as discussed in the above
section may not be able to fully capture their underlying
intrinsic relationship. Here we firstly incorporate nonlinear
mapping into the modeling of the local geometry in M-VOC,
and then apply a kernel method to make it tractable. This
kernel based M-VOC method is termed as KM-VOC.
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Algorithm 1 The M-VOC Method

In KM-VOC, a nonlinear mapping � is introduced to project
x to a much higher dimension as:

� : x �→ �(x) ∈ F (13)

where �(x) ∈ R
f with f 
 q1. The LLE is then applied to

�(x) instead of x, in a similar way, as:

w∗ = arg min
w

‖�(x) − �(D)w‖2
2 + λ‖w‖2

2

s.t . 1Tw = 1 and λ ≥ 0 (14)

where �(D) = [�(yt1),�(yt2), . . . ,�(ytT )]. Hence, its
close-form solution is derived as:

w∗ = 1

Z
(�(D)T�(D) + λI)−1�(D)T�(x) (15)

In F , the linear reconstruction is much easier to achieve than
that in the original feature space spanned by image patches
according to Cover’s theorem [41], implying that there is a
high possibility that w in (15) is more effective than w in
(7) or (10) on linear reconstruction. We believe that using
proper nonlinear mapping function, the local geometry in F
can be better characterized since the image patches that share
the similar counts and structures tend to live closer in these
spaces.

As studied in the literature [30], [41], there is no need to
access the feature �(x) or �(D) as only the linear correlations
between them matter. Let’s define a kernel k(, ) corresponding
to the nonlinear mapping �, so (15) is derived as follows:

w∗ = 1

Z
(G + λI)−1k(D, x) (16)

where G is the Gram matrix (which is semi-positive) of D,
and Gi, j = �(yti )T�(yt j ). k(D, x) is the kernel between D
and x. Obviously, the computation of w∗ in (10) is a special
case of (16) where k(.) is a linear kernel, indicating G = DT D
and k(D, x) = DT x.

To further explore the property of w obtained from (16),
an experiment using the UCSD pedestrian data [9] is con-
ducted. Firstly, a testing patch v ∈ R

16 (in column vector form)
is extracted. Then, 256 nearest neighbors of v are extracted
from the training set. After that the optimal weight vector (w∗)

used for constructing v is obtained by solving (10), (11), (12),
(16) with the polynomial kernel, (16) with the RBF kernel and
(16) with Laplacian kernel, respectively. The visualization of
w∗ is given in Figure 6 (a-f), respectively. In this experiment,
λ is all set to 1e − 3.

It can be observed from Figure 6 that w∗ computed by both
M-VOC and KM-VOC in (10) (e.g. subplot 6 (a)) contains
some negative values, however, with proper setting of the
kernel parameters, KM-VOC methods (e.g. subplots 6 (d-f))
can potentially improve the non-negativity of w∗. For example,
with the increase of q in KM-VOC with polynomial ker-
nel, or the decrease of μ in KM-VOC with RBF or Laplacian
kernel, the negative values in w∗ become close to zero.

Moreover, from Figure 6 (d-f), we can see that the KM-VOC
method yields more sparse w∗ as compared with that of
M-VOC(e) shown in Figure 6 (a). These results indicate that,
for the KM-VOC method, few neighboring vectors are used
to reconstruct v, which implies implicitly the sparsity property
of w∗. In principle, the sparseness of w∗ from (16) may come
from the property of the kernel function. For example, for the
RBF kernel function, the exponential change in the Euclidean
distance between feature vectors ensures that the majority of
the weight coefficients in D approach zero unless they live as
close as they are in the given range.

For KM-VOC, to further reduce the computational cost,
another method termed as anchored neighborhood regres-
sion [42], [43] is employed.

In KM-VOC, w∗ is obtained by (16). Substituting it into
the density patch reconstruction procedure in (1), xd can be
reconstructed as:

xd ∼= Ek(D, x) (17)

where E = Dd (G+λI)−1 is the embedding matrix computed
from the neighborhood of �(x), and the image patches in D
are the local examples in the neighborhood of �(x).

