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Abstract—A new approach for convolutive blind source separa-
tion (BSS) by explicitly exploiting the second-order nonstationarity
of signals and operating in the frequency domain is proposed.
The algorithm accommodates a penalty function within the
cross-power spectrum-based cost function and thereby converts
the separation problem into a joint diagonalization problem with
unconstrained optimization. This leads to a new member of the
family of joint diagonalization criteria and a modification of the
search direction of the gradient-based descent algorithm. Using
this approach, not only can the degenerate solution induced by
a null unmixing matrix and the effect of large errors within
the elements of covariance matrices at low-frequency bins be
automatically removed, but in addition, a unifying view to joint
diagonalization with unitary or nonunitary constraint is provided.
Numerical experiments are presented to verify the performance
of the new method, which show that a suitable penalty function
may lead the algorithm to a faster convergence and a better
performance for the separation of convolved speech signals, in
particular, in terms of shape preservation and amplitude ambi-
guity reduction, as compared with the conventional second-order
based algorithms for convolutive mixtures that exploit signal
nonstationarity.

Index Terms—Blind source separation, convolutive mixtures,
frequency domain, orthogonal/nonorthogonal constraints, penalty
function, speech signals.

I. INTRODUCTION

THE objective of blind source separation (BSS) is to extract
the original source signals of interest from their mixtures

and possibly to estimate the unknown mixing channel using
only the information within the mixtures observed at the output
of each channel with no, or very limited, knowledge about the
source signals and the mixing channel. A challenging BSS
problem is to separate convolutive mixtures of source signals,
where the observed signals are assumed to be the mixtures
of linear convolutions of unknown sources. This is an issue
in several application fields, of which the most famous is the
cocktail party problem, where the name comes from the fact
that we can hold a conversation at a cocktail party even though
other people are speaking at the same time within an enclosed
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environment [1]; this classical definition can be extended to
include the presence of a noise background due to the other
interfering speech or music. In this case, the observed signals
are the mixtures of weighted and delayed components of the
sources.

Convolutive BSS has been conventionally developed in
either the time domain (see [2] and the reference therein) or
the frequency domain, e.g., [3]–[18]. In this paper, we focus
on the operation in the frequency domain. In contrast to time
domain approaches, where a large number of parameters has
to be estimated, frequency domain approaches usually simplify
the convolutive problem into an application of instantaneous
methods to each frequency bin. As a result, the frequency
domain approaches generally have a simpler implementation
and better convergence performance, although the downside
of arbitrary permutations and scaling ambiguities of the recov-
ered frequency response of the sources at each frequency bin
remain open problems in many realistic environments, such as
where the sources are moving. The representative separation
criterion used in the frequency domain is the cross-power
spectrum-based cost function, where (shown in
Section II) generally leads to a trivial solution to the minimiza-
tion of the cost function. A selective method, as has been used
in some general ICA approaches, is to incorporate a term of
the form in the cost function to be
minimized to ensure that the determinant does not approach
zero. Alternatively, one can also use a special initialization
method or a hard constraint to the parameters to avoid this
degenerate solution.

In this paper, in contrast, we propose a new approach based
on a penalty function for convolutive blind separation in the fre-
quency domain. This new criterion is motivated by nonlinear
programming techniques in optimization. As will be shown, in-
corporating a penalty function within the second-order statistics
(SOS)-based cost function for nonstationary signals, the degen-
erate solution due to approaching zero is automatically
removed. Another objective of this paper is to use a penalty
function to unify the concept of joint diagonalization with uni-
tary or nonunitary constraint. Under such a framework, the con-
strained joint diagonalization problem is converted into an un-
constrained optimization problem, and the main task is then to
focus on the choice of the form of penalty functions associ-
ated with appropriate application models and the adaptation of
the penalty parameters. This is particularly useful for applying
some well-known optimization algorithms and therefore devel-
oping new algorithms for BSS. Moreover, such a criterion has
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a close relation to the joint diagonalization methods with pro-
jection onto the Stefiel manifold. The state-of-the-art schemes,
using either orthogonal or nonorthogonal matrix constraints, ap-
pear to be related to the new criterion and may lead to new
viewpoints and algorithms for joint diagonalization regarding
conventional optimization methods such as the Newton and gra-
dient descent algorithms. As will be shown in Sections VI and
VII, the penalty function may lead to improved performance for
the solution of the BSS problem, and the implementation of a
nonunitary constraint in a later example indicates an additional
ability of the proposed scheme to reduce the scaling ambiguities.

In this paper, we assume that the source signals are nonsta-
tionary. This is especially true for most real-world signals whose
statistical properties are very often statistically nonstationary
or (quasi-) cyclostationary, such as speech and biological sig-
nals. In [26], we have shown that the cyclostationarity of the
signals can be exploited in order to generate new algorithms
that outperform some conventional BSS algorithms for some
real-world cyclic-like signals such as ECGs. However, as ob-
served in [26], cyclostationarity may not be valid for speech sig-
nals whose statistics vary very rapidly with time. In this case,
it is difficult to estimate accurately their cycle frequencies. A
natural and better way to describe speech signals is to con-
sider their nonstationarity. To this end, we exploit the SOS of
the covariance matrices to estimate the separation matrix. In
comparison to higher order statistic (HOS) methods, although
using SOS is insufficient for separation of stationary signals
[19], and therefore, HOS has to be considered either explicitly
[20] or implicitly [3], SOS methods usually have a simpler im-
plementation and better convergence performance and require
fewer data samples for time-averaged estimates of the SOSs.
Moreover, they can potentially overcome the non-Gaussianity
assumption for source signals [5], which is nevertheless neces-
sary for HOS-based methods.

This paper is organized as follows. In Section II, the con-
volutive BSS problem and the frequency domain approach are
discussed. A brief discussion on the problem of second-order
nonstationarity of speech signals and the off-diagonal sepa-
ration criterion is given in Section III. In Section IV, several
joint diagonalization criteria are summarized, and the concept
of constrained BSS is introduced. This provides the funda-
mental background for this work. In Section V, the penalty
function-based joint diagonalization method is described in
detail. In Section VI, a unifying analysis will be given to the
unitary and nonunitary constraints within joint diagonalization
under the penalty function framework. An implementation ex-
ample with gradient adaptation is also included in this section.
Section VII presents the simulation results, and Section VIII
concludes the paper.

