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Abstract
In this paper, we present SpecAugment++, a novel data aug-
mentation method for deep neural networks based acoustic
scene classification (ASC). Different from other popular data
augmentation methods such as SpecAugment and mixup that
only work on the input space, SpecAugment++ is applied to
both the input space and the hidden space of the deep neural
networks to enhance the input and the intermediate feature rep-
resentations. For an intermediate hidden state, the augmentation
techniques consist of masking blocks of frequency channels and
masking blocks of time frames, which improve generalization
by enabling a model to attend not only to the most discrimina-
tive parts of the feature, but also the entire parts. Apart from
using zeros for masking, we also examine two approaches for
masking based on the use of other samples within the mini-
batch, which helps introduce noises to the networks to make
them more discriminative for classification. The experimental
results on the DCASE 2018 Task1 dataset and DCASE 2019
Task1 dataset show that our proposed method can obtain 3.6%
and 4.7% accuracy gains over a strong baseline without aug-
mentation (i.e. CP-ResNet) respectively, and outperforms other
previous data augmentation methods.
Index Terms: data augmentation, hidden space, feature mask-
ing, acoustic scene classification

1. Introduction
Deep learning has been successfully applied to various prob-
lems in Detection and Classification of Acoustic Scenes and
Events (DCASE) [1–3], where convolutional neural networks
(CNNs) [4–6], recurrent neural networks (RNNs) [7] and con-
volutional recurrent neural networks (CRNNs) [8] are often
used as the network architectures. However, due to the lack
of training data, these models are prone to overfitting [9].

Data augmentation methods have been widely used to over-
come the problem of the limited data in the DCASE com-
munity, including the waveform-based and spectrogram-based
data augmentation methods. Among the waveform-based meth-
ods, cropping is one of the common and effective approaches
[10–12]. Salamon and Bello [13] proposed the usage of addi-
tional training data generated by time stretching, pitch shifting,
dynamic range compression, and adding background noise cho-
sen from an external dataset, which are also applied to the raw
waveform. In [14], Park et al. proposed SpecAugment, an aug-
mentation method that operates on the log mel spectrogram of
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the input audio and achieved the state-of-the-art performance
for automatic speech recognition (ASR). SpecAugment consists
of three kinds of deformations of the log mel spectrogram (i.e.
time warping, time masking and frequency masking) to gen-
erate difficult-recognition samples, and converts ASR from an
over-fitting to an under-fitting problem. However, these aug-
mentation methods are only applied to the input of the deep
neural networks, while augmenting the hidden space is not stud-
ied. Mixup [15, 16] and Between-Class (BC) learning [17] are
also popular data augmentation methods for the DCASE tasks,
which generate new data samples by mixing multiple audio
samples and design the learning method for training a model
to output the prediction of the mixed samples. SpeechMix [18]
is a generalization of BC learning and it interpolates latent rep-
resentations of hidden states. However, it is hard to determaine
the label of the mixed audio as the energy and the distribution
of the raw audio is quite different. In addition, Chen et al. [19]
utilized the auxiliary classifier GAN (ACGAN) to generate fake
samples for data augmentation, however, an extra discriminator
is needed, as a result, the convergence of the networks becomes
more difficult.

In this paper, we propose a novel data augmentation method
(i.e. SpecAugment++), which is applied to both the input spec-
trograms and the hidden states of the deep neural networks. In-
spired by the SpecAugment [14], two kinds of deformations of
the hidden states (e.g. the intermediate feature maps in CNN)
are employed, containing masking blocks of frequency channels
and masking blocks of time frames. These methods improve
the generalization ability of a model by allowing it to attend
not only to the most discriminative time frames and frequency
channels of audio, but also to the entire temporal frames and fre-
quency channels. Time warping is not applied because it con-
tributes little to the classification [14,20]. Apart from exploiting
the augmentation for the hidden space, we study the influence
of three schemes for time masking and frequency masking. The
first is zero-value masking (ZM), which directly masks con-
secutive time frames and frequency channels with zeros. The
other two schemes are the mini-batch based mixture masking
(MM) and the mini-batch based cutting masking (CM), which
utilize the time frames and frequency channels of other samples
within the mini-batch for masking. These methods can be seen
as introducing additional noises generated from the dataset, and
guide the networks to be more discriminative for classification.
Different from the mixup [15] and BC learning [17], the la-
bels of the augmented data are not changed so that the training
is more stable. The proposed method is simple and computa-
tionally cheap to apply, which is evaluated on two benchmark
acoustic scene classification (ASC) datasets (DCASE 2018 [21]
and DCASE 2019 [22] ASC task 1A datasets) and outperforms



(a) The target sample.

(b) Another sample within the same mini-batch.

(c) The augmented sample by ZM.

(d) The augmented sample by MM.