It is observed that the number of distinguishable distribution
patterns of the objects (neighborhoods) is limited. Therefore,
their embedding matrices and local examples can be computed
in advance and stored for later density patch reconstruction.
More specifically, suppose the neighborhoods set is defined as
{C i }i=1,2,...,K , which is the clustering result of Y . Hence the
counterpart density maps cluster C i

d is produced by putting
the density patches together according to the index set of the
corresponding elements in C i . With C i and C i

d , the embedding
matrix can be computed as

Ei = C i
d (G′ + λI)−1 (18)

where G′ is the gram matrix of C i . Suppose C i =
{ yc1, yc2, . . . , yct ′ } w.r.t . t ′ = |C i |, where |.| counts the
number of elements in C i . Then, G′

i j = �(yci )T�(yc j ) =
k(yci , yc j ).

For a patch x, we need to determine its neighborhood.
In this study, we measure the difference between x and the
anchored examples C̄ i (the centroid of C i ):

i∗ = arg min
1≤i≤K

dist(C̄ i , x) (19)

where i∗ is the index of the selected neighborhood. For
visualizing this concept, some anchored examples are given



WANG et al.: MANIFOLD-BASED VISUAL OBJECT COUNTING 3255

Fig. 7. The partial centroids of the clusters on the Mall (displayed in
foreground feature) and Fish (displayed in gray channel) dataset. The patch
size is 8 × 8 and the number of clusters K is set to 256.

in Figure 7. dist(·) is the distance metric and Euclidean
distance is used here.

Noteworthy is that the number of examples in neighbor-
hoods C i is unequal. Some neighborhoods contain more exam-
ples which possibly exceed the requirement for well-sampling.
Thus, to save computation without comprise on counting
performance, C i will be re-sampled if its size exceeds l.
Specifically, the following sampling strategy is taken: for
C i w.r.t . |C i | > l, it will be clustered into l segments as
{C ′i

t1, C ′i
t2, . . . , C ′i

tl }. So C i w.r.t . |C i | > l will be substituted

by {C̄ ′i
t1, C̄ ′i

t2, . . . , C̄ ′i
tl }, where C̄ ′i

t j
is the centroid of the C ′i

t j
.

The C i
d w.r.t . |C i

d | > l will be updated in the same way.
Testing Phase of KM-VOC: There are two stages in

KM-VOC testing phase.
• First, the image patch x extracted from the test image X

is assigned to a neighborhood C j using (19).
• Second, the density patch xd of x is reconstructed by

embedding matrix E j of that pattern and similarity mea-
sure matrix k(·, x) corresponding to C j using (17).

E. Time Complexity Analysis of M-VOC and KM-VOC

In this section, we analyze the time complexity of the
proposed algorithms. We focus on the testing phase. Assume
that the input testing image X is of size width × height (or
called problem size), the patch size is set to

√
q1×√

q1, and the
overlap between the neighboring patches is set to half of the
patch size as

√
q1
2 . When X is given as input to the algorithm,

it is cut into width√
q1

× height√
q1

overlapping patches. The number
of clusters of the salient patterns is K and in each cluster, only
l anchors are picked or generated as examples.

1) M-VOC: Due to the use of a two layer hierarchical search
structure, for each input image patch, the search for the T
nearest neighbors costs O(T l + 2

√
K ). Then the density map

reconstruction process in (7) costs O(T 3). Thus, for every
testing image patch, this costs O(T l + 2

√
K + T 3). In total,

the testing phase amounts to a cost of O(width×height
q1

) ×
O(T l + 2

√
K + T 3) = O( T l+2

√
K+T 3

q1
width × height) for

the whole image X .
2) KM-VOC: For each image patch, the classification stage

will cost O(2
√

K ) due to the use of a two-layer hierarchical
search structure. During the reconstruction stage, the compu-
tation of k(C̄ t∗, xd,i j ) costs O(l), then the reconstruction of

density map xd,i j = Et∗k(C̄ t∗, xd,i j ) costs O(q1 × l × l),

TABLE I

DESCRIPTIONS OF SEVEN DATASETS

since E ∈ R
q1×l and k(C̄ t∗, xd,i j ) ∈ R

l×l . Thus the whole
reconstruction stage will cost O(l) + O(q1 × l × l) =
O(q1 l2). Combining the two stages, the testing phase costs
O(width×height

q1
) × O(

√
K ) + O(width×height

q1
) × O(q1 l2) =

O((
√

K
q1

+ l2)width × height) for the whole image X .

