IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 13, NO. 2, MAY 2019

359

Monaural Source Separation in Complex Domain
With Long Short-Term Memory Neural Network

Yang Sun Y, Student Member, IEEE, Yang Xian

and Syed Mohsen Naqvi

Abstract—In recent research, deep neural network (DNN)
has been used to solve the monaural source separation problem.
According to the training objectives, DNN-based monaural speech
separation is categorized into three aspects, namely masking,
mapping, and signal approximation based techniques. However,
the performance of the traditional methods is not robust due
to variations in real-world environments. Besides, in the vanilla
DNN-based methods, the temporal information cannot be fully
utilized. Therefore, in this paper, the long short-term memory
(LSTM) neural network is applied to exploit the long-term speech
contexts. Then, we propose the complex signal approximation
(cSA), which is operated in the complex domain to utilize the phase
information of the desired speech signal to improve the separation
performance. The IEEE and the TIMIT corpora are used to gen-
erate mixtures with noise and speech interferences to evaluate the
efficacy of the proposed method. The experimental results demon-
strate the advantages of the proposed cSA-based LSTM recurrent
neural network method in terms of different objective performance
measures.

Index Terms—Deep neural networks, monaural speech separa-
tion, long short-term memory, complex signal approximation.

I. INTRODUCTION

OURCE separation has attracted a remarkable amount of
S attention due to its potential use in several real-world ap-
plications such as automatic speech recognition (ASR), assisted
living systems and hearing aids [1]-[6]. In these applications,
well separated signals are required for the system to work prop-
erly. According to the number of channels, the source separa-
tion problem is classified into multichannel, binaural-channel
and single-channel (monaural) categories. The monaural source
separation problem still remains an important research chal-
lenge, because only one recording is available and the spatial
information that can be extracted is limited [7].
Many approaches have been developed to address the
monaural source separation problem. For example, in signal
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processing-based methods, Loizou estimated the ideal Wiener
filter and reconstructed the target signal in the minimum mean
squared error (MMSE) sense [8]. While in model-based meth-
ods, the non-negative matrix factorization (NMF) [9] is ex-
ploited to separate signals from a single channel mixture [10].
Grais and Erdogan modelled the noisy observations based on
weighted sums of non-negative sources [11]. However, these
methods are limited when dealing with acoustic mixtures cap-
tured in real environments, for instance, in low signal-to-noise
ratio (SNR) conditions, with unseen noises in the mixture and
limited computational resources. Therefore, in real-environment
scenarios, it is difficult to obtain the target speech signal
with high quality consistently by using the above mentioned
methods [12].

Recently, the DNN-based techniques have been introduced,
where the trained neural network model is used to reconstruct
the desired speech signals. According to the training objec-
tives, DNN-based monaural speech separation is categorized
into three aspects, namely masking, mapping and signal ap-
proximation (SA) based techniques.

In masking-based DNN approach, the ideal time-frequency
(T-F) mask is applied as the training target of the neural network
models. The T-F mask predicted by the trained model is applied
to the mixture to reconstruct the desired speech signal. The pre-
dicted T-F mask can be categorized as a binary or soft mask. In
the binary mask, each T-F unit of the mask was assigned as 1 or
0 according to the criterion for the active source [13], [14]. For
example, Jin and Wang exploited an ideal binary mask (IBM) as
training target, and obtained promising separation results [15].
However, due to the hard decisions from the IBM, the sepa-
rated speech signal of the IBM-based method is distorted. In
the soft mask, also known as ideal ratio mask (IRM), the T-F
unit was assigned as the ratio of target source energy to mix-
ture energy [12]. By using the IRM, Zhang and Wang proposed
a deep ensemble method to further improve the performance
of the IRM [12]. Compared with the IBM, the desired speech
signal separated by IRM often has better quality, e.g. with less
musical noise artefacts. Although these DNN-based techniques
offer state-of-the-art performance, the masks including the IBM
and the IRM do not utilize the phase information of the tar-
get signal when synthesizing the clean speech signal. Wang
and Lim considered phase information to be unimportant in
speech enhancement [16], but Erdogan et al. have shown that the
phase information is beneficial to predict an accurate mask and
the estimated source [17]. Consequently, in [18], Williamson
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et al. employed both the magnitude and phase spectra to es-
timate the complex IRM (cIRM) by operating in the complex
domain.