II. CONVOLUTIVE BSS IN THE FREQUENCY DOMAIN

Assume that source signals are recorded by micro-
phones (here, we are particularly interested in acoustic appli-
cations), where . The output of the th microphone is

modeled as a weighted sum of convolutions of the source sig-
nals corrupted by additive noise, that is

(1)

where is the th element of the -point impulse response
from source to microphone , is the signal
from source , is the signal received by microphone , is
the additive noise, and is the discrete time index. All signals
are assumed zero mean. Throughout the paper, both the mixing
and unmixing processes are assumed to be causal finite filter
models, i.e., FIR filters as in (1). We note that it is also possible
to exploit noncausal models [27], [28], but this issue is, how-
ever, beyond the scope of this paper. Using a -point windowed
discrete Fourier transformation (DFT), time-domain signals
can be converted into frequency-domain time-series signals as

(2)

where denotes a window function, , and
is a frequency index . We use
closed-form expressions for , , and , in
which does not depend on the time index due to the
assumption that the mixing system is time invariant. The same
assumption will be applied to the separation system as follows.
As shown in [4], a linear convolution can be approximated by a
circular convolution if , that is

(3)

where and
are the time-frequency repre-

sentations of the source signals and the observed signals,
respectively, and denotes vector transpose. Equation (3)
implies that the problem of convolutive BSS has been trans-
formed into multiple instantaneous (but complex-valued) BSS
problems at each frequency bin.

Rather than directly estimating , we can alternatively
estimate a weighted pseudo-inverse of , i.e., at
every frequency bin by using a backward discrete-time model
[15], [16]

(4)

where is the time-fre-
quency representation of the estimated source signals, and is
the discrete time index. The parameters in are determined
so that the elements become mutually
independent. The above calculations can be carried out inde-
pendently in each frequency bin.

III. SECOND-ORDER NONSTATIONARITY AND

OFF-DIAGONAL CRITERION

Define a cost function as a measure of inde-
pendence between , for ; the separation
problem then becomes an optimization problem for which we
have to find a method to minimize so that
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are as independent as possible. A necessary condition to exploit
the SOS conditions for nonstationary signals is to ensure that
the are mutually uncorrelated. Nonstationarity of
speech signals can be generated in various ways, e.g., varia-
tion of the vocal tract filter and glottis, whereby neighboring
samples have varying cross correlation, or even higher order
moments. Here, we resort to the cross-power spectrum of the
output signals at multiple times, i.e.,

(5)

where is the covariance matrix of , and
is the covariance matrix of . The objec-

tive is to find a that (at least approximately) jointly
diagonalizes these matrices simultaneously for all time
blocks . That is, ,
where is an arbitrary diagonal matrix, which,
based on the independence assumptions of the source signals

and the sensor noise, can be derived by the
following equation:

(6)
where and are the different diagonal covari-
ance matrices of the source and noise signals for each , respec-
tively, and denotes the Hermitian transpose operator. As in
[4], an intuitive criterion is defined to minimize a function of the
error between and

(7)

where is the squared Frobenius norm. It is straightforward
to show that this separation criterion is equivalent to (denoted by
problem )

(8)

where is defined as

diag (9)

where diag is an operator that zeros the off-diagonal elements
of a matrix.

The solution clearly leads to the minimization of
, which is a degenerate solution to the minimiza-

tion of . This means that a cost function sufficient for
joint diagonalization should enforce a solution for
and, hence, a constraint on the former cost function. On the other
hand, the representative approaches (mostly working in the time
domain) using joint diagonalization project the separation ma-
trix onto the Stefiel manifold to generate a unitary constraint
(cf. [21], ). Nevertheless, as shown in [22], such a
unitary constraint is not always necessary . Un-
like the method using a hard constraint on the initialization or
at each iteration (see [4]), here, we present an alternatively new
approach to satisfy the constraint . This method is
motivated by nonlinear programming optimization theory [23]
and, at the same time, unifies the orthogonal and nonorthogonal

matrix constraint methods and therefore provides new insight
into joint diagonalization algorithms for BSS (see Section VI).
For simplicity, the frequency index in is omitted here-
after where appropriate.

IV. JOINT DIAGONALIZATION CRITERIA

AND CONSTRAINED BSS

A. Criteria

The objective of joint (approximate) diagonalization is to
find a matrix that simultaneously (approximately) diagonalizes
a set of matrices. The typical application of joint diagonal-
ization for BSS is to achieve separation by using (very often
approximating) joint diagonalization of a set of covariance
matrices. In comparison with the method using only one co-
variance matrix, approximate joint diagonalization of a set of
covariance matrices increases the statistical reliability of the
procedure for estimating the unmixing matrix and reduces the
possibility of unsuccessful separation induced by choosing
an incorrect time-lag of covariance matrices, therefore sig-
nificantly increasing the robustness at the cost of increased
computation. Letting the set of matrices to be jointly diago-
nalized be , the widely used off-diagonal
criterion for the joint diagonalization stated in Section III can
be expressed generally as

where is a joint diagonalizer, which is also referred to as the
separation matrix in BSS, and

, where is an matrix. Here, we try to
use the same notation as stated in Section III. This criterion is
simple to implement and can be theoretically justified. The Ja-
cobi method, the gradient method, and the Newton method can
all be used to minimize this criterion [4], [25], [34], [55], [56].
These methods can also be classified into either of those works
based on SOS, as in [34], or those works based on HOS, as in
[25]; most of them consider the orthogonality constraint. Unlike
this criterion, a log likelihood criterion proposed in [31] is more
suitable for measuring the diagonality of a set of positive defi-
nite Hermitian matrices without the orthogonality constraint

diag

where is a factor measuring the distribution of . An-
other characteristic of this criterion is its invariance property
regarding a scale change that is not held by the off-diagonal cri-
terion. Recently, a new criterion based on the Cayley transform
has been proposed in [57]. The criterion is performed in two
steps:

where are the different unitary diagonalizers produced by
eigendecomposition of covariance matrices for different time
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lags, and is the inverse Cayley transform of a weighted av-
erage matrix of the individual unitary matrices. The similarity
between these two matrices provides a reasonable measure for
joint diagonalization since different unitary matrices, with iden-
tical dimensions, are equivalent. More recently, an interesting
linear criterion was proposed in [32]

where diag , are constant
diagonal matrices, which can be adjusted to have similar or-
ders as the diagonal elements of so that the effect
of closely spaced eigenvalues of the matrices to be jointly di-
agonalized can be canceled. However, due to the order of diag-
onal elements of at critical points being unknown
a priori, this criterion cannot work by itself.

