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information is therefore required. Practical issues, including the choice of the factorization rank and detection robustness to
instruments, are also examined experimentally. Due to the scalability issue with the generated nonnegative matrix, the proposed
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good performance of the proposed method, including comparisons between the three detection functions.
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1. INTRODUCTION

The aim of onset detection is to locate the starting point of
a noticeable change in intensity, pitch or timbre of sound. It
plays an important role in a number of music applications,
such as automatic transcription, content delivery, synthesis,
indexing, editing, information retrieval, classification, music
fingerprinting, and low bit-rate audio coding [1, 2]. For
example, robust detection of note onsets, note durations,
pitch frequencies, and melodies becomes a common require-
ment in a pitch to MIDI converter which is an important
component of many commercial music consoles and audio
signal processing software. A significant portion of music
information retrieval research has focused upon the problem
of note onset detection from audio signals, which forms a
basis of many algorithms for automatic beat tracking [3],
rhythm description [4], and temporal segmentation of audio
[5]. A recent study reveals that onset detection can also
provide useful cues for sound localization in spatial audio

[6]. Although onset detection is conceptually simple, it is
a challenging task in audio engineering when performing
robust automatic detection using computers. This is due
to several major difficulties, that is, identifying changes
in different notes with wide range of temporal dynamics,
distinguishing vibrato from changes in timbre, detecting fast
passages of musical audio, and extracting onsets generated
by different instruments. Consequently, onset detection
remains an open problem and demands further research
effort.

A variety of approaches has been proposed in the litera-
ture, with most of them sharing an approximately common
procedure, as depicted in Figure 1(a). A musical audio track
may be initially preprocessed to remove the undesired noises
and fluctuations. Then, a so-called detection function is
formed from the enhanced signal, such that the occurrence
of a note is made more distinguishable as compared with
the steady state of note transition. Finally, the locations
of onsets are determined by a peak-picking algorithm [1].
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Figure 1: Diagram of the onset detection: (a) the general scheme, (b) the proposed reduction strategy, that is, the scheme for deriving the
detection functions in this work.

Undoubtedly, the detection function is of great importance
to the overall performance of an onset detection algorithm.
For the onsets to be easily detected, a good detection
function should reveal sharp peaks at the locations of those
onsets, which would effectively facilitate the subsequent
peak-picking process. Therefore, our main attention here is
paid to the construction method of detection functions.

Although similar concepts relevant to human perception
have been used in most existing approaches to detect onset
changes, they are essentially very distinctive with regards
to the various types of signal information being employed
in the construction of detection functions. These include
the intensity change-based methods using temporal features,
for example, [7, 8]; the timbre change-based methods using
spectral features, for example, [9]; model based detection
methods using statistical properties, for example, [10], and
methods based on phase and pitch information of signals,
for example, [11, 12], among many others (see, e.g., [1] for a
recent review and more references therein).

In this paper, we propose a novel approach for onset
detection. This approach is essentially based on the repre-
sentation of audio content of the musical passages by a linear
basis transform, and the construction of the detection func-
tion from the bases learned by nonnegative decomposition of
the musical spectra. The overall detection scheme is shown in
Figure 1(b). In this scheme, musical magnitude (or power)
spectra of the input data are firstly generated using a discrete
Fourier transform (DFT). Then, the nonnegative matrix
factorization (NMF) algorithm is applied to find the crucial
features in the spectral data. With the transformed data, the
individual temporal bases are exploited to reconstruct an
overall temporal feature function of the original signal. The
detection function is thereby derived by taking the first-order
difference (or relative difference) of the feature function
whose sudden bursts are converted into narrower peaks for
easier detection.

The proposed approach has several promising proper-
ties. First of all, the proposed technique is a data-driven

approach, no prior information is needed, as otherwise
required for many knowledge-based approaches. Secondly,
thanks to the temporal features obtained implicitly from the
NMF decomposition, an explicit computation of the signal
envelope or energy function, which is required for many
existing intensity-based detection approaches, is no longer
necessary. Additionally, the NMF-based temporal feature
is more robust for both first-order difference and relative
difference as compared with direct envelope detection-based
approaches (this will be highlighted in the subsequent
simulation section).

Note that, due to the scalability issue with the generated
nonnegative matrix (see Section 3 for more details), the
proposed approach will only be applied to process relatively
short recordings in our experiments. Long recordings are
therefore not considered in this paper as more computing
time is required by the algorithm for handling the increased
size of the nonnegative matrix. Additionally, we focus only
on single instrument (or voice) recordings, even though
the proposed approach can, theoretically, be applicable to
multiple instrument (or voice) recordings.

The remainder of this paper is organized as follows. The
concept of NMF and the algorithm used in this work are
briefly reviewed in Section 2. The method for generating
the nonnegative spectral matrix from the input data is
presented in Section 3, where the method of how to apply
the NMF learning algorithm is also included. The proposed
detection functions based on, respectively, the first-order
difference, the relative difference, and a constant-balanced
relative difference, are described in Section 4. Section 5 is
dedicated to the experimental verification of the proposed
approach. Finally, conclusions are drawn in Section 6.