In mapping-based DNN approach, the training target is the
spectrum of the clean speech signal and the neural network
model is trained to estimate the clean spectrum of desired speech
signal. In [19], the DNN model was trained to learn the relation-
ship between the spectrum of the mixture and the clean spectrum
of the target signal to address the dereverberation and denoising
problems. However, compared with the masking- and SA-based
approaches, it is more difficult to obtain a well trained neural
network model, due to the large value ranges in the spectrum of
the clean speech signal at each T-F point.

In the SA-based DNN approach, the training target is the spec-
trum of the clean speech signal, which is indirectly obtained by
the T-F mask estimated by a trained model which minimizes the
discrepancy between the estimated spectrum and the spectrum
of the clean speech signal. The original SA-based (0SA) DNN
method does not utilize the phase information to reconstruct
the target signal [20]. Moreover, with different environmental
noises, the separation performance of the DNN-based methods,
which are trained with either an IRM or clean signal spectra, are
not robust.

In this architecture, the temporal information cannot be fully
used, hence, the recurrent neural network (RNN) is introduced
as the framework of the monaural source separation. Huang
et al. have shown that the recurrent unit is beneficial to predict
an accurate mask and improve separation performance [1]. By
using the LSTM block instead of the regular network units, Chen
and Wang utilized the LSTM neural network in the monaural
source separation and the evaluations confirmed the improve-
ment of the separation performance [21]. Sun et al. compared
the mapping- and masking-based LSTM RNN methods in
speech enhancement with different SNR levels and background
noise [22]. However, these LSTM-based methods are applied
with SA or IRM, where the clean phase information was not
used.

To address the above mentioned issues, we propose an im-
proved method where the LSTM neural network is used to es-
timate the cIRM, and then a cSA-based LSTM RNN method is
presented to recover the desired speech signal from the cIRM.

In summary, the contributions of this paper are:

1) A Y-shaped LSTM RNN is exploited to predict the cIRM
as the training target, in order to utilize the phase infor-
mation of the clean speech signal.

2) The cSA-based LSTM RNN method is proposed, where
both real and imaginary components of the spectrum are
used as the training targets.

3) Several complex domain separation methods with differ-
ent neural network architectures are compared.

The rest of the paper is organized as follows. In Section II, the
background knowledge related to the training targets in recent
monaural source separation methods is described. Section III in-
troduces the LSTM-based method and the proposed cSA-based
source separation method. Section IV presents the experimental
settings and results with the IEEE and the TIMIT corpora [23],
[24]. The conclusions and future work are given in Section V.

II. MONAURAL SOURCE SEPARATION WITH
NEURAL NETWORKS

Recently, neural networks have been adopted as a regression
model to solve the source separation problem, especially, in the
monaural case. In this section, some background of the network
architectures and training targets will be described.

A. Network Architectures

Generally, there are three fundamental and commonly used
neural network architectures: DNN, RNN and convolutional
neural network (CNN) [25]. All the above mentioned methods
are based on the vanilla DNN, which is a feed-forward neural
network model, and in this paper, all the DNNs are referred
to the vanilla DNN. In monaural source separation, most of
the approaches are based on DNNs or RNNs due to their rela-
tively low complexities and effectiveness in solving the source
separation problem. In addition, some advanced architectures
have also been investigated, such as deep recurrent neural net-
work (DRNN) [1], [26] and LSTM RNN [21], [22], [27]. Huang
et al. applied the DRNN as neural network model to solve the
monaural source separation problem where only specified hid-
den layers have connected units [1]. Compared with the DNN
and RNN, the DRNN has a better trade-off between computa-
tional cost, storage space and the ability to employ temporal
information. The LSTM RNN is able to store information in
memory cells over a long period and the temporal information
can be utilized more efficiently than the vanilla RNN [28]. By
using the LSTM RNN, the speaker generalization ability of the
source separation method can be improved, which is confirmed
in [21]. Hence, the LSTM RNN is used as the framework of the
proposed method.

If the training targets are given in the complex domain i.e.
cIRM, the outputs of the DNN or the LSTM RNN are dual,
with two sub-output layers, one for the real component and the
other for the imaginary component of the estimation. Therefore,
the shapes of DNN and the LSTM RNN will be changed with
the types of training objectives. The architecture of the Y-shaped
neural network is depicted in Fig. 1, where the output predictions
are jointly optimized [29].

B. Training Targets

Based on the training targets, the monaural source separa-
tion technique can be divided into three categories: masking-,
mapping- and signal approximation (SA)-based, respectively.
Both mapping- and SA-based approaches use the spectrum of
the clean speech signal as a training target. In mapping-based
approach, the value range of the spectrum at each T-F point is
large, i.e. [0, +00). In SA-based approach, however, the spec-
trum of clean speech signal is obtained by the predicted T-F
mask, with a value range in [0, 1]. In comparison, the SA-based
approach can lead to more accurate neural network model than
the mapping-based method.