As will be elaborated in Section VI, however, the different
joint diagonalization criteria, considering the case either with
orthogonal (unitary) constraints as in [21], [25],
[32], and [57], or with nonorthogonal (nonunitary) constraints

, as in [4], [31], and [33], can be unified by using
the penalty function (see Section V-A) as an unconstrained op-
timization problem. This makes it easier for us to carry out
the theoretical analysis for the behavior of the joint diagonal-
ization criterion for BSS problems, where the penalty function
can be appropriately chosen to comply with the orthogonal and
the nonorthogonal constraints. After such processing, to mini-
mize the cost function in (16) (see Section V-A), we can resort
to any unconstrained optimization algorithms such as the gra-
dient-based (including steepest descent and conjugate gradient)
methods, (quasi-)Newton methods, or any other alternatives.

B. Constraints on BSS

Generally, BSS employs the least possible information per-
taining to the sources and the mixing system. However, in prac-
tice, there exists useful information to enhance the separability
of the mixing system, which can be exploited to generate various
effective algorithms for BSS. For example, a constrained param-
eter space specified by a geometric structure with has
been exploited in [45], where the norm restriction of the sepa-
ration matrix is necessary for practical hardware implementa-
tions. The algorithms for adapting within the space of
orthonormal matrices i.e., , were first pro-
posed in [48] and [49] and then developed in [46]. A merit of
such algorithms lies in the possibility of extracting an arbitrary
group of sources. This idea has also been addressed as the opti-
mization problem on the Stiefel manifold or the Grassman man-
ifold in [21], [38], [46], [50], and [51]. The key principle of
such methods is to exploit the geometry of the constraint sur-
face to develop algorithms searching either along a geodesic (the
shortest line between two points on a curve surface) [51] or other
paths [21]. In [52], the natural gradient procedures were devel-
oped to maintain a nonholonomic constraint on . The geo-
metric information of sources was considered in [44] as a con-
straint on BSS. Recently, a non-negative constraint on BSS has
been shown to possibly be a useful way to represent real-world

data [54]. This brief overview, together with a recent contribu-
tion to a similar work in [53], justifies that imposing an appro-
priate constraint on the separation matrix or the estimated
source signals with special structure, such as invariant norm, or-
thogonality, geometry information, or non-negativity, provides
meaningful information to develop a more effective BSS solu-
tion, especially for real-world signals and practical problems.

V. PENALTY FUNCTION-BASED JOINT

DIAGONALIZATION APPROACH

A. Approach

Constrained optimization problems can be effectively trans-
formed into unconstrained ones by using the penalty function
method, which adds a penalty term to represent constraint vio-
lation within the objective function [23], [24], [42]. A penalty
function is a non-negative function, which is zero within the
feasible area and positive within the infeasible area. A feasible
point corresponds to one where all the constraints are satisfied.
Typical constrained optimization problems are either subject to
an equality constraint, an inequality constraint, or both. In this
paper, we are particularly interested in the former type, due to
the fact that the most general applications in BSS are subject to
an equality constraint. Recalling a standard nonlinear equality
constraint optimization problem in [24] (also see [23]) and ex-
tending the idea to the optimization for matrices, we have the
following equality constraint optimization problem:

s.t. (10)

where
, , , and indicates

that there may exist more than one constraint. Let

so that . This means that problem (10) can be refor-
mulated as , s.t. . This is equivalent to the
standard formulation in [24], which can, on the other hand, be
deemed as a case for (10) by letting and will be
further utilized in Section VI. The transformation between the
vector form and matrix form in the derivation of the algorithms
can be followed as in [40]. In this paper, the complex-valued
case is considered for generality. This is simply done by con-
sidering the real and imaginary parts simultaneously.

In the BSS context, can be reformulated following any
of the joint diagonalization criteria in Section IV-A, and
can take the form of any constraint in Section IV-B. Penalty
functions can be classified into two categories: exterior and inte-
rior. For the equality constraint problem (10), an exterior penalty
function fits best due to the fact that interior penalty functions
can only be used for sets defined by inequality constraints. We
next give a self-contained definition of the exterior penalty func-
tion below.

Definition 1: Let be a closed subset of . A se-
quence of continuous functions ,
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is a sequence of exterior penalty functions if the following three
conditions are satisfied:

(11)

(12)

(13)

A diagramatical representation of such functions is shown in
Fig. 1.

Suppose that is a real-valued non-negative penalty
function vector corresponding to the constraints , i.e.,

,
and that is a coefficient vector that controls
the penalized values for the corresponding constraints; then, by
using penalty functions, (10) is changed to

(14)

An important issue for the successful implementation of the
penalty function method is to choose a proper penalty function
for the cost function since not all penalty functions ensure the
minimization of the cost function [43]. In general, there are dif-
ferent penalty functions that can be utilized to characterize dif-
ferent problems. It is unlikely that a generic penalty function
exists that is optimal for all constrained optimization problems.
In Section VI, two penalty functions are introduced for both
the unitary and nonunitary constraint, respectively. These two
penalty functions are quite suitable for our applications in terms
of the theoretical basis given below in Lemma 1 and numerical
experiments given in Section VII. However, it should be noted
that for a practical application with desired purpose, it is difficult
to define a generic scheme to guide the user in terms of choice
of penalty functions, but our work demonstrates that practically
useful schemes can be found. To better understand the following
discussion, we consider the following lemma.