Without the salient patterns and hierarchical search struc-
ture, for M-VOC, the search for the T nearest neighbors costs
O(T N), where N is the number of training patches. Since
N ≫ T , for every testing image patch, the cost is O(T N).
In total, the testing phase has a cost O(width×height

q1
) ×

O(T N) = O( T N
q1

width × height) for the whole image X .
By employing the hierarchical search structure and

salient patterns, the time complexity of M-VOC can
be reduced significantly from O( T N

q1
width × height) to

O( T l+2
√

K+T 3

q1
width × height) of M-VOC and O((

√
K

q1
+

l2)width × height) of KM-VOC, since N ≫ T, K , l, q1.

III. EXPERIMENTAL RESULTS AND DISCUSSIONS

In our study, seven public datasets are used to evaluate the
object counting performance since they have different object
types. In the following subsections, the details of the datasets,
experimental settings, and performance metrics are introduced
first, followed by experimental results and analysis.

A. Datasets, Experimental Settings, and Evaluation Metrics

1) Datasets: In this study, cell [16], bee, fish, bird [46]
and pedestrian datasets are used. Their detailed information
is summarized in Table I (where in a ± b, a and b repre-
sent the mean and the standard deviation respectively). The
used pedestrian datasets include UCSD [9], Mall [18] and
UCF_CC_50 [54], respectively, which contain crowd in com-
pletely different environments. Specifically, the data in UCSD
are recorded in outdoor and simple scenes while the data in
Mall are recorded inside a shopping mall with complicated
surroundings. Moreover, the crowd quantities are both sparse
on the UCSD and Mall datasets. In UCF_CC_50, some images
contain thousands of people.

2) Experimental Settings of M-VOC: Although counting
results obtained by DE-VOC and M-VOC are not very sensi-
tive to the choice of σ in (2), we did not set σ casually. Instead,
following the same protocol in [16] and [17], σ in this paper
is set according to the size of the objects, as approximately
1/2 size of the objects. Specifically, the configuration of σ is
given in Table II. Unless otherwise specified, the patch size
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TABLE II

CONFIGURATION OF σ FOR GENERATING GROUND TRUTH
DENSITY MAPS IN EXPERIMENTS

used in all the experiments is set to 6×6 (after PCA, the feature
dimension of image patches reduces to 17) and the patch step
is set to 3.

Since the kernel function can be viewed as similarity
measure, commonly used kernel functions include the linear
kernel, polynomial kernels, Gaussian radial basis function
(RBF) kernels, and Laplacian kernels which are expressed
as follows, respectively: Linear kernel: k(u, u′) = uTu′;
Polynomial kernel: k(u, u′) = (uTu′ +1)q ; Radial basis func-
tion: k(u, u′) = exp (−‖u−u′‖2

2μ2 ); Laplacian kernel: k(u, u′) =
exp (−‖u−u′‖

μ ).
Clearly, for the linear kernel, no parameter needs to be set.

For the polynomial kernel, the parameter q is set to 2, while
the parameter μ for the radical basis function and Laplacian
kernels is set as 1.6 and 2.4, respectively.

3) Evaluation Metrics: Mean absolute error (MAE) and
mean squared error (MSE) are commonly used to evaluate
the counting performance:

MAE = 1

m

m∑
i=1

‖r i − r̂ i‖1, MSE = 1

m

m∑
i=1

‖r i − r̂ i‖2
2 (20)

where r i is the ground truth counting number of the ith sample
and r̂ i is the predicted counting result. m is the total amount of
measured samples. Obviously, the lower the MAE and MSE,
the higher the counting accuracy.

B. Experiments on Benchmark Datasets

Several experiments are carried out on seven datasets for
validating the effectiveness and properties of M-VOC
and several mainstream VOC methods, including
1) counting by global regression: RR+ [18]; 2) counting
by object density estimation: Dens+MESA∗ [16],
Dens+RF∗ [19], Codebook+RR∗ [17], COUNT Forest∗ [55],
Rodriguez et al. [56], and Idrees et al. [54]; 3) counting
by CNN: CNN [27], MCNN [28], CCNN [26], and
Hydra 2s [26].