2. NONNEGATIVE MATRIX FACTORISATION

NMF is an emerging technique for data analysis that was
proposed recently [13, 14]. Given an M × N nonnegative
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Figure 2: The waveform of the original audio signal (a) and the
generated nonnegative magnitude spectrum matrix X (b). The
onset locations are marked manually with arrows.

matrix X ∈ R≥0,M×N , the goal of NMF is to find nonnegative
matrices W ∈ R≥0,M×R and H ∈ R≥0,R×N , such that

X ≈ WH, (1)

where R is the rank of the factorisation, generally chosen
to be smaller than M (or N), or a value which satisfies
(M + N)R < MN , which results in the extraction of some
latent features whilst reducing some redundancies in the
original data. To find the optimal choice of matrices W and
H, we should minimize the reconstruction error between X
and WH. Several error functions have been proposed for this
purpose [13–16]. For instance, an appropriate choice is to
use the criterion based on the squared Frobenius norm,

(
Ŵ, Ĥ

) = arg min
W,H

∥
∥X−WH

∥
∥2
F , (2)

where Ŵ and Ĥ are the estimated optimal values of W and
H, and ‖·‖F denotes the Frobenius norm. Alternatively, we
can also minimize the error function based on the extended
Kullback-Leibler divergence,

(
Ŵ, Ĥ

) = arg min
W,H

M∑

m=1

N∑

n=1

Dmn, (3)

where Dmn is the mnth element of the matrix D which is
given by

D = X� log
[

X� (WH)
]−X + WH, (4)

where� and� denote the Hadamard (elementwise) product
and division, respectively, that is, each entry of the resultant
matrix is a product and division of the corresponding
entries from two individual matrices, respectively. Although
gradient descent and conjugate gradient approaches can
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Figure 3: Detection results of the signal depicted in Figure 2.
Figures 3(a)–3(c) are the visualizations of row vectors of the matrix
Ho; (d) denotes the temporal profile of ho(k), that is, (9); (e)
visualizes the detection function (13); and (f) represents the final
onset locations.
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Figure 4: The visualisation of row vectors of Ho for rank R = 2.



4 EURASIP Journal on Advances in Signal Processing

7006005004003002001000

Time in frames

0.1

0.05

(a)

7006005004003002001000

Time in frames

0.1

0.05

(b)

7006005004003002001000

Time in frames

0.1

0.05

(c)

7006005004003002001000

Time in frames

0.1

0.05

(d)

Figure 5: The visualisation of row vectors of the matrix Ho for rank
R = 4.
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Figure 6: Temporal profile ho(k) changes with various R varying
from 1 to 5.

both be applied to minimize these cost functions, we are
particularly interested in the multiplicative rules developed
by Lee and Seung [14, 15]. These rules are easy to implement
and also have good convergence performance. Additionally,
a step-size parameter which is normally required for gradient
algorithms is not necessary in these rules. In compact form,
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Figure 7: A real piano signal containing twelve onsets is used for
showing the effect of the choice of R on the detection performance.
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Figure 8: Detection performance in terms of ho(k) (upper subplot)
and hor (k) (below subplot) remains relatively constant despite the
variable rank R.

the multiplicative update rules for minimizing criterion (2)
can be rewritten as

H ←− H� (WTX
)� (WTWH

)
, (5)

W ←− W� (XHT
)� (WHHT

)
, (6)

where (·)T is the matrix transpose operator, and ← denotes
iterative evaluation. The iteration of these update rules
is guaranteed to converge to a locally optimal matrix
factorization [15]. The rules (5) and (6) are used in our work.
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Figure 9: Four music audio signals played (or generated) by a (a)
guitar, (b) gun, (c) piano, and (d) whistle, respectively, containing
the same notes G4, A3, and E5 as those in the violin signal used in
Section 5.1.

3. NONNEGATIVE DECOMPOSITION OF
MUSICAL SPECTRA

For the NMF algorithm to be applied, we should first
prepare a nonnegative matrix that contains an appropriate
representation of the original data to be analyzed. Unlike
the image data analyzed in [14], musical audio data cannot
be directly used as they contain negative-valued samples.
In our problem, the nonnegative matrix X is generated as
the magnitude spectra of the input data, similar to [17].
We denote the original audio signal as s(t), where t is the
time instant. Using aT-point windowed DFT, a time-domain
signal s(t) can be converted into a frequency-domain time-
series signal as

S( f , k) =
T−1∑

τ=0

s(kδ + τ)w(τ)e− j2π f τ/T , (7)

where w(τ) denotes a T-point window function, j = √−1,
δ is the time shift between the adjacent windows, and f is a
frequency index, f = 0, 1, . . . ,T − 1. Clearly, the time index
k in S( f , k) is generally not a one-to-one mapping to the
time index t in s(t). If the whole signal has, for instance, L
samples, then the maximum value of k, that is, K , is given
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Figure 10: Comparison between the detection functions for the
guitar signal (see Figure 9(a)). Plots (a), (c), and (e) are detection
functions hoa(k), hor (k), and hob(k), respectively, and plots (b),
(d), and (f) are the onsets localised correspondingly using these
detection functions.

as K = 
(L − T)/δ�, where 
·� is an operator taking the
maximum integer no greater than its argument. (In practice,
zero-padding may be required to allow the remaining p (0 ≤
p < δ) samples in the end of the signal to be covered by the
analysis window.) Let S̃( f , k) be the absolute value of S( f , k),
we can then generate the following nonnegative matrix by
packing S̃( f , k) together,

X =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

S̃(0, 0) S̃(0, 1) · · · S̃(0,K − 1)

S̃(1, 0) S̃(1, 1) · · · S̃(1,K − 1)
...