Lemma 1: Suppose that is continuous
and that . For , let
be such that and , as , and let

. If we define as

(15)

where , 2, or , then means that the ex-
terior penalty function projects the space from one into another
with a possibly different dimension. Then, will form a
sequence of exterior penalty functions for the set .

We omit the proof of Lemma 1 since it is straightforward to
verify it by following Definition 1. The penalty function given
in (15) forms a set of differentiable penalty functions that will
be used in the following discussion.

Using a factor vector to absorb the coefficient and incor-
porating exterior penalty functions (15), our novel general cost
function becomes

(16)

where is a
set of penalty functions with desired properties that can
be designed to meet our requirements,

are the weighting factors, and rep-
resents a basic joint diagonalization criterion, such as

Fig. 1. U (W)(i = 0; 1; . . . ;1) are typical exterior penalty functions,
where U (W) < U (W) < � � � < U (W) and the shadow area denotes the
subset W .

in (8). In an expansion form, the criterion is denoted by
. The separation

problem is thereby converted into a new unconstrained joint
diagonalization problem, i.e., .

Minimization of is approximately equivalent to the
problem of minimization of . However, note that in fact,
the solution to problem (10) does not guarantee a solution for
problem . Only when represents a set of exact
penalty functions for (10) are the solutions equivalent [24]. In-
corporating penalty functions into a joint diagonalization cri-
terion enables us to convert constrained joint diagonalization
problems into unconstrained ones and unify several methods
using joint diagonalization for BSS; it can be used to construct
special algorithms (including globally stabilizing locally con-
verging Newton-like algorithms) for joint diagonalization prob-
lems. The constraint in (8) can be easily satis-
fied by choosing a suitable penalty function in (16)
so that the degenerate solution can be automatically removed.
As will be revealed in Sections V-B and VII, a proper penalty
function may adapt the separation coefficients in a more uni-
form way, which generally indicates a better convergence per-
formance (also see [18]).

Assuming that the penalty functions are in the form of
(15), e.g., , and is the vector of
perturbations of , where ,
then minimization of the criterion with the equality constraint

is equivalent to

(17)

where is the perturbation function defined as the optimal
value function for the equality constraint problem. Equation
(17) implies that by adding the term , an attempt is
made to convexify as increases, and as , the
perturbation value approaches zero. This indicates that by in-
creasing the value of the penalty parameter, the penalty func-
tion-based criterion has the ability to self-adjust in the presence
of the perturbation. Similar discussions are given to show the
stability of the algorithms for unitary and nonunitary constraints
in Section VI.

It is worth noting that the criterion (16) has a similar form
as that of exploiting well-known Lagrangian multipliers; how-
ever, they are essentially two different approaches for the con-
strained optimization problem. Using the penalty function, the
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solution to (14) approaches the same solution to (10) while sat-
isfying the constraint simultaneously. When the penalty coeffi-
cients , , and hence, can be
satisfied. For the nonlinearly constrained problem, local mini-
mizers of (10) are not necessarily local minimizers of the La-
grangian-based cost function so that it is not possible to design
consistent line search rules based on the Lagrangian function,
which is nevertheless especially important for smoothly con-
necting global optimization techniques with an effective asymp-
totic procedure, e.g., [41]. In this case, a better choice is to
construct a global strategy for problem (10) based on penalty
functions. In addition, for a nonconvex problem, a penalty func-
tion-based method can tend to the optimal solution for the orig-
inal problem with increasing penalty coefficients ; however,
the Lagrangian approach would fail to produce an optimal solu-
tion of the primal problem due to the presence of a duality gap
[23].

B. Global Minima and Local Minima

The equivalence between (16) and (10) follows from the re-
sults in [24], which provide the fundamental theoretical basis
for our approach, including its global and local minima given
by the following lemmas.

We define the sets

and , where

, and we assume the following: A1) s.t.
is compact, and A2)

s.t. . As is convention

with the use of penalty functions in nonlinear optimization [24],
the th trial, where , corresponds to one setting of a scalar
penalty coefficient, which is denoted , and the accumulation
point is the minimizer when . Then, we have two
lemmas.

Lemma 2: If is the minimizer of at the th trial, then
in the limit, as , , the accumulation point is
as in assumption A2.

Lemma 3: If , is a strict local minimizer of at the
th trial, i.e., for some ,

, then in
the limit as , there is an accumulation point , as
in assumption A2, for which , s.t. , , and

is a local minimizer of (10).
Assumption A1 ensures that problem (10) has a solution, and

A2) ensures that the closure of the set contains
an optimal solution to problem (10). The lemmas imply that
the new criterion (16) holds the same global and local proper-
ties as that without the penalty term when given large enough
penalty parameters. This means that the choice of the penalty
parameters usually has a major effect on the overall optimiza-
tion accuracy in practical implementation. Too small parameters
will lead to an inexact or even incorrect final solution, whereas
too large values may create a computationally poorly condi-
tioned or strongly nonlinear energy function [43]. Unlike the
standard penalty function method ultimately requiring infinite
penalty parameter , in practice, with time-varying signals, we
employed a finite to obtain a performance advantage as sup-
ported by our simulation results. A similar technique is used in
[39] for blind detection of desired signals from multiple chan-

nels in a direct-sequence code division multiple access system.
This idea is based on the following corollary [24].

Corollary 1: If for some , then is an
optimal solution to the problem (10).

Therefore, in our practical application, we can relax the the-
oretical condition that , provided ,
and attain performance advantage with finite . This also miti-
gates another problem in implementation of the penalty function
method, i.e., that the introduction of penalties may transform
a smooth objective function into a rugged one. To avoid local
minima in the objective function, the penalized joint diagonal-
ization cost function must preserve the topology of the objective
function to allow location of the optimal feasible solution; see
[24] for more details.