The various versions of M-VOC, such as least square,
energy, non-negativity, and sparsity, are denoted as
M-VOC(LS), M-VOC(e), M-VOC(nn), and M-VOC(s),
respectively.

1) Performance Comparison on the Benchmark Datasets:
a) Bacterial cell dataset and embryo cell dataset: From

Table I, it is noted that there are 200 images in the cell
dataset. Adhering to the protocol in [16], we choose N (where
N = 1, 2, . . . , 32) images randomly from the first 100 images
for training, meanwhile the latter 100 images are used for
testing. For the remaining data, they are used as the validation
set. Experiments are carried out for 5 independent runs.
The averaged MAE and MSE are used as the performance
metrics. It is noted that the M-VOC only uses the raw data
extracted from the blue channel. The experimental results are
given in Table III. From this table, we have the following
observations. 1) Among the variants of M-VOC, M-VOC(s)
outperforms M-VOC(LS), M-VOC(e), and M-VOC(nn). This
result suggests that, at least on the cell dataset, sparsity
plays a more important role than non-negativity and energy
constraints. 2) For overall performance, KM-VOC (RBF)
performs better than the other VOC methods. It is noted that
when N = 1, i.e. one random training image is used, KM-
VOC (RBF) achieves minimal counting errors (6.4 ± 1.3).
When N is increased, the performance of KM-VOC (RBF)
becomes slightly inferior to Dens+RF but superior to or com-
parable to other methods. When N reaches 32, the result of
KM-VOC (RBF) is nearly the same as that of Dens+RF.
However, we need to note that KM-VOC (RBF) uses raw
data as the features while Dens+RF used the fused features.
3) KM-VOC (RBF) performs much more consistently since
they give almost the smallest standard deviation with 5 inde-
pendent experiments. Moreover, cell images contain strong
out-of-focus blur and vignetting [16]. This shows that
KM-VOC with RBF is robust against the interference in cell
data.

Experiments are also conducted on a real embryo cell
dataset from [57], [58]. Since only 11 images are given
in this dataset, we use the following two settings in these
experiments: choosing randomly 4 or 8 images for training,
and the remaining for testing. Same as above, these experi-
ments are conducted for 5 independent runs. Table IV gives
the counting results of these methods. It can be observed
that our M-VOC methods outperform Density+MESA and
Codebook+RR. Specifically, when N = 4, M-VOC(RBF)
gives the lowest MAE as 12.0 ± 1.8, and when N = 8, KM-
VOC(Laplacian) gives the lowest MAE as 7.7 ± 5.7.

b) Sparse pedestrian datasets: With the UCSD and
Mall datasets, the experimental protocols in [11] are used.
Specifically, for the UCSD dataset, frames 601:1400 are used
as the training set while the remaining 1200 frames are used
for testing. For the Mall dataset, the first 800 frames are
employed for training while the remaining frames are used
for testing. For M-VOC with the UCSD and Mall datasets,
like the above settings, the number of salient patterns l and
the regularization parameter λ is set based on the validation
data.

The experimental results are given in Table V. It can
be observed from this table that, the MAE predicted by
KM-VOC(RBF) is 1.48, lower than CNN [27] (1.60) and
only second to MCNN [28] (1.07) on UCSD. On the Mall
dataset, it is clear that KM-VOC performs the best among
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TABLE III

MEAN ABSOLUTE ERRORS (MAE) ON BACTERIAL CELL COUNTING

TABLE IV

MEAN ABSOLUTE ERRORS (MAE) ON EMBRYO CELL DATASET

all. Again, this result validates the effectiveness of KM-VOC
in which positive definite kernels are used. Interestingly,
we noted that KM-VOC (RBF) performs better than KM-VOC
(polynomial, q = 2) on the UCSD dataset while KM-VOC
(RBF) performs worse than KM-VOC (polynomial, q = 2)
on the Mall dataset. These results imply that different kernel
functions have different capability in measuring similarity for
different image scenes.