...
...

...
S̃(T/2, 0) S̃(T/2, 1) · · · S̃(T/2,K − 1)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (8)

where only half of the frequency bins (from 0 to T/2 + 1)
are used since the magnitude spectra are symmetrical along
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Figure 11: Comparison between the detection functions for the
gunshot signal (see Figure 9(b)). Plots (a), (c), and (e) are detection
functions hoa(k), hor (k), and hob(k), respectively, and plots (b),
(d), and (f) are the onsets localised correspondingly using these
detection functions. Gunshot signals fluctuate more strongly as
compared with violin, guitar, and piano signals. The onset peaks
revealed by functions hoa(k) and hob(k) are not as strong as those
revealed by hor (k).

the frequency axis, and the dimension of X, that is, M × N ,
then becomes (T/2 + 1) × K [18]. This non-negative matrix
containing the magnitude spectra of the input signal will
be used for decomposition. It is worth noting that there is
a scalability issue with the generated matrix X, that is, if
the signal to be processed is very long, the constructed data
matrix X can be very large in dimension. In this work, we
focus on relatively short signals for which NMF does not pose
a problem in terms of computational loads.

Using the learning rules (5) and (6), X in (8) can be
effectively decomposed into the product of two nonnegative
matrices, denoted as Wo ∈ R≥0,(T/2+1)×R and Ho ∈ R≥0,R×K ,
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Figure 12: Comparison between the detection functions for the
piano signal (see Figure 9(c)). Plots (a), (c), and (e) are detection
functions hoa(k), hor (k), and hob(k), respectively, and plots (b),
(d), and (f) are the onsets localised correspondingly using these
detection functions. The detection functions reveal strong peaks at
the onset locations, while remaining relatively flat for the period of
note decaying, due to the relatively small variations of dynamics of
the piano signal.

that is, the corresponding local optimum values of W
and H, respectively, which are obtained when the learning
algorithm converges. An advantage of exploiting spectral
matrix (8) is that both the obtained basis matrices Wo

and Ho have meaningful interpretation. That is, Ho is a
dimension-reduced matrix which contains the bases of the
temporal patterns while Wo contains the frequency patterns
of the original data. For musical audio, these patterns can
be interpreted as the time-frequency features of individual
notes as the NMF learns a part-based representation of X
[14]. In practice, whether the learned parts reveal that the
true (very often latent) patterns of the input data depend on
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Figure 13: Comparison between the detection functions for the
whistle signal (see Figure 9(d)). Plots (a), (c), and (e) are detection
functions hoa(k), hor (k), and hob(k), respectively, and plots (b), (d) and
(f) are the onsets localised correspondingly using these detection
functions. The attack of the notes of the whistle signal is not as
strong as percussive audio, for example, guitar signal. Detection
functions hoa(k) and hob(k) are less accurate than hor (k) for revealing
the peaks of the onset attack.
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Figure 14: A realistic music signal played by a guitar.
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Figure 15: Comparison between the detection functions for the
real piano signal (see Figure 7). Plots (a), (b), and (c) are detection
functions hoa(k), hor (k), and hob(k), respectively, where the detected
onsets using these functions are marked with stars.

the choice ofR, for which, there has been no generic guidance
for different application scenarios. However, this issue turns
out not to be crucial in our application, as verified in our
simulations. It is worth noting that by using the magnitude
spectrum, we have actually ignored the phase information,
which can be useful for improving the detection performance
especially for the algorithms considering spectral features, as
examined in [1, 11]. However, as will be clear in the next
section, our detection functions are constructed from the
temporal basis of the factorization, which has the form of
a temporal feature. Therefore, phase information does not
have the same impact for the detection functions in this work
as those based on spectral features.

4. CONSTRUCTION OF DETECTION FUNCTIONS

By combining all the single parts together, we can reconstruct
the following time series:

ho(k) =
R∑

r=1

Ho
rk, (9)

where k = 0, . . . ,K − 1, and ho(k) provides an alternative
approach for the construction of an onset detection function.
To enhance the sudden changes in the signal to be detected,
we take the first-order difference of ho(k) as a detection
function, that is,

hoa(k) = d

dk
ho(k), k = 0, . . . ,K − 1, (10)

where d/dk is a difference operator for a discrete time series
(taken from its continuous counterpart derivative), that is,
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Figure 16: Comparison between the detection functions for the real
guitar signal (see Figure 14). Plots (a), (b) and (c) are detection
functions hoa(k), hor (k), and hob(k), respectively, where the detected
onsets using these functions are marked with stars.