VI. PENALIZED JOINT DIAGONALIZATION WITH

UNITARY/NONUNITARY CONSTRAINT

A. BSS With Unitary and Nonunitary Constraint

For unitary constraint, the problem is formulated as the
minimization of a cost function under the constraint

. That is, is a function of the subspace
spanned by the columns of . It has been shown that there are
several potential approaches to solving the unitary constrained
BSS problem, including the whitening approach (e.g., [25],
[34], and [37]), projection on the Stiefel–Grassman manifold
(e.g., [5], [21], [38], and [46]), and other approaches (e.g.,
[33] and [35]). The algorithms were developed with the aim
of restricting the separation matrix to be orthogonal. From the
discussion in Section IV-B, the constrained minimization of a
cost function is converted into the unconstrained optimization
on a manifold. Particularly, the orthogonal constrained opti-
mization problem in [21] can be treated as a special case of the
unconstrained problem in (16) so that Lemma 1 is applicable
for such a case. This idea can find a number of applications
in the areas of signal processing and linear algebra, such as
joint diagonalization, subspace tracking, or singular value
decomposition [5], [25], [29], [34], [35].

However, the methods using unitary constraint may result
in a degraded performance in the context of BSS, due to the
unbalanced weighting of the misdiagonalization between all the
matrices being jointly diagonalized. The nonunitary methods
were therefore addressed in a more general way [18], [22],
[30], [31], [33]. A common characteristic of the works in
[22], [31], and [30] is that no hard whitening is exerted on the
separation process. In [33], a combination of several possible
cost functions was proposed for BSS; however, no details
were found to address the behavior and performance of such
combinations. In [18], the idea of using penalty functions for
nonunitary constraint with application to frequency-domain
BSS was presented. This work, regardless of initialization, and
similar to that in [22], is different from [30], which is typical
for Gauss–Newton-type algorithms and needs the separation
matrix to be properly initialized.

B. Unifying by Penalty Function With Perturbation Analysis

Compared with the methods discussed in Section VI-A,
which all considered instantaneous mixtures in the time do-
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main, the method addressed here operates in the frequency
domain. Incorporating the penalty function discussed earlier,
the total cost function becomes

(18)
where is a penalty weighting factor.

The key problem is now to choose a suitable penalty function.
For a unitary constraint and a nonunitary constraint, the alterna-
tive but equivalent forms can be chosen as

(see [46]) and diag (see [33]). If we choose
the penalty function to be in the form of
or diag , we will see that using a penalty func-
tion with a limited norm will control the size of the designed
parameters. This property would be especially useful when the
cost function is not explicitly dependent on the design parame-
ters, such as , where the case may happen in some opti-
mization problems that are ill-posed in the sense that solutions
with bounded controls do not exist. Note that the compact as-
sumption A1 in Lemma 2 and 3 is addressed with respect to the
objective function in (18), regardless of the form
of the constraint, e.g., . In addition, even if

is complex valued, assumption a) is still satisfied due to
the real-valued penalty function being used.

Under the penalty function-based framework, either a unitary
or a nonunitary constraint problem can be deemed as an example
of a penalized unconstrained optimization problem, whereas the
forms of the penalty functions may be different. We may choose
a penalty function with the form of
(see [39] for a similar application) or Tr (see [36] for
a similar application), where is a diagonal matrix containing
the Lagrangian multipliers.

It would be useful to examine the eigenvalue structure of the
Hessian matrix of the cost function, i.e., , which dominates
the convergence behavior of the algorithms used for minimizing

. Following a similar procedure as in Appendix A, by
calculating the perturbation matrix of and assuming that
the cost function is twice-differentiable

(19)

where is the Kronecker product, diag vec
, and is a matrix whose elements

are all ones

(20)

The is the linear combination of and
. The conditions of Lemma 2 indicate that

as , will approach the optimum . If
is a regular solution to the constrained problem, then
there exist unique Lagrangian multipliers such that

[23]. This means
that as . Combining (19)
and (20), we have

(21)

The first two terms on the right-hand side of (21) approach
the Hessian of the Lagrangian function

. The last term in (21) strongly relies on . It can
be shown that as , has some eigenvalues ap-
proaching , depending on the number of the constraints, and
the other eigenvalues approach finite value. The infinite eigen-
values reveal the reason behind the ill-conditioned computation
problem mentioned in Section V-B. Letting be the step size in
the adaptation, perturbation of the cost function in the iterative
update is then . In the presence of
nonlinear equality constraints, the direction may cause any
reduction of to be shifted by . This
needs the step size to be very small to prevent the ill-conditioned
computation problem induced by large eigenvalues at the ex-
pense of having a lower convergence rate.

C. Gradient-Based Adaptation

In this section, we develop a gradient-based descent method
to adapt the coefficients in (18). The method is actually a
least squares (LS) estimation problem. Although the con-
vergence rate of the gradient method is linear as compared
to the Newton-type adaptation method, which can achieve
quadratic convergence by using second-order derivatives, a
gradient-based adaptation method usually has the ability to
converge to a local minimum, whereas no guarantee exists for
a Newton-type method, which may converge to the nearest
critical point. One of the other advantages of the gradient-based
adaptation method is its simplicity of implementation as well
as its lower computational complexity.

Let the penalty function be
in (18). For a unitary constraint

(see [33] and [46]), the gradients in (18) with respect to their
parameters can be readily derived as (see Appendix A)

(22)

diag

diag

(23)

Theoretically, incorporating the penalty term
is equivalent to applying a projection operation on the gra-

dient of ; however, even for the latter method, the
penalty function is useful to attain a stable performance [59].
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For a nonunitary constraint, the adaptation is parallel to the
foregoing procedure. Letting the penalty function be in the form
of diag (see [33]), the adaptation
equations to find the coefficients in (18), corresponding to (22),
become (see Appendix A)

diag (24)

In this case, (23) takes the same form. It is worth noting that an
alternative adaptation method to (24) is to use a modified gra-
dient by using a Lagrangian multiplier, which can adapt
in a more uniform way; see [18] for more details.