Moreover, following the experimental settings on UCSD
in [16], we run another experiment to evaluate our methods.
The whole dataset is divided into 4 different training/testing
sets: 1) ‘maximal’: training set consists of frames 600:5:1400;
2) ‘downscale’: training set is formed by frames 1205:5:1600;
3) ‘upscale’: training set is composed of frames 805:5:1100;
4) ‘minimal’: training set is constituted by frames
640:80:1360. The frames outside the training set are
used for testing. Experimental results are shown in Table VI.
From Table VI, we can see that, compared with the baselines
RR, Dens+MESA, and Dens+RF, our KM-VOC(RBF)
performs better in max and min (1.65 and 1.80, respectively).
KM-VOC(RBF) gets 1.97 in down, better than RR and
Dens+RF, and gives 2.24 in up, only lower than RR.
Overall, the state-of-the-art methods Codebook+RR, CNN,
and COUNT Forest, perform better than KM-VOC(RBF),
however, KM-VOC(RBF) gives lower MAE than CNN in
max (1.65 versus 1.70).

c) Extremely dense crowd dataset: The
UCF_CC_50 dataset contains 50 images depicting crowds in
diverse events such as concerts and marathons. As shown

TABLE V

SPARSE CROWD COUNTING PERFORMANCE COMPARISON

TABLE VI

MEAN ABSOLUTE ERRORS (MAE) ON UCSD DATASET

in Table I, each image in this dataset has a different number
of people ranging from 94 to 4543. In this experiment,
we follow the experimental settings used in [54], where
50 images are divided into 5 sets (each of 10 images)
randomly, then we performed 5-fold cross-validation on
them. The ground truth density map of the given image is
computed by the geometry adaptive kernel method proposed
in [28] since the object scale varies dramatically in these
images, and the geometry adaptive kernel method is able to
produce better density maps without perspective information.
Experimental results are given in Table VII. It is noted that
M-VOCs only achieve benchmark performance and cannot
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Fig. 8. (a) Input dense crowd image. (b) Ground truth density map (count: 1042.57). (c) Estimated density map by KM-VOC (Laplacian) (count: 1639.04).
(d) Estimated density map by M-VOC(e) (count: 896.62).

TABLE VII

RESULTS ON UCF_CC_50 DATASET

match the results computed from CNN based methods on
MAE and RMSE (the square-Root of the MSE). From our
analysis, the images in UCF_CC_50 vary considerably from
both appearance and counting number, therefore using simple
features is difficult to capture underlying representations of
the crowd, as the examples shown in Figure 8. It is notable
that KM-VOC(Laplacian) misjudges the building regions
and processes them as crowds, as shown in Figure 8(c),
while M-VOC(e) gives lower counting result using raw data.
From these results, we can see that the manifold assumption
used for developing M-VOC may be insufficient for cross
scene object counting compared with that for single scene
object counting (like UCSD or Mall), which deserves further
investigation. In addition, it can be observed that the proposed
M-VOC methods give much lower MSD as compared with
other baseline methods, even though the MAEs offered
by the proposed methods are not the lowest among the
compared methods. Specifically, the maximum MSD given
by the proposed method is 254.97 which is obtained by the
KM-VOC(poly), while the minimum MSD obtained by
the baselines is 425.26 which is given by Hydra 2s [26].
The proposed method KM-VOC(RBF) gives a lowest MSD
at 57.71, which is approximately one-eighth of that given by
Hydra 2s [26] (the lowest among the baseline methods). This
indicates that our proposed methods give more stable results
as compared with the baselines.

d) Bee, Fish and Seagull dataset: These three datasets are
firstly created and applied in [46] for small instances detection.
In this study, Dens+MESA and Codebook+RR are taken as

Fig. 9. MAE on Bee, Fish and Seagull datasets.

baselines. This is because the feature extraction procedure of
Dens+MESA and Codebook+RR is standard while global
regression based VOC methods need specifically designed
features for different counting object types. In addition, they
both perform effectively on the Cell dataset when trained
with few images (from Table III). For M-VOC, only raw data
extracted from the gray channel are used as features. Moreover,
λ and l are set via the validation data.

Specifically, the setting for training/testing is given as
follows:

Bee: Training on 16 random images chosen from 1:68,
and testing on 69:118. The remaining images are used for
validation. 5-fold experiments are conducted.

Fish: training on 16 random images chosen from
1:69, and testing on 70:129. The remaining images are
used for validation. Similarly, 5-fold experiments are also
conducted.