(e) The augmented sample by CM.

Figure 1: Augmentations applied to the target sample. Here,
the input log mel spectrogram is shown as an example, similarly
to the augmentation applied to the intermediate hidden states.
From top to bottom, the figures depict the log mel spectrogram
of the target sample with no augmentation, another sample
within the same mini-batch, the zero-value masking (ZM) ap-
plied, the mini-batch based mixture masking (MM) applied and
the mini-batch based cutting masking (CM) applied.

the state-of-the-art data augmentation methods.

2. Proposed Method
In this section, we introduce the proposed augmentation
method, which is constructed to act on either the input spectro-
grams or the intermediate hidden states of the neural networks.
Time masking and frequency masking are employed, and the
motivation is to promote the networks to be robust to deforma-
tions in the partial loss of the temporal information and the par-
tial loss of the frequency information in each layer. Three types
of masking schemes are developed, aiming to make better use
of the data within the mini-batch. The augmentation techniques
and the masking schemes are detailed as follows.

2.1. Augmentation Techniques

Let x ∈ RT×F denote the intermediate hidden state (or the
input spectrogram), where T and F denote the number of time
frames and frequency channels, respectively. Time masking is
applied so that t consecutive time frames [t0, t0 + t] are masked
(which means replacing the elements by zeros or other values),
where t is chosen from a uniform distribution from 0 to the time
mask parameter t′, and t0 is chosen from [0, T − t]. Similarly,
frequency masking is applied so that f consecutive frequency
channels [f0, f0 + f ] are masked, where f is first chosen from
a uniform distribution from 0 to the frequency mask parameter
f ′, and f0 is chosen from [0, F − f ]. To simplify, the same
time masking and frequency masking (i.e. the same t0, t, f0

Algorithm 1 Zero-value masking (ZM)

Input: The hidden state of the target sample x ∈ RT×F ; The
number of the consecutive time frames t; The starting time
index t0; The number of the consecutive frequency chan-
nels f ; The starting frequency index f0;

Output: The augmented hidden state of the target sample x′ ∈
RT×F ;

1: x′ = x;
2: for i = t0, . . . , t0 + t do
3: for j = 0, . . . , F do
4: x′ [i, j] = 0;
5: end for
6: end for
7: for i = 0, . . . , T do
8: for j = f0, . . . , f0 + f do
9: x′ [i, j] = 0;

10: end for
11: end for
12: return x′;

Algorithm 2 Mini-batch based mixture masking (MM)

Input: The hidden state of the target sample x ∈ RT×F ; The
hidden state of another sample within the same mini-batch
y ∈ RT×F ; The number of the consecutive time frames t;
The starting time index t0; The number of the consecutive
frequency channels f ; The starting frequency index f0;

Output: The augmented hidden state of the target sample x′ ∈
RT×F ;

1: x′ = x;
2: for i = t0, . . . , t0 + t do
3: for j = 0, . . . , F do
4: x′ [i, j] = 1

2
(x[i, j] + y[i, j]);

5: end for
6: end for
7: for i = 0, . . . , T do
8: for j = f0, . . . , f0 + f do
9: x′ [i, j] = 1

2
(x[i, j] + y[i, j]);

10: end for
11: end for
12: return x′;

and f ) are applied to each intermediate hidden state in the same
layer for a training sample. For instance, if there are C feature
maps in the l-th layer of a CNN model, these C feature maps
share the same temporal and frequency regions for masking of
a single sample during one training iteration.

2.2. Masking Schemes

As shown in Figure 1, we present three masking schemes, in-
cluding the zero-value masking (ZM), the mini-batch based
mixture masking (MM) and the mini-batch based cutting mask-
ing (CM). ZM directly applies the zero value for the masking re-
gions of the target sample. MM and CM utilize the time frames
and frequency channels from another sample for masking. To
explain, if the hidden state in the l-th layer of the target sample
is to be augmented, we randomly select another sample within
the same mini-batch as the target sample and use the hidden
state in the l-th layer of the selected sample for masking. The
difference is that MM mixes the masking regions of the hidden
states of the two samples by the mean, while CM fills the mask-



Algorithm 3 Mini-batch based cutting masking (CM)

Input: The hidden state of the target sample x ∈ RT×F ; The
hidden state of another sample within the same mini-batch
y ∈ RT×F ; The number of the consecutive time frames t;
The starting time index t0; The number of the consecutive
frequency channels f ; The starting frequency index f0;

Output: The augmented hidden state of the target sample x′ ∈
RT×F ;

1: x′ = x;
2: for i = t0, . . . , t0 + t do
3: for j = 0, . . . , F do
4: x′ [i, j] = y[i, j];
5: end for
6: end for
7: for i = 0, . . . , T do
8: for j = f0, . . . , f0 + f do
9: x′ [i, j] = y[i, j];

10: end for
11: end for
12: return x′;

ing regions of the target sample with the same regions of the
selected sample. The details are summarized in Algorithm 1,
Algorithm 2 and Algorithm 3, respectively. We further discuss
their pros and cons in Section 4.3.