Note that theoretically, when we update the algorithm by
using rules (22) and (24), after it converges, the norm of

in (15) approaches a finite value. When , the
multiplication will approach infinity in terms of Lemma 1 and,
hence, satisfy (13). However, in practical implementation, (13)
is exploited approximately. Such consideration is based on the
following two reasons. First, there exist numerical problems in
practical implementations. Second, when the penalty function
approaches infinity, it will dominate the objective function,
which, however, should not happen for a desired purpose. In
our implementation, the cross-power spectrum matrix remains
important in the objective function, and at the same time, the
separation matrix satisfies a desired property to some degree.

Because the cross-correlation
is time dependent for nonstationary signals, it is difficult

to estimate the cross-power-spectrum with a relatively short sta-
tionary time resolution. However, in practice, can be
estimated by the block form

(25)

where is the number of intervals used to estimate each cross
power matrix. In implementation, the normalized step sizes for
adaptation of and take the forms

(26)

(27)

where , , and are scalar values adjustable for adaptation.
The LS solution to (18) can be obtained using the well-known

stochastic gradient algorithm. The solution will be in the form
of , where

denotes the complex conjugate operator.

D. Scale and Permutation Indeterminacies

There are possible indeterminacies in the model (1), such as
sign, scale, spectral shape, and permutation [13], among which,

the permutation ambiguity and the scale ambiguity are most im-
portant for the separation performance. In Section II, when we
try to combine the results obtained at each frequency bin, the
permutation problem occurs because of the inherent permuta-
tion ambiguity in the rows of . Here, we use the method
in [4] to address the permutation problem with regard to the filter
length constraint of the FIR model so that we can compare the
performance of the proposed method with other traditional tech-
niques. One promising advantage of using the penalty function
is its potential to reduce the scaling ambiguity. Taking the form
of the unitary constraint in Section VI-C as an example, we see
that by using the penalty function, not only the constraint tends
to be satisfied, but the norm of the separation matrix is restricted
to a desired value as well. This is especially useful in the iter-
ative update, and the amplitude of the signal at each frequency
bin is preserved to have normal energy. Such an effect on the
scaling ambiguity while incorporating the penalty function will
be demonstrated by a simulation in Section VII.

E. Implementation Pseudo-Codes

According to the discussions given in the above sections,
taking the penalty functions with unitary or nonunitary con-
straints as examples, we summarize the whole algorithms as the
following steps:

1) Initialize parameters , , , , ,
, , , , , , , and .

2) Read input mixtures, i.e., time samples
:

—For artificially mixing, is ob-
tained using (1).
—For the real mixing environment, is
the signal recorded by a microphone array.
3) Calculate the cross-power spectrum ma-
trix:
—Convert to using (2);
—Calculate using (25).
4) Calculate the cost function and update
gradient:
—for to

Update and using (26) and
(27) respectively;

Update using (22)
or (24);

Update using (16) or (18);
if break;

—end.
5) Solve permutation problem

, where is a function dealing
with permutation operation (refer to [4]).
6) Calculate according to (4). Re-
construct the time domain signals
IDFT .
7) Calculate the performance index using
(29) or (31).
8) End.



1662 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 5, MAY 2005

Fig. 2. Convergence performance of the cross-power spectrum based
off-diagonal criterion changes under the penalty function constraint with
various penalty coefficients �.

Fig. 3. Two source speech signals used in the experiment.

VII. NUMERICAL EXPERIMENTS

In this section, we examine the performance of the proposed
method by simulations when applied to both artificially mixed
signals and real room recordings. The evaluations will be carried
out in two aspects: convergence behavior and separation perfor-
mance (see Fig. 2).

A system with two inputs and two outputs (TITO) is consid-
ered for simplicity, that is, (the simulations can be
readily extended into MIMO systems due to the general formu-
lation of the problem in the previous sections). The two source
speech signals used in the following experiments are shown in
Fig. 3 (sampling rate 12 kHz), which are available from [62]. We
artificially mix the two sources by a nonminimum-phase system

Fig. 4. Convergence performance of the penalty function with various penalty
coefficients �.

in (28) [47], shown at the bottom of the page. First, we investi-
gate the convergence behavior of the proposed method by com-
parison with the method in [4], which corresponds to the case

in our formulation in the previous sections, and the fol-
lowing simulations were specified. We develop the work in [18]
and choose the penalty function to be in the form of a nonunitary
constraint (see also [59]). Adaptation (24) is therefore used to
examine the convergence performance of the proposed method.
The parameters are set as follows. The number of intervals used
to estimate each cross-power-matrix is set to be . The
length of the fast Fourier transform (FFT) is . The
parameters in the normalized step sizes given in (26) and (27)
are set to be , , and , respectively. The
number of the matrices to be diagonalized is . The step
size in gradient adaptation is . The initial value of the
separation matrix is . We applied the short term
FFT to the separation matrix and the cross-correlation of the
input data. Fig. 2 shows the behavior of the penalty coefficient

affecting the convergence of the cross-power spectrum based
off-diagonal criterion. Fig. 4 shows how the penalty function it-
self changes with the penalty coefficients when the cross-power
spectrum based off-diagonal criterion was constrained by the
penalty function. From Figs. 2 and 4, we see that the separation
algorithm generally has increasing convergence speed with the
increasing value of the penalty coefficient , as well as a quicker
trend approaching the constraint. An increase in the value of

introduces a stronger penalty being exerted to the off-diag-
onal criterion. This means, by increasing the penalty coefficient

, that we may not only approach the constraint in a quicker
way but also attain a better convergence performance. The con-
vergence performance of the new criterion with penalty func-
tion, i.e., (18) is shown in Fig. 5, where the cost function con-
verges to a lower value in a faster speed as compared with the

(28)
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Fig. 5. Comparison of convergence performance of the new criterion (with
penalty function constraint where � 6= 0) and cross-power spectrum based
off-diagonal criterion in [4] (without penalty function, where � = 0).