Seagull: training on the first image and testing on the second
image. The third image is used for validation.

The experimental results are given in Figure 9. From
Figure 9, it is noted that KM-VOC performs better than
Dens+MESA and Codebook+RR on counting accuracy for
most cases. In addition, the RBF kernel is effective when
dealing with different object types.

We also tested our algorithms on the ‘Fly’ (which is similar
to Bee by object types) images [46], but the results, which are
similar to those for the above datasets, are not included due
to space limitation.
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Fig. 10. The estimated density maps of a test image from UCSD. (a) Test image. (b) Ground truth density map (count: 24.79). (c)-(i) are results of M-VOC.
They are using LS (count: 25.77), energy (count: 25.47), nonnegativeness (count: 25.08), sparsity (count: 21.99), polynomial kernel (count: 21.96), Laplacian
kernel (count: 22.95), RBF kernel (count: 24.83), respectively.

From the experimental results given
in Tables III, V, VI, VII, Figure 9, and the discussions
above, we are encouraged to see that the M-VOC methods
give superior or comparable counting accuracy compared with
state-of-the-arts. Moreover, the M-VOC methods still perform
reasonably well when the size of training data is reduced.
Among all the M-VOC methods, from Table III and Figure 9,
we can see that KM-VOC (RBF) yields very accurate counting
results even with 1 or 2 training images. In addition, another
significant advantage of the M-VOC methods is that they only
use simple features, such as the raw data extracted from one
color channel or soft foreground features. These results further
validate the manifold assumption and local manifold model
used in our development of the M-VOC methods, which
actually avoids the requirements of engineering different
features for different VOC applications. Implicitly, these
results validate that the local geometrical similarity between
training image patches and their corresponding density maps
is an effective and universal prior.

2) Reconstructed Density Maps: To visualize the results
of the learned local geometry by using different constraints,
several reconstructed density maps are given in Figure 10.
It is found the density maps estimated by M-VOC(e) (Fig-
ure 10(d)), M-VOC(nn) (Figure 10(e)), KM-VOC(Laplacian)
(Figure 10(h)) and KM-VOC(RBF) (Figure 10(i)) look nat-
ural while these by M-VOC (LS) (Figure 10(c)), M-VOC(s)
(Figure 10(f)) and KM-VOC(poly) (Figure 10(g)) contain
artifacts. For example, the density variations and object shapes
in Figure 10(f) by M-VOC(s) and in Figure 10(g) by
KM-VOC(poly) are discontinuous and unsmooth. Moreover,
in Figures 10 and 11, the density maps estimated by KM-
VOC(Laplacian) and KM-VOC(RBF) share more similarities
with each other than they share with KM-VOC(poly) or
M-VOC respectively. This is probably because the RBF kernel
and Laplacian kernel are both exponential kernels, while others
are not.

3) M-VOC Performance Versus Image Resolution: In many
applications, input image resolution varies and we need to
evaluate the impact of the image resolution on the perfor-
mance of M-VOC. It is noted, for our proposed M-VOC

methods, we take raw data or foreground feature map as
the input feature maps I i , which is expected to be less
sensitive to image resolution. To validate this, one experiment
for M-VOC(s) is conducted. The experimental results of the
MAE versus the image zoom factor are shown in Figure 12.
The experimental settings on the Bee dataset are the same as
those in Section IV.B.1, and the experimental settings on the
UCSD dataset follow the protocols from the training/testing set
minimal in Section IV.B.1, while for the Mall dataset, we use
the 1:40:800 frames for training, and the 801:12:2000 frames
for testing. From Figure 12, it is clear that the MAE results
of M-VOC are insensitive to the changes of image resolution
in these three datasets. Taking the blue line as an example,
when images are downsampled by a factor 4, the MAE result
of M-VOC remains almost unchanged.