taking the difference between two consecutive samples of the
series. Therefore, hoa(k) = ho(k)− ho(k − 1). In other words,
hoa(k) takes the absolute difference between the neigbouring
samples of ho(k) at discrete time instant k, hence it is able to
reveal sudden intensity changes in the signal. However, there
exists psychoacoustic evidence showing that human hearing
is generally more sensitive to the relative than to the absolute
intensity changes [19]. Therefore, we can also use a detection
function based on the first-order relative difference, that is,

hor (k) = (d/dk)ho(k)
ho(k)

. (11)

Note that, the major difference between hor (k) in (11) and
the detection function proposed by Klapuri [8] lies in the
different strategies taken for the construction of the temporal
profile. In [8], it is formed from the energy or amplitude
envelope of a group of subband signals obtained from the
original signal using a filterbank decomposition.

To consider a tradeoff between the performance by the
above two functions, we also introduce a constant-balanced
detection function,

hob(k) = (d/dk)ho(k)
η + ho(k)

, (12)

where η is a positive constant. By adjusting the constant η,
we can obtain the desirable performance in the interim that
may be achieved by (10) and (11) independently. To see this,
we consider two extreme cases. If η takes values approaching
to zero, that is, η → 0, in other words, η � ho(k), we
have hob(k) ≈ hor (k). On the other hand, if η � ho(k),
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Figure 17: Increasing the threshold used for localisation of
the onsets can improve the robustness against the instrumental
dynamics. In this example, the threshold is set to 0.6 for onset
detection of the gunshot signal (see Figure 9(b)). Plots (a), (c) and
(e) are detection functions hoa(k), hor (k), and hob(k), respectively, and
plots (b), (d), and (f) are the onsets localised correspondingly using
these detection functions. This figure is in contrast to Figure 11,
where the threshold is set to 0.3.

we have hob(k) ≈ (1/η)hoa(k), which means hob(k) will have
the same profile as that of hoa(k), with the only difference
a scaling factor. All the above three detection functions
are examined in our simulations. In fact, η has practical
advantage of preventing the denominator in (11) from being
zero. Effectively, (12) can also be written as the logarithm,

hob(k) = d

dk
log
(
η + ho(k)

)
, (13)

where log(·) is a natural logarithm-based function of its
argument.
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Figure 18: Adjusting the threshold used for localisation of the onsets can improve the robustness against the instrumental dynamics. In this
example, two different values of the threshold, that is, 0.1 (corresponding to subplots (b) and (e)) and 0.3 (corresponding to subplots (c) and
(f)) were used for onset detection of the piano and guitar signals, whose detection functions hor (k) are plotted in (a) and (d), respectively.
Subplots (b) and (c) show the locations of the onsets detected using the relative difference functions with the threshold set to 0.1 and 0.4,
respectively, for the piano signal, and (e) and (f) for the guitar signal.

5. NUMERICAL EXPERIMENTS

5.1. Detection example for a music audio signal

To illustrate the detection method described above, we first
apply the proposed approach to the onset detection of
a simple audio signal which was played by a violin and
contains three consecutive music notes G4, A3, and E5
(see Figure 2(a)), whose note numbers are 55, 45, and 64,
respectively, and whose frequencies are 196.0 Hz, 110.0 Hz,
and 329.6 Hz, respectively. (The MIDI specification only
defines note number 60 as “Middle C,” and all other
notes are relative. The absolute octave number designations
can be arbitrarily assigned. Here, we define “Middle C”
as C5.) The choice of the simplistic signal, together with
some others used in subsequent sections, is dictated by a
particular application scenario, where MIDI commands may
be used as controlling keys in some advanced music consoles
and software packages for hand-free but voice or music

assisted control of a mobile handset. In such applications,
the music audio signals adopted can be relatively short
and simple. However, realistic signals have also been tested
for thorough evaluations of the proposed approach. The
sampling frequency fs for this signal is 22050 Hz. The whole
signal has L = 149800 samples with an approximate length
of 6794 milliseconds. This signal is transformed into the
frequency domain by the procedure described in Section 3,
where the frame length T of the fast Fourier transform
(FFT) is set to 4096 samples, that is, the frequency resolution
is approximately 5.4 Hz. The signal is segmented by a
Hamming window with the window size set to 400 samples
(approximately 18 milliseconds), and the time shift δ to
200 samples (approximately 9 milliseconds), that is, a half-
window overlap between the neighbouring frames is used.
Note that, the choice of the window size is slightly different
from that in (7), for which the window size is identical to
FFT frame length (FFT number of points) T . Each segment
is then zero-padded to have the same size as T for FFT
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Figure 19: Comparison between the results of the proposed detection method and that based on RMS, where the plots are (a) hRMS(k), (b)
hRMS
a (k), (c) hRMS

r (k), (d) hRMS
b (k), (e) ho(k), (f) hoa(k), (g) hor (k), and (h) hob(k), respectively.