There are two differences between SA- and masking-based
approaches. First, the training target of the masking-based
approach is an ideal T-F mask, which is calculated by using
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Fig. 1.  Y-shaped neural network architecture, which has two sub-output lay-
ers. The sub-output layer 1 and the sub-output layer 2 yield the real and imagi-
nary components of the estimation, respectively.
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the target signal and the speech mixture, while in the SA-based
approach, the training target is the spectrum of the clean speech
signal. Second, although the T-F mask is estimated in both
SA- and masking-based approaches, in SA-based approach, the
estimated T-F mask is exploited to minimize the discrepancy
between estimated spectrum and the spectrum of the clean
speech signal. The T-F mask is not directly used as the training
target which is the main difference between the SA- and
masking-based approaches. In this subsection, two state-of-the-
art T-F masks are described. The IRM and the cIRM are the
two training targets often chosen in masking-based approach.

1) Ideal Ratio Mask: Assume at discrete time m, the clean
speech signal is s(m), the interference is i(m), and the mixture
is y(m) = s(m) 4+ i(m). After applying the short time Fourier
transform (STFT), the mixture is expressed as:

Y(t, f) =St f) + 1t f) (D

where f is the index of the frequency bins and ¢ is the index
of the time frames; Y (¢, f), S(¢, f) and I(¢, f) are the Fourier
transforms of the mixture, clean signal and interference, re-
spectively. Besides, employing the ideal T-F mask M (¢, f), the
spectrum of the clean speech can be reconstructed as:

S(t, f) =Y (&, f)M(t, f) 2
The M (t, f) as an IRM can be defined as:

1S(t, )2 ’
t,f>|2+f<t,f>|2> )

where [ is a tunable parameter to scale the mask, |S(¢, f)]
denotes the magnitude spectrum of the clean speech signal and
|I(t, f)| denotes the magnitude spectrum of the interference
signal, respectively.

In IRM, only magnitude information is exploited, however,
phase information is also important [30].

Mgy (L, f) = (|S(

2) Complex Ideal Ratio Mask: Since the phase information
of the spectrum is important, the cIRM was proposed [18], [31].
To calculate the cIRM, the STFTs of the mixture, clean signal
and the cIRM are written as:

Y(t’f):}/’r'(taf)""j}/c(t’f) “4)
S(tvf):ST(t7f)+jSC(t7f) (5)
Merpa (t, f) = Mergra, (t, f) + §-Merraa, (t, ) (6)

where j £ \/—1 and the subscripts ‘r’ and ‘c’ indicate the real
and the imaginary components in the STFTs, respectively. The
M_rra (¢, f) is the T-F unit of the cIRM, which is defined as:

Yo (t, £)Sr (&, f) + Ye(t, ))Se(t, f)
Y2 )+ Y2 )

.Y;(tvf)sc(t7f) - Y;:(taf)sr(taf)
TR R ) @

The cost function of the cIRM-based DNN is expressed as:

Jerrm = ZZ{( e1ru, (t, f) — JV-’EIRM,(Lf))2

Mrru(t, f) =

. 2
+ (MCIRJ\L (t, f) = Mcrru, (t, f)) ] (8)

where the M, (t, f) is the T-F unit of the estimated cIRM.
In the cIRM-based approach, both the magnitude and phase
responses are obtained to recover the target signal [18].

III. ALGORITHM DESCRIPTION
A. Complex Signal Approximation
In the mapping-based approach, the training target is the

spectrum of the clean speech signal. The cost function of the
mapping-based approach is written as:

ZZ 5@t )l =15t f))* ©)

mappzng

where S(t, f) is the STFT of the estimated source. Hence, the
clean spectrum of the target signal can be estimated by minimiz-
ing the error between the estimated spectrum and the spectrum
of clean speech signal. While, due to the large value range of
the T-F points in the spectrum, the network model is difficult to
train [18].

The SA-based approach combines the mapping- and
masking-based approaches. The training target in the oSA-based
method is the spectral magnitude of clean speech, which is
equivalent to the mapping-based approach. The cost function in
the 0SA-based method can be written as:

Josa = ZZ ¥ (6 ) NLsalt, )]~ 1S(2, )Y

where the predlcted T-F mask in the oSA-based method is
M, 4(t, f), which is used to obtain the estimated spectrum
S(t, f). The T-F mask is predicted in the 0SA-based neural
network to minimize the discrepancy between the magnitude
spectrum of mixture and that of the clean speech signal, which

(10)
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is similar to masking-based approaches. Hence, using the mag-
nitude spectrum of the clean signal as the training target can
increase the accuracy of the estimated T-F mask and improve
separation performance.