4) The Impact of Patch Size: It is obvious that patch size
and step size are two important parameters for our M-VOC
methods. Therefore, in this subsection we evaluate how the
patch size affects the performance of the M-VOC methods. For
conceptual illustration, without loss of generality, we employ
M-VOC(s) on the cell dataset as an example. The experimental
setting is the same as that in Section IV.B.1 with N = 16,
except the variation of the patch size. Specifically, from
Figure 13(a), several patch sizes have been tested and it is
noted that the MAE keeps nearly steady with the increase
of patch size from 4 × 4 to 7 × 7, while MAE degrades
significantly with a further increase of patch size to 8 × 8.
This is probably because when the dimensionality of feature
vector is large enough, the Euclidean distance used in M-VOC
would fail to find suitable neighbors since the discrepancy
between different vectors can be ignored. Consequently, for
our M-VOC methods, a smaller patch size is preferred.

Besides, the step size of patch extraction (step 1 in Algo-
rithm 1 and Algorithm 2) is set to 1/2 patch size (round down
to the nearest whole unit) for smoothing the estimated density
maps by averaging the overlapping regions.

5) The Impact of the Number of Salient Patterns K : From
Algorithm 2, we can see that the number of salient patterns K
will affect the performance of KM-VOC. In this experiment,
to evaluate the impact of K , we vary K from 16 to 1024 with
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Fig. 11. (a) Input seagull image. (b) Ground truth density map. (c) Estimated density map by KM-VOC (Laplacian). (d) Estimated density map by KM-VOC
(RBF). (e) Estimated density map by M-VOC(e).

Fig. 12. MAE of KM-VOC (RBF) on the Bee, Mall and UCSD datasets
with different image resolution.

Algorithm 2 The KM-VOC Method

a step 64. The experimental settings are as follows: the cell
dataset is used; the KM-VOC with RBF is evaluated where
μ is set to 1.0, and the number of anchor examples l in each
cluster is set to 4096. In addition, λ is set to 1.0 and the patch
size is 4×4. The MAE results are given in Figure 13(b), which
indicates the trend of the counting accuracy using different K .
From Figure 13(b), it is noted that the MAE varies with the
changes of K and it reaches the minimum at K = 576.
We observe that a smaller or larger K will lead to an increase
in MAE. Thus, for KM-VOC, K should be carefully selected
through cross-validation.

6) The Impact of the Maximal Number of Examples l in
Each Neighborhood: In this experiment, we aim to evaluate
the impact of the parameter l on the counting performance
of our M-VOC methods. Essentially, l is related to the sam-
pling over the subspaces spanned by examples. Undoubtedly,

TABLE VIII

THE PERFORMANCE (MAE) OF KM-VOC(RBF) ON BACTERIAL

CELL, EMBRYO CELL, AND SEAGULL DATASETS WITH

DIFFERENT TYPES OF FEATURES

under-sampling would lead to performance degradation as
it is contrary to the manifold assumption which requires
well-sampling, while over-sampling will degrade counting
efficiency as well. As an example, we conducted an experiment
on the cell dataset for evaluating the performance of KM-VOC
with RBF. The experimental settings are as follows: λ = 1e−3,
K = 256, μ = 1.4, and N = 16. The experimental results
are given in Figure 13(c). According to Figure 13(c), we can
see that the MAE decreases with the increase of l and when
l > 1024, MAE becomes stable. However, we also noted that
further increasing l does not lead to further decrease in MAE.
As a result, in our experiments, l is set as 1024.

7) Feature Engineering Issues: Here we show how the
proposed algorithm performs if different types of features are
given as input (rather than raw image patches). To this end,
we perform experiments similar to the one shown in Figure 4
for the Bacterial, Embryo Cell, and Seagull datasets. The
difference is that the raw image patches are now replaced by
the local dense features (dense SIFT), and gradient features
(the first and second order derivatives of horizontal and vertical
directions). Other detailed experimental settings are the same
as those shown in Section III.B.1 for these three datasets,
except that the training image number for Bacterial and
Embryo Cell datasets is set to 2 and 4, respectively. Table VIII
shows the results obtained. It is noted that the KM-VOC
method with raw data performs better than that with dense
SIFT or gradient based features on the Bacterial Cell dataset,
while gradient based features perform better than other two
types of features on the Embryo Cell and Seagull datasets. For
our proposed M-VOC and KM-VOC methods, it is crucial to
ensure that the used features fit with the manifold assumption,
in other words, the used features are expected to be able to
maintain the local geometry when they are mapped to the
density patch domain. Here the similarity between the image
patches is decided by the used features when the similarity
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Fig. 13. Some key parameters in M-VOC. (a) The influence of the patch size on counting accuracy. (b) How the number K of salient patterns affects the
counting performance on the Cell dataset. (c) The influence of the maximal quantity of examples in each neighborhood on the counting accuracy.