operation. The factorization rank R is set to 3, that is, exactly
the same as the total number of the notes in the signal. The
matrices W and H were initialized as two matrices whose
elements are absolute values of zero mean real i.i.d. Gaussian
random variables. The NMF algorithm was running over
100 iterations. In fact, the algorithms only took 11 iterations
to converge to a local minimum in this experiment. The
generated nonnegative magnitude spectrum matrix X is
visualized in Figure 2(b). Figure 3 demonstrates the process
described in Sections 3 and 4 (see also Figure 1(b)), where
the detection function (13) was applied, and the constant
η is set to 0.01. From Figures 3(a)–3(c), it is clear that the
NMF algorithm has learned the parts of the original signal,
and these three parts represent the individual notes in this

case. By summing up these three parts using (9), the overall
temporal profile ho(k) of the original signal is reconstructed,
as shown in Figure 3(d). After applying (13) to this profile,
the detection function hob(k) reveals apparent peaks on the
locations where the notes start to strike, see Figure 3(e).
The onset locations can thereby be easily determined by
thresholding the local maxima of hob(k), see Figure 3(f),
which are 630 milliseconds, 3016 milliseconds, and 5574
milliseconds, respectively.

5.2. On choice of factorization rank R

The rank R was chosen to be 3 in the above experiment,
as we know exactly how many latent parts are contained in
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Figure 20: Test results of TP and FP against different thresholds for the two real music signals in Figures 7 and 14. Plot (a) corresponds to
the proposed approach, and (b) to the RMS approach. The upper two plots correspond to the test results for the piano signal in Figure 7,
while the below two plots correspond to the test results for the guitar signal in Figure 14. In this test, twenty different thresholds between
0.025 and 0.5 were used.

this case. In many practical situations, however, the number
of hidden parts is not known a priori. Either a greater or a
smaller value of R than the real number of the latent parts
in the signal to be learned may be used for the factorization.
Unfortunately, there is no generic guidance on how to choose
optimally the rank R. Here, we show experimentally the
effect of R on the performance of our detection method.
We use the same experimental setup for the parameters as
above, except for R, which we change from 1 to 5. Figures
4 and 5 are the visualizations of matrix Ho with R equal
to 2 and 4, respectively. Figure 4(b) indicates that the total
parts have not been fully separated, as there are two parts
bound together in one row. Figure 5 shows that although all
parts have been separated as shown in (a) (c) and (d), there
is an extra row that may contain the weighted components
of all latent parts. Fortunately, these side effects are not

crucial in our application. Figure 6 plots ho(k) changing
with various R. We can see clearly that the profiles are very
similar for different R and only differ from their amplitude,
especially the change points of the intensity remain the same
for different R. This implies that various R still give the same
detection result.

Although a relatively simple signal was used in the
above experiment, the observations found here are also valid
for realistic music signals, for which we have performed
extensive numerical tests. As an example, a segment of
such a signal is shown in Figure 7, and ho(k) and hor (k)
changing with various R are shown in Figure 8. Although the
temporal profiles are obtained using various R differ in their
amplitude, hor (k) remains relatively the same for different R.
This promising property implies that a consistent detection
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Figure 21: Average results of TP against FP for a dataset containing
realistic music signals. Plots (a), (b), and (c) correspond to the
proposed approach, the RMS approach, and the method in [20],
where 14 different thresholds (shown as marks in each plot) were
used.

performance can be achieved even though R is not known
accurately.

5.3. Robustness to instruments

In Section 5.1, we have shown the good performance of the
proposed approach for the stimulus played by violin. How-
ever, the performance may vary for the stimuli played by var-
ious instruments, or generated in some other ways. Figure 9
shows four audio signals containing three consecutive music
notes G4, A3, and E5, which were played (generated) by a
guitar, gun (gunshot), piano, and whistle, respectively. (The
choice of the instruments in this experiment is dictated by
a specific application scenario, as described in Section 5.1.)
Figures 10(a), 10(c), and 10(e) show the detection functions
hoa(k), hor (k), and hob(k) obtained by applying (10), (11), and
(13) to the profile of the guitar signal in Figure 9(a), and
Figures 10(b), 10(d), and 10(f) show the onset locations
determined by thresholding the local maxima of hoa(k), hor (k),
and hob(k) respectively. Similarly, Figures 11, 12, and 13 are
the plots of the results of detection functions and the onset
locations of the gunshot, piano, and whistle signals in Figures
9(b), 9(c), and 9(d), respectively. Note that, we use the same
threshold as that in Section 5.1 for the localisation of the
onsets for all these instruments. Clearly, for guitar and piano
signals, hoa(k), hor (k), and hob(k) all provide robust estimates
of the note onsets. However, for gunshot and whistle signals,
the onsets detected using hoa(k) and hob(k) appear not only
at the correct location, but also at some false positions,
while the robustness of the detection function hor (k) remains
relatively consistent. These experiments indicate that the
robustness of the proposed method may vary with the
different instruments, due to their various dynamics. For
the onsets to be robustly detected, the detection functions

are expected to provide instrument relatively independent
performance. In this respect, hor (k) provides more robust
detection performance against the variations of instrumental
dynamics, as compared with those of detection functions
hoa(k) and hob(k).