3. Models
We use CP-ResNet1 [23] as the base model for the ASC task.
CP-ResNet is a variant of ResNet [24] by adapting the audio
tasks using receptive field (RF) regularization, which shows the
best performance among single models for ASC [25]. The net-
work architecture is detailed in Table 1. There are a series of
residual convolutional blocks with a kernel size of 3 × 3 or
1×1, followed by a global average pooling function and a fully-
connected layer. CP-ResNet has a RF of 87× 87 and a total of
6, 053, 780 trainable parameters.

Our proposed method is applied to the CP-ResNet between
the model blocks. More specifically, the augmentation is ap-
plied to the input log mel spectrograms (denoted as Layer 0),
the hidden states before residual block (RB) 1 (denoted as Layer
1), before RB 5 (denoted as Layer 2), before RB 9 (denoted as
Layer 3) and after RB 12 (denoted as Layer 4), respectively.
Hence, both the input space (Layer 0) and the hidden space
(Layers 1-4) can be enhanced.

4. Experiments
4.1. Datasets

The experiments were conducted on the DCASE 2018 [21] and
DCASE 2019 [22] ASC task 1a datasets, which are commonly
used benchmark datasets for ASC. The DCASE 2018 task 1a
dataset [21] consists of about 17 hours of audio for training
(6122 10-second clips) and 7 hours for evaluation (2518 10-
second clips). The DCASE 2019 task 1a dataset [22] contains a
total of 40 hours of audio (9185 clips in the training set, 4185
clips in the test set). Each recording belongs to one out of 10
possible classes.

1https://github.com/kkoutini/cpjku dcase19/

Table 1: Network architecture of CP-ResNet

RB Number RB Config
5× 5, C=64, S=2

1 3× 3, 1× 1, C=128, S=1, P
2 3× 3, 3× 3, C=128, S=1, P
3 3× 3, 3× 3, C=128, S=1
4 3× 3, 3× 3, C=128, S=1, P
5 3× 3, 1× 1, C=256, S=1
6 1× 1, 1× 1, C=256, S=1
7 1× 1, 1× 1, C=256, S=1
8 1× 1, 1× 1, C=256, S=1
9 1× 1, 1× 1, C=512, S=1

10 1× 1, 1× 1, C=512, S=1
11 1× 1, 1× 1, C=512, S=1
12 1× 1, 1× 1, C=512, S=1

RB: Residual Block; S: stride; P: 2 × 2 max pooling
after the block; C: Number of channels.

Table 2: Comparisons of classification accuracy on different
data dugmentation methods (%).

Augmentation Method DCASE 18 DCASE 19
No augmentation [23] 74.3± 0.59 78.9± 0.80

mixup (2017) [15] 75.5± 0.62 79.3± 0.71
SpecAugment (2019) [14] 74.9± 0.81 79.1± 1.05
BC Learning (2017) [17] 75.8± 0.66 80.0± 0.76
SpeechMix (2020) [18] 75.8± 0.48 80.7± 0.69
SpecAugment++ (ZM) 76.2± 0.59 80.6± 0.82
SpecAugment++ (MM) 77.0± 0.52 82.6± 0.66
SpecAugment++ (CM) 76.9± 0.73 81.4± 0.94

4.2. Setups

For all experiments, we follow the same settings as the state of
the art [23, 26] to ensure a fair comparison. Specifically, the
input is down-sampled to 22.05kHz and applied a Short Time
Fourier Transform (STFT) with a window size of 2048 and 25%
overlap, followed by a Mel-scaled filter bank on perceptually
weighted spectrograms. This results in 256 Mel frequency bins
and around 43 frames per second. The input frames are normal-
ized to zero-mean and unit variance according to the training
set. The Adam optimizer [27] is used for a total of 350 epochs,
with an initial learning rate of 1 × 10−4. The learning rate de-
cays linearly from epoch 50 until 250 where it reaches 5×10−6.
Then we train for another 100 epochs with the minimum learn-
ing rate 5 × 10−6. The models are evaluated on the test set
after 350 epochs of training. Each experiment is repeated 3
times, and we report the mean and the standard deviation of
these runs. When using SpecAugment++2, we randomly select
a layer to perform the augmentation from a set of layers (Layers
0-4). Unless otherwise stated, we set the hyperparameters t′ as
43 and f ′ as 26 in our experiments. Thus, around 10% of the
time frames and frequency channels are masked.