criterion in [4]. The convergence speed will be scaled by the
penalty coefficient. The unusual behavior for is due
to ill-conditioning and will be discussed in more detail later.
More precise examination of the convergence behavior is given
in Fig. 6, where the adaptation stops when a threshold is sat-
isfied, and the current value will be taken as the stable value
of the criterion. From Fig. 6, it can be seen that by an appro-
priate choice of the penalty coefficient (generally increasing

), we can obtain a significantly improved convergence speed,
as well as a better performance, which is indicated by the lower
level of the off-diagonal elements existing in the cross-corre-
lation matrices of the output signals. Theoretically, increasing
the value of the penalty coefficient will arbitrarily approach the
constraint. However, as discussed in Sections V and VI, numer-
ical problems will be induced due to large value of the penalty

. Under a common step size, too large a penalty will in-
troduce ill-conditioned calculation, and this can be observed in
Figs. 2, 4, and 5 for the case of , where there is fluc-
tuation in the adaptation. At the same time, although a larger
penalty will put higher emphasis on the constraint, the theoret-
ical analysis in Section VI showed that the constraint itself has
no necessary connection to the performance improvement. This
can be confirmed in Fig. 6 (see ). However, the property
of performance improvement with increasing penalty appears
to be promising. An alternative method to fully exploit such a
property is to decrease the step size . Fig. 7 showed that the
numerical ill-condition problem in Fig. 5 (when ) can
be removed by reducing the step size to a smaller value. This
indicates that we can choose a suitably small step size to sup-
press the numerical problem. However, as shown in the case of

and in Fig. 7, this means that a stable numer-
ical performance for large penalties will be achieved at a small
cost of convergence speed. Therefore, an optimal penalty coef-
ficient will be obtained by a tradeoff consideration of the step
size in practical implementations.

As discussed in Section VI-D, there are inherent permutation
and scaling ambiguities in BSS algorithms. Here, we will show

Fig. 6. Comparison of the stable values and the required iteration numbers
(to reach such stable values) between the new criterion and the conventional
cross-power spectrum-based criterion. (a) Corresponding to the criterion in [4]
with � = 0. (b)–(g) Corresponding to the new criterion with penalty coefficient
� 6= 0.

Fig. 7. Influence of step size on the penalty coefficients �, where the step
sizes � in (a)–(c) are set to be 1, 0.1 and 0.01, respectively, whereas the penalty
coefficients � keep the same to be 10. The adaptation stops when a threshold is
satisfied, and the stable value of the cost function is obtained at this point.

the ability of the penalty function to suppress the scaling ambi-
guity by simulations and addressing the permutation problem,
as in [4], to allow performance comparison. Theoretically,
due to the independence assumption, the cross-correlation of
the output signals in (5) should approximately approach zero.
Fig. 8(a) shows the results using the off-diagonal criterion (8).
From these results, we see that it is true at most frequency
bins but not for very low frequency bins. From the remaining
figures in Fig. 8, we see that such an effect can be significantly
reduced using penalty functions by careful choice of the value
of penalty coefficients used in the experiment, and the effect is
almost removed when is close to 0.01 in this case. It should
be noted that the imaginary part is not plotted due to its similar
behavior. An alternative to this problem can be found in [58],
where such an effect was restricted by a normalization process
using the diagonal elements of the cross-power matrices.
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Fig. 8. Overlearning observation by calculating the values (real part) of the
off-diagonal elements of the cross-correlation matrices R (!; k) at each
frequency bin. (a) Corresponding to the case without penalty function as in
[4]. (b)–(d) Corresponding to the cases with penalty functions and penalty
coefficients � are 1, 0.1, and 0.01 respectively.

To further evaluate the performance of the proposed method,
we measure the resemblance between the original and the recon-
structed source waveforms by resorting to their mean squared

Fig. 9. Comparison of the estimate error between the proposed method and the
method in [4] using waveform simularity measurement (step size � = 0:06).

difference. By assuming the signals are zero-mean and unit-vari-
ance, we have

dB

(29)

We still use the speech signals in Fig. 3 and set (this al-
lows us to select a large penalty according to the previous simu-
lations, and therefore, the convergence is smooth when ).
Other parameters are the same as those in the previous experi-
ments. We perform seven tests by changing the penalties. The
estimate error was plotted in Fig. 9 on a decibel scale, where
the estimate error in [4] is not influenced by the penalties. From
this simulation, we can clearly see that the separation perfor-
mance is improved with an increasing penalty and can reach
up to 16 dB when . However, with further increase of
the penalties, the separation performance may degrade due to
the reason discussed previously. To show the improved perfor-
mance of the proposed method in reconstructing the original
source signals, we give another example. The two source sig-
nals are available from [61]. Both of the signals are sampled
at 22.05 kHz with a duration of 9 s. The samples are 16-bit
2’s complement in little endian format. One source signal is a
recording of the reading sound of a man. The other is a street
acoustic background. The parameters are and .
The improved separation performance can be directly perceived
through Fig. 10. The estimation errors are dB dB
and dB dB for the method in [4] and the pro-
posed method, respectively (calculated through all samples).
From Fig. 10, we see that the proposed algorithm reduces the
amplitude ambiguity to a lower value at the same time, and this
is the direct result of the fact shown in Fig. 8.

Let us examine the separation quality by using a more com-
plicated mixing process, which will involve more time delays
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Fig. 10. Separation result of (a) a reading sound and (b) a street background
sound (c), (d) mixed by a nonminimum-phase system with (g), (h) the proposed
algorithm, as compared to (e), (f) the algorithm in [4].

and cross-talk between independent speech signals. The mixing
matrix is

(30)

where

;

Fig. 11. Separation results of (a), (b) two speech signals mixed with FIR
systems (30) with (c), (d) the proposed algorithm, as compared to the method
in (e), (f) [4] and (g), (h) [62] by spectrogram. The performance comparison
can be examined with the highlight arrows.
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;

;

.
The parameters in this simulation are the same as the initial
setting in the first simulation, except for . The step
size remains the same, i.e., , to allow comparison for
the proposed method and the method in [4], which has been
tuned empirically to an approximate optimum value for this
test. The estimation errors of [4] and the proposed method are

dB dB and dB dB, respectively.
The separation results are now plotted by spectrogram, which is
a clearer way to examine the time-frequency representation of
speech signals, and shown in Fig. 11. To calculate the spectro-
gram, we use a Hamming window with length 500, the size of
the overlap is 450, and the length of the FFT is 512. To evaluate
the separation result more generally, the comparison was made
to the method in [7] as well. By close observation to Fig. 11,
we found that the cross talk in the recovered signals by the pro-
posed method has been reduced to a lower level, as compared
to the other two methods.