To show the performance of the proposed method for
more realistic signals, we have performed tests based on a
commercial dataset containing signals played by different
instruments (see Section 5.6 for objective performance mea-
surements). As illustrative examples, apart from the signal
in Figure 7, we show another music signal played by a
guitar in Figure 14. The detection functions obtained for the
piano (Figure 7) and guitar (Figure 14) signals are plotted
in Figures 15 and 16, respectively, where subplots (a), (b),
and (c) show the detection functions hoa(k), hor (k), and hob(k),
respectively. From the detected onsets (marked with stars)
in each subplot, we can compare the performance of each
detection function. Note that the threshold in the peak-
picking stage was set to 0.2 for both tests. The observations
made for simplistic music signals are also valid for these
realistic signals played with different instruments.

5.4. Effect of thresholding

From the above section, we understand that the perfor-
mance of the proposed approach may be affected by the
instruments. Apart from using better detection functions,
the robustness can also be improved by applying additional
constraints, such as removing the false onsets if they fall
into a certain distance to a detected onset, as onsets may
occur in the order of one after another with a certain period
of time between each other. Another effective yet simple
way of improving the robustness against the stimuli is to
appropriately adjust the threshold used for the localisation of
onsets. Figure 17 shows that by increasing the threshold from
0.3 to 0.6, most of the false onsets detected in the gunshot
signal, that is, Figure 11, have almost been removed, and the
detection accuracy is greatly improved for detection func-
tions hoa(k) and hob(k). In Figure 18, applying two different
thresholds in the peak-picking stage for the relative detection
function hor (k) obtained from the real piano and guitar
signals (see Figures 7 and 14), the detected onsets may vary. A
small threshold may lead to some erroneous onsets, while a
big threshold may result in some true onsets being missed
out. It remains a practical challenge for finding optimal
thresholds which are relatively immune to signal dynamics.
In the literature, there are generally two main approaches for
choosing thresholds, that is, using either fixed or adaptive
thresholds [1]. In some situations, it may be required to
develop an adaptive thresholding scheme. However, these
schemes normally involve a smoothing (low-pass filtering)
process [1], and therefore lead to higher computational
complexity. Additionally, new methods (or parameters) may
be required to be introduced (or to be tuned) for removing
the fluctuations due to the smoothing process [1]. As the
aim of this work is to evaluate the performance of the
proposed detection functions, it is our interest to focus on
the fixed thresholding scheme. For this reason, the overall
performance evaluations in Section 5.6 are all based on
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Table 1: Onset detection results by the proprosed approach as compared with the true values marked manually. The deviations between the
estimated and the actual onset time are denoted in brackets.

Onset time (s) G4 A3 E5

Estimated by (10) 0.630 (0.016) 3.016 (0.007) 5.583 (0.023)

Estimated by (11) 0.612 (−0.002) 3.007 (−0.002) 5.556 (−0.004)

Estimated by (13) 0.630 (0.016) 3.016 (0.007) 5.574 (0.014)

Actual 0.614 3.009 5.560

fixed thresholds. However, we have tested many different
thresholds with the hope that such evaluations may provide
a general guideline for choosing an optimal threshold, and
also give useful clues for future development of an adaptive
scheme.

5.5. Comparisons with RMS approach

In this section, we compare the proposed approach with the
approach based on the direct detection of the signal envelope
using the root mean square (RMS), that is,

hRMS(k) =

√
√
√
√√

1
T

T−1∑

τ=0

(
s[kδ + τ]

)2
, (14)

where δ is the time shift, k denotes the frame index, and
T is the frame length. Expression (14) is a variation of
the detection function in [7]. For simplicity, the detec-
tion functions derived from (14), corresponding to those
described by (10), (11), and (13), respectively, in Section 4,
are denoted as hRMS

a (k), hRMS
r (k), and hRMS

b (k), respectively,
which are obtained simply by replacing ho(k) with hRMS(k).
To make an appropriate comparison, the parameters are
set to be identical for both approaches, as in Section 5.1.
In practical implementation, (11) is approximated by (13)
through setting η to be 10−22 (a trivial value approximating
zero). Figure 19 shows the results. From this figure, we can
see that, surprisingly, although the temporal profiles look
similar for both the RMS and NMF approaches, the derived
detection functions are relatively different, especially the
behaviours of hor (k) and hRMS

r (k) are very different. hor (k)
tends to be more balanced over the different onsets, while
hRMS
r (k) is seriously unbalanced which would make the

final step “peak-picking” depicted in Figure 1(a) much more
difficult, an optimal threshold is not easy to be accurately
predefined as the subsequent onset peaks may easily fall
down to the similar levels of noise components. Additionally,
by comparing Figures 19(a) and 19(e), it appears that ho(k) is
smoother than hRMS(k). This is a good property for ho(k), as
we find from Figures 19(b) and 19(f) that the fluctuations
in (b) may be too large to apply global thresholding for
peak-picking. Since the same window size has been used for
generating ho(k) and hRMS(k), it is likely that ho(k) is less
sensitive to the choice of window size. Similar properties have
also been found for other signals, such as the signals played
by piano and guitar (the results are omitted here). Note
that the analysis of the constant-balanced detection function
described in Section 4 is also confirmed by Figure 19.