However, the 0SA-based method has the same problem as
the IRM-based method where the phase information of the tar-
get signal is not used when reconstructing the desired signal.
Therefore, inspired by the cIRM, the cSA-based method is pro-
posed, which replaces the IRM by cIRM in the training process
to estimate both real and imaginary components of the clean
speech signal. One could use the magnitude and phase informa-
tion, instead of the real and imaginary components, as training
targets, are exploited. However, our empirical tests show that
using the real and imaginary components as trainning targets
offers better separation performance. Hence, in the cSA-based
method, the real and imaginary components of the desired clean
speech signal are used as training targets.

In the cSA-based method, the estimated spectrum of the clean
signal is obtained by applying the predicted complex T-F mask,
defined as Mw A.

Similarly, the real component of the estimated clean spectrum
in the cSA is expressed as:

Sp(t, f) = Mega, (8, )Y, (t, f) — Mesa, (8, f)Ye(t, f) (11)

The imaginary component of the estimated clean spectrum is
calculated as:

Se(t f) = Mesa, (8, ))Ye(t, f) + Mesa, (t, )Y (8 f) (12)

In the proposed cSA-based LSTM RNN method, when the
Y-shaped neural network model is used, the shared weights in
the hidden layers cannot be fully used for both components, and
this may have negative impacts on the estimations, and thus the
separation performance. Our empirical tests show that using two
networks performs better than stacking the two components in
one network. In the cSA-based method, the real and imaginary
components are estimated separately and two neural network
models are trained with real and imaginary components of the
cIRM. The cost functions can be expressed in the complex
domain with the real and imaginary components. According to
(11) and (12), the expanded cost functions of the cSA-based

method are:
ZZ [( esa, (6 f)Y:(t, f)
s, (6 Yol f)) sy
ZZ [( esa, (6 )Ye(t, f)
s, (DY) - S0 )] A

The architecture of the neural network model for the cSA-
based method is shown in Fig. 2, it has two output layers, the
T-F mask is obtained in the additional output layer and the
estimated component of the clean spectrum is obtained with
the final output layer. If the training target is the imaginary

Final Output Q ce e Q
Layer
Additional oo
Output Layer

[ =\

S
P

N >/

Hidden Layers

Input Layer

Fig. 2. Proposed neural network architecture, where a linear output layer is
added before the final output layer to obtain the estimated speech signal. The
output of the neural network model is related to the training target.

component, the T-F mask is employed to estimate the imaginary
component.

However, in the vanilla DNN, the temporal information can-
not be fully used, which impacts on the separation performance.
To address this limitation, the vanilla RNN and its improved
version e.g. the LSTM RNN, which uses the LSTM block in
the vanilla RNN, has been used for the challenging monaural
source septation problem [27], [28]. In the cIRM- and the pro-
posed cSA-based methods, the LSTM RNN is applied in this
work for monaural source separation. The frameworks of the
cIRM- and the cSA-based LSTM RNN methods are discussed
in the following subsection.

B. LSTM RNN-Based Methods in the Complex Domain

Different from the vanilla DNN, which can only use con-
text window to capture temporal dependencies, the LSTM
RNN stores the temporal information in the cell, therefore,
the long temporal dependencies can be utilized. In the DNN-
based method, the neural network model is trained with back-
ward propagation algorithm [18] but in the LSTM RNN-based
method, the backward propagation through time algorithm is
exploited [28]. The LSTM block in the proposed method is
composed of a cell, an input gate, an output gate and a forget
gate, similar to the structure in [21].

After the hidden states are obtained from the LSTM blocks,
the output layer is added to generate the output of the LSTM
RNN. The activation function of the output layer is selected as
a linear function. For complex domain monaural source separa-
tion, the estimated phase information of clean speech signal is
used to recover the desired speech signal. Then, by introducing
the LSTM RNN, the temporal information is utilized. Besides,
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based LSTM RNN method. Two LSTM RNNs are trained with the separate
training targets, e.g., the real and the imaginary components of the STFT of
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if the training target of the LSTM RNN is the cIRM, the neu-
ral network is Y-shape and two sub-output layers are added as
shown in Fig. 1. In the cSA-based LSTM RNN method, two
LSTM RNNs are exploited to predict the real and imaginary
components in parallel and both LSTM RNNs have the same
configuration.