Fig. 14. The MAE versus the percentage of energy retained by PCA using
different features for the Embryo Cell dataset.

metric is determined (such as the Euclidean distance). The raw
data tend to give fairly good counting results, for maintaining
the local geometry of the image patches.

We have also studied the use of PCA to reduce the
dimension of the used features and how the number of PCA
coefficients affect the counting performance. Apart from its
benefit on reducing the computational complexity, PCA is
able to alleviate noise and reduce feature redundancy, which
might be useful for improving counting results. Similarly,
we apply KM-VOC (RBF) with the aforementioned three
types of features on the Embryo Cell dataset with the same
experimental settings as in Section III.B.1, and the number of
training images is set to 4. As shown in Figure 14, for the
dense SIFT features, retaining 60% energy gives the lowest
MAE 12.8 ± 3.8, while for the gradient features, the lowest
MAE 9.9 ± 1.6 is achieved by retaining 90% energy. For the
raw data, the lowest MAE 12.0 ± 1.8 is achieved when PCA
is not applied. This suggests that the reduction of the dimen-
sionality of the engineered features to a certain degree can
help reduce the counting errors. However, over-compressing
the dimensionality may lead to ambiguities in nearest neighbor
search, and thereby, increased counting errors.

8) Computational Efficiency Evaluation: In this subsection,
we show the computational cost of the M-VOC(s) without
salient patterns and hierarchical search structure (denoted
as M-VOC(e)-nTree), M-VOC(s) with salient patterns and
hierarchical search structure (denoted as M-VOC(e)-Tree), and

TABLE IX

COMPUTATIONAL COST ON CELL DATASET

KM-VOC(RBF), using the Cell dataset. The experimental
settings of the above methods are identical, and 16 training
images are used. The time costs are shown in Table IX, which
is an average for 100 test images. All used methods are in
MATLAB implementation, and we record the cost of all the
methods using the same machine (AMD CPU 4.00 GHz and
16 GB memory).

Table IX shows that KM-VOC(RBF) and M-VOC(e) with
hierarchical search structure are two orders of magnitude faster
than M-VOC(e) without hierarchical search structure, and
one order of magnitude faster than Density+MESA. Specif-
ically, M-VOC(e) and KM-VOC(RBF) take less time than
Density+MESA on feature extraction. Using the hierarchical
search structure, M-VOC(e) runs much faster than the one
without the search structure. In addition, with the precomputed
embedding matrices by local regression, the time cost by
KM-VOC(RBF) is approximately one-third of that of the
M-VOC(s) with the hierarchical search structure.

C. The Properties of M-VOC

According to the above experiments, the proposed M-VOC
methods (M-VOC(e), M-VOC(s), M-VOC(nn) and KM-VOC)
have the following three desirable properties:

1) They only need a small amount of training data, since
the density map of the test image patch is reconstructed over
the generalization of a set of examples. In addition, M-VOC
performs counting through patches, thus, when the patch size
and step size are small, the method still performs well.

2) It is flexible to handle a range of object types including
cell, bee, fish, bird, and pedestrian, since only simple features
are used, such as raw data or the foreground features, which
can be efficiently extracted.

3) The M-VOC methods are robust even for low resolution
images and videos. This is because the proposed methods are
essentially using the object distribution information obtained
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from neighborhood selection and subsequent local geometry
representation, which are less affected by variation in image
resolutions.

IV. CONCLUSION

We have presented a manifold-based visual object counting
method along with several constraints. The proposed M-VOC
method exploits the geometrical prior in images and employs
the principle of local embedding to reconstruct the density
maps by the local linear representation in the neighborhood.
Moreover, to construct more effective neighborhood and over-
come the limitations in the local representation for complex
background counting problems, nonlinear mapping and kernels
are used in M-VOC to reconstruct local geometrical structure
in an implicit high dimensional feature space. Extensive exper-
iments on various types of datasets demonstrate that M-VOC
is a very promising method for visual object counting.
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