To show the accuracy of the proposed approach, we list
in Table 1 the estimated locations of the onsets in Figures
19(f)–19(h) as compared with the values marked manually
(i.e., the true values). From this table, it is observed that the
onsets estimated by the difference function have slight delays
from the true values, while the relative difference function
provides more accurate estimates (i.e., they are closer to the
true values). The constant-balanced detection function offers
an intermediate performance that may be useful if there is
a dramatic unbalance across the amplitude of the various
onset peaks in the relative difference function. The maximum
estimation error for the relative difference function is less
than 5 milliseconds, which means the detection accuracy is
perfect in this case, as the human auditory system is not
capable of detecting gaps in sinusoids under 5 milliseconds
[19]. Although the difference function appears to be less
accurate, considering the window size and overlap are 18
milliseconds and 9 milliseconds in our experiment, respec-
tively, the accuracy of the first-order difference function is
also acceptable. This is because all the proposed detection
functions operate framewise on the spectrum data, and an
onset can be considered as correctly detected if it falls within
a window size of the predetermined onset position [1, 21].
Clearly, in this experiment, all the onsets detected by the
three detection functions can be deemed as accurate since
they all fall within a 25-millisecond window around the true
onset position. However, it is worth noting that a sample-
accurate onset detection may be obtained by preselecting
just those frames (and their surrounding frames) in which
the onsets are detected and by processing these frames in
sample-accuracy [22]. We would also like to point out that
the proposed approach is especially useful for percussive
audio signals, as the consistently informative amplitude
changes within the signals have been effectively used for the
formulation of the detection functions.

5.6. Objective performance evaluation

In this section, we evaluate the performance of the proposed
approach more objectively. Two performance indices were
used for this purpose, namely, the percentage of true
positives (i.e., the number of correct detections relative to
that of total existing onsets, denoted as TP for brevity) and
the percentage of the false positives (i.e., the number of
erroneous onsets relative to that of the total detected onsets,
denoted as FP for brevity) [1]. A detected note is considered
to be a true positive if it falls into one analysis window
within the original onset. Otherwise, it is considered as a false
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positive. In practice, there may exist a few missing notes not
being detected at all, which is reflected by the index of TP.

In the first experiment, the two signals in Figures 7
and 14 were used. The thresholds used for peak-picking
were increased gradually from 0.025 to 0.5 with a step
size 0.025, that is, 20 different thresholds were tested. The
proposed approach is compared with the RMS approach
as described in Section 5.5. The performance analysis in
the previous sections suggests that the relative difference
function provides the best results in most cases, we there-
fore focus only on this detection function. As shown in
Section 5.2, the performance of the proposed algorithm is
not sensitive to the choice of rank R, we therefore set R to
12 for both signals. Figure 20 shows the result. From this
figure, we can see that the proposed approach performs
much better especially for the guitar signal; though for the
piano signal, the performance difference between the two
approaches is trivial. In accordance with the observations
made in Section 5.4, an optimal threshold may be found by
considering TP and FP simultaneously, that is, maximizing
TP while minimizing FP. For example, for the piano signal,
0.2, can be regarded as an approximately optimal threshold
for both the proposed approach and the RMS approach.

To evaluate the performance more substantially, apart
from the RMS method, we have also considered another
approach in the literature [20]. All the approaches were
applied to a collection of realistic signals from a commercial
dataset, where 21 testing signals with each containing a
particular number of notes were tested. The thresholds
used for peak-picking were increased gradually from 0.1 to
0.425 with a step size 0.025, that is, 14 different thresholds
were tested. Note that, unlike the 20 thresholds used in
the previous experiment, we discarded the relatively small
(e.g., 0.025) and big (e.g., 0.5) thresholds in these tests as
they either give a large number of false detections or miss
many correct notes. The average performances based on
these test signals are shown in Figure 21, which shows the
change of TP versus FP for all 14 tested thresholds. The
closer the plot approaches to the top-left corner of the figure,
the better performance the approach may have. It is clear
from this sense that the proposed approach performs better
than the method in [20] and the RMS approach. From this
figure, an optimal threshold can also be found if the TP-
FP point for this particular threshold approaches the top-
left corner. As is well known, music signals are composed
of different notes, no matter whether they are complicated
or not, from one instrument or multiple instruments. Each
note can be regarded as a “part” of the whole signal. This
agrees conceptually with the promising property of the
NMF technique, that is, decomposing data into a part-based
representation. For music signals, it naturally decomposes
the data into different musical events, that is, individual parts
of the musical signals. This might be the reason why NMF
features perform well for the purpose of onset detection.