Another method to quantify the performance is using signal
to interference ratio (SIR) [4],

SIR (31)

We conduct another experiment to further evaluate the proposed
method by testing the SIR improvement, which will be com-
pared with the methods in [4] and [8], respectively. The method
in [4] is a representative joint diagonalization method using the
off-diagonal criterion and SOS. The approach in [8] directly im-
plements the Jacobi angle-based joint diagonalization approach
in [25] to the frequency domain BSS. Note that we use a vari-
ation of this approach so that the permutation problem is ad-
dressed in the same way as in [4]. To this end, we employed the
simulated room environment, which was realized by a roommix
function available from [63]. One promising characteristic of
this function is that one can simulate any desired configuration
of speakers and microphones. In our experiment, the room is as-
sumed to be a 10 10 10 m cube. Wall reflections are com-
puted up to the fifth order, and an attenuation by a factor of two
is assumed at each wall bounce. We set the position matrices
of two sources and two sensors, respectively, as ,

(see Fig. 12). This setting constructs highly rever-
berant conditions. The parameters were set the same as those
in Fig. 11. The SIR is plotted in Fig. 13, which indicates that
the separation quality increases with the increasing filter length
of the separation system. The performance is highly related to
the data length, and it is especially clear when the filter length
becomes long. Fig. 13 also indicates that incorporating a suit-
able penalty can increase the SIR; however, it seems that the
proposed method suffers more heavily from the data length for
a long filter. Additionally, incorporating a penalty may change
the local minima, which can be observed from Fig. 13, as the

Fig. 12. Simulate a room environment using simroommix.m, where the sources
are set in symmetric positions.

Fig. 13. SIR measurement for a simulated room environment with high
reverberance.

SIR plots are not smooth, and the increased amplitude of the
two methods is not consistent with each other. From Fig. 13, we
can also see that exploiting spectral continuity of the separation
matrix (the proposed method and that in [4]) may have superior
performance to the method (e.g., [8]), which considers the sep-
aration at each frequency bin independently.

It should be noted that although the simulations are based
on the nonunitary constraint, the implementation of the uni-
tary constraint can be readily followed in a similar way. The
influence (including the situation of the penalties affecting the
convergence behavior and separation performance, as discussed
previously in this section) of the penalty function with unitary
constraint on the conventional loss criterion complies with the
same regulation discussed in Sections V and VI. However, as
observed in certain literature (see [22]), considering a nonuni-
tary constraint may outperform a unitary constraint because
of the unbalanced weighting of the misdiagonalization in the
unitary constraint. On the other hand, it is necessary to employ
a technique such as in [46] to preserve the unitary constraint
during adaptation. However, a fully unitary constraint does
not necessarily indicate a good separation performance (see
Section VI). In practical situations, it is not possible and not
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necessary to totally fulfill the constraint. According to the sim-
ulations in this section, a finite penalty can normally generate a
satisfactory solution (also see [39]).

One of the downsides of the proposed method is that although
introducing a penalty function can improve the convergence
performance and separation quality, it will inevitably increase
the computational complexity, depending on the penalty func-
tion being used in the algorithm. Therefore, it is required to
consider the practical situations of different applications when
implementing the proposed method. Another problem in the
implementation is that one needs to consider how much penalty
should be incorporated at every iteration, and an improper
penalty may lead the algorithm to fluctuation; a possible solu-
tion to this problem has been recently addressed in [60].

VIII. CONCLUSIONS

A new joint diagonalization criterion proposed for separating
convolutive mixtures of nonstationary source signals in the fre-
quency domain has been presented. Using the cross-power spec-
trum and nonstationarity of speech signals, the algorithm incor-
porates a penalty function to the conventional cost function in
the frequency domain, which leads to a different search direc-
tion to find the minimum of the cost function. The new crite-
rion transforms the separation problem into the joint diagonal-
ization problem with unconstrained optimization, which pro-
vides a unifying way to look at the orthogonal and nonorthog-
onal constraint joint diagonalization methods. An implementa-
tion example with nonunitary constraint and the evaluation by
numerical experiments verified the effectiveness of the proposed
criterion. It has been shown that a suitable penalty function may
lead the algorithm to a better performance for the separation of
the convolved speech signals, in particular, in terms of shape
preservation and amplitude ambiguity reduction, as compared
to the second-order-based nonstationary algorithm for convolu-
tive mixtures.

APPENDIX

DERIVATION OF (22) AND (24)

To calculate the gradient of the cost function, we can resort to
the first-order Taylor expansion of the cost function with respect
to a small perturbation. Suppose that the perturbation matrix of
separation matrix is . Then the perturbation of (18) reads

tr (32)

where is a small scalar, and is the real part of a complex
value. On the other hand

(33)

where , and can be ex-
panded separately

diag

diag

(34)

Omitting the time and frequency index for simplicity and re-
garding (5) and (9), (34) becomes (35) and (36), shown at the
bottom of the page, where , were ap-
plied in (36).

For the unitary constraint
, we have the perturbation

tr (37)

For the nonunitary constraint diag
, we have the perturbation

diag

diag diag

tr diag

(38)

Substituting (36) and (37) into (33) and comparing with (32),
we have the adaptation (22) for penalized joint diagonalization
with unitary constraint. Similarly, substituting (36) and (38) into
(33) and comparing with (32), we obtain the adaptation (24) for
penalized joint diagonalization with nonunitary constraint. It is

tr tr diag (35)

tr

tr diag

tr (36)
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worth noting that the adaptation (23) with respect to the noise
can be obtained by following the same procedure.
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