4.3. Results

We compare the performance of our proposed method with the
state of the art [14, 15, 17, 18], and the results are summa-
rized in Table 3. Under a strong baseline model [23], the pro-

2https://github.com/WangHelin1997/SpecAugment-plus



(a) Comparison of different time masking ratios.

(b) Comparison of difference frequency masking ratios.

Figure 2: Accuracy comparison of difference time masking ra-
tios and frequency masking ratios on the DCASE 19. Here, we
report the mean of three experiments. To evaluate the influence
of time masking, we keep a frequency masking ratio of 10%.
Similarly, a time masking ratio of 10% is kept when comparing
different frequency masking ratios.

posed SpecAugment++ significantly improves the performance
on both datasets, and outperforms the other previous data aug-
mentation methods (i.e. mixup [15], SpecAugment [14], BC
Learning [17] and SpeechMix [18]). Among them, SpecAug-
ment++ with MM achieves the highest accuracy gain (3.6% on
DCASE 18 and 4.7% on DCASE 19), followed by SpecAug-
ment++ with CM (3.5% on DCASE 18 and 3.2% on DCASE
19) and SpecAugment++ with ZM (2.6% on DCASE 18 and
2.2% on DCASE 19). These feature masking schemes improve
generalization and robustness by enabling a model to attend not
only to the most discriminative time frames and frequency chan-
nels, but also to the entire temporal and frequency parts.
Comparison of ZM, MM and CM. SpecAugment++ with ZM
can be viewed as a generalization of SpecAugment [14], where
the zero-value masking is applied to both the input log mel spec-
trograms and the hidden states of the network. ZM can let a
model focus on less discriminative time frames and frequency
channels, while not being efficient enough due to unused parts
of the audio. MM and CM performs better than ZM because the
time frames and frequency channels are masked by the corre-
sponding parts of other audio, which introduce the interference
and force the network to be more discriminative. However, CM
may cause unnatural artifacts due to the abruptness of the mask-
ing parts and the original hidden states. In comparison, MM is a
more natural choice, as the information of the whole target au-
dio sample is retained and the interference of time frames and
frequency channels from other audio samples can enhance the
robustness. In addition, compared with mixup [15], BC Learn-

Table 3: Ablation analysis of the layers set used for the aug-
mentation. While applying the SpecAugment++, we randomly
select a layer to perform the time masking and frequency mask-
ing from the set of layers. Layer 0 denotes the input log mel
spectrogram and Layers 1-4 denote the hidden states, which
have been described in Section 3. Here, we report the mean of
the three experiments on the DCASE 19 (%).

CM MM ZM

Layers Set

- 78.9 78.9 78.9
{0} 80.5 81.8 79.8
{1} 80.1 81.2 79.6
{2} 80.2 81.0 79.4
{3} 79.7 80.6 79.5
{4} 79.9 80.7 79.3
{0, 1} 80.9 82.1 80.0
{0, 1, 2} 81.1 82.4 80.5
{0, 1, 2, 3} 81.2 82.3 80.6
{0, 1, 2, 3, 4} 81.4 82.6 80.6

ing [17] and SpeechMix [18] which also mix the audio samples,
ZM and CM do not change the label of the target audio sample
so that the training is more stable.

4.4. Ablation Study

In order to explore the effectiveness of the time masking and fre-
quency masking, we compare different time masking ratios and
frequency masking ratios and show the results in Figure 2. It can
be seen that both time masking and frequency masking improve
the performance. As the ratios of time masking and frequency
masking increase, the accuracy of all the three types of masking
(i.e. ZM, MM and CM) is boosted and then drops, which shows
the optimal performance when the ratio is [10%, 25%]. We ar-
gue that a masking ratio of around 10% is enough to guide a
model focus on less discriminative time frames and frequency
channels and increase the robustness. However, if the masking
ratio is too large (e.g. over 40%), the information of the orig-
inal audio may be lost significantly, which confuses the model
severely and makes the model hard to be trained.

In addition, we investigate different sets of layers for
SpecAugment++ on the DCASE 19 dataset, and results are
shown in Table 3. When no augmentation is performed, the
model accuracy is 78.9%. The performance tends to improve
with the augmentation both on the input spectrogram (Layer
0) and on the hidden states (Layers 1-4), and the improvement
is more significant when we apply the SpecAugment++ to the
layers near the input. These layers learn discriminative features
such as frequency response which is quite similar to the human
perception [17]. Our proposed method achieves the best perfor-
mance when used to all the layers.

5. Conclusions
We have presented a hidden space data augmentation method
for acoustic scene classification, which can broaden the inter-
mediate feature representations for deep neural networks. Our
proposed method is simple and computationally cheap to apply,
which has shown better performance than the state-of-the-art
methods. We will further explore its applications to other tasks
in the DCASE community, such as sound event detection and
audio tagging.
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