6. CONCLUSIONS

We have presented a new onset detection approach for
musical audio by using nonnegative decomposition of a

magnitude spectrum matrix. Based on the nonnegative basis
learned from the factorization, we have constructed three
feasible detection functions, in which the relative difference
detection function provides the best performance against
instrumental dynamics. The proposed technique has also
been compared with the RMS envelope-based approach and
its advantages have been shown. The numerical examples
provided have supported the good performance of the
proposed technique for onset detection.
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The growing diffusion of new services, like mobile television
and video communications, based on a variety of transmis-
sion platforms (3G, WiMax, DVB-S/T/H, DMB, DTMB, In-
ternet, etc.), emphasizes the need of advanced video coding
techniques able to meet the requirements of both the receiv-
ing devices and the transmission networks. In this context,
scalable and layered coding techniques represent a promising
solution when aimed at enlarging the set of potential devices
capable of receiving video content. Video encoders’ configu-
ration must be tailored to the target devices and services that
range from high definition for powerful high-performance
home receivers to video coding for mobile handheld devices.
Encoder profiles and levels need to be tuned and properly
configured to get the best trade-off between resulting quality
and data rate, in such a way as to address the specific require-
ments of the delivery infrastructure. As a consequence, it is
possible to choose from the entire set of functionalities of the
same video coding standard in order to provide the best per-
formance for a specified service.

This special issue aims at promoting state-of-the-art re-
search contributions from all research areas either directly
involved in or contributing to improving the issues related
to video coding technologies for broadcast applications.

Topics of interest include (but are not limited to):

• Video codec design methodology and architecture for
broadcast applications

• Advanced video compression techniques for mobile
broadcasting

• Content-based and object-based video coding
• Layered and scalable video coding for fixed and mobile

broadcasting
• Mobile and wireless video coding
• Video trans-coding/trans-rating methods for broad-

cast applications
• Video rate control techniques
• Human visual system in distortion metrics, activity

measure methods in video sequences
• High definition video coding
• Distributed video coding in broadcast applications
• Multi-view coding-/-3D video coding

• Service enhancement through “cross-layer” optimisa-
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• Error resilience, intelligent robustness enhancement,
and error concealment for broadcast applications
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In recent years, the widespread adoption of multimedia com-
puting, the deployment of mobile and broadband networks,
and the growing availability of cheap yet powerful mobile
have converged to gradually increase the range and complex-
ity of mobile multimedia content delivery services for devices
such as PDAs and cell phones. Basic multimedia applications
are already available for current generation devices, and more
complex broadcasting services are under development or ex-
pected to be launched soon, among which mobile and inter-
active television (ITV). Among the many challenging issues
opened by these developments is the problem of personaliza-
tion of such services: adaptation of the content to the techni-
cal environment of the users (device and network type) and
to their individual preferences, providing personalized assis-
tance for selecting and locating interesting programes among
an overwhelming number of proposed services.

This special issue is intended to foster state-of-the-art re-
search contributions to all research areas either directly ap-
plying or contributing to solving the issues related to digital
multimedia broadcasting personalization. Topics of interest
include (but are not limited to):

• Mobile TV
• Mobile multimedia broadcasting personalization
• Interactive broadcasting services/interactive television
• Personalization and multimedia home platform

(MHP)
• Multimedia content adaptation for personalization
• User behavior and usage modelling
• Standards for modelling and processing (MPEG-21,

CC/PP, etc.)
• Personalization issues in DVB-H, DMB, MediaFLO,

CMMB, MBMS, and other systems
• Mobile web initiative
• Personalized multimedia and location-based services
• Security and digital rights management
• Applications for personalized mobile multimedia

broadcasting with cost-effective implementation
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The performance of image and video analysis algorithms
for content understanding has improved considerably over
the last decade and their practical applications are already
appearing in large-scale professional multimedia databases.
However, the emergence and growing popularity of social
networks and Web 2.0 applications, coupled with the ubiq-
uity of affordable media capture, has recently stimulated
huge growth in the amount of personal content available.
This content brings very different challenges compared to
professionally authored content: it is unstructured (i.e., it
needs not conform to a generally accepted high-level syntax),
typically complementary sources are available when it is cap-
tured or published, and it features the Şuser-in-the-loopŤ at
all stages of the content life-cycle (capture, editing, publish-
ing, and sharing). To date, user provided metadata, tagging,
rating and so on are typically used to index content in such
environments. Automated analysis has not been widely de-
ployed yet, as research is needed to adapt existing approaches
to address these new challenges.

Research directions such as multimodal fusion, collabora-
tive computing, using location or acquisition metadata, per-
sonal and social context, tags, and other contextual informa-
tion, are currently being explored in such environments. As
the Web has become a massive source of multimedia content,
the research community responded by developing automated
methods that collect and organize ground truth collections
of content, vocabularies, and so on, and similar initiatives
are now required for social content. The challenge will be to
demonstrate that such methods can provide a more powerful
experience for the user, generate awareness, and pave the way
for innovative future applications.

This issue calls for high quality, original contributions fo-
cusing on image and video analysis in large scale, distributed,
social networking, and web environments. We particularly
welcome papers that explore information fusion, collabora-
tive techniques, or context analysis.

Topics of interest include, but are not limited to:
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• Using collection contextual cues to constrain segmen-
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and personalized visual search

• Visual content analysis employing social interaction
and community behavior models

• Using folksonomies, tagging, and social navigation for
visual analysis
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