In the proposed cSA-based LSTM RNN method, inspired
by [18], [25] and vanilla DNN methods, the feature combi-
nation is given to the input layer to increase the efficiency of
the networks and system. The amplitude modulation spectro-
gram (AMS) [32], relative spectral transform and perceptual
linear prediction (RASTA-PLP) [33], mel-frequency cepstral
coefficients (MFCC), cochleagram response and their deltas are
extracted by a 64-channel gammatone filterbank to obtain the
compound feature [34]. Furthermore, in the 0SA- and the cSA-
based methods, the spectra of the mixture and the clean signal
are given to calculate the spectrograms of the predicted clean
signal and the training objective, respectively.

The flow diagram of the proposed cSA-based LSTM RNN
method is shown in Fig. 3.

In the training stage, by using the targets calculation module,
the STFTs of speech source and mixture are obtained. Then, the
real and imaginary components of STFT of the speech source
are used as the training targets for LSTM RNN 1 and LSTM
RNN 2, respectively. The outputs of the LSTM RNN models are
obtained by multiplying the estimated T-F mask with the STFT
of the mixture. After each iteration, the estimated T-F mask is
trained to minimize the discrepancy between the spectrum of
the clean speech signal and that of the estimated source signal.

In the testing stage, the trained LSTM RNNSs can output the
real and imaginary components of the estimated speech signal
when the feature combination of the mixture is used as in-
put. Then, the STFT of the separated speech is obtained in the

compound module and the separated speech signal is recon-
structed in the reconstruction module.

Compared with the oSA-based DNN method, the proposed
cSA-based LSTM RNN method has two advantages:

(1) In traditional oSA-based DNN method, the noisy phase
information is used to synthesise the desired speech signal. How-
ever, in the proposed cSA-based LSTM RNN method, both clean
magnitude and phase information are estimated.

(2) The LSTM blocks are introduced with the RNN, the tem-
poral information can be better utilized and the trained LSTM
RNN models have better generalization ability.

IV. EVALUATIONS AND RESULTS

In this section, we evaluate the cIRM- and oS A-based method
with the vanilla DNN and the LSTM RNN to show the advantage
of LSTM RNN over the vanilla DNN. Then, we show the results
of the proposed cSA-based LSTM RNN method. Firstly, the
interference is selected as the noise, in both seen and unseen
scenarios. Then, the interference is chosen as the undesired
speech signal which is unseen in the training stage. Therefore,
the generalization ability of these methods can be evaluated.

A. Experimental Settings

1) Datasets: The speech sources are selected randomly from
the IEEE and the TIMIT corpora [23], [24]. The IEEE corpus
has 720 clean utterances spoken by a single male speaker and
the TIMIT database has 6300 utterances, 10 utterances spoken
by each of 630 speakers. Therefore, using both the IEEE and
the TIMIT corpora can demonstrate that the proposed method
is speaker-independent. We randomly select 1000, 100 and 200
clean utterances from the IEEE and the TIMIT corpora to gen-
erate the training, development and testing datasets.

The interferences are categorized into two aspects, the noise
interference and the undesired speech interference. In the seen
noise interference cases, these clean speech utterances are mixed
with five different noise types at three different SNR levels
(—3 dB, 0 dB and 3 dB). These five noise scenes are named as
factory, babble, cafe, f16 and tank. The names of these noise
signals indicate their recording situations. The above mentioned
noise signals are selected from the NOISEX database [35]. Each
noise sequence is four minutes long, which is truncated ran-
domly from the first two minutes to match the lengths of the
speech signals to generate the training mixtures. The last two
minutes are used to generate the development and testing mix-
tures. In this case, although the noise interference in the testing
dataset is unseen, the noise type is known.

In the unseen noise interference cases, 50 different noise sig-
nals are used to generate the training, development and testing
datasets and 50 noise signals are only used to generate the test-
ing data. These non speech sounds contain many different types
of noise, e.g. animal sounds, tooth brushing sounds and machine
noise [36]. Finally, the number of mixtures in training, devel-
opment and testing data is 12,000, 1200 and 2400, respectively.
The training speech duration is around 10 hours and 100 types
of different noise signals are used in the unseen cases.
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TABLE I
SEPARATION PERFORMANCE COMPARISON IN TERMS OF STOI WITH DIFFERENT TRAINING TARGETS, NOISES AND NEURAL NETWORK ARCHITECTURES,
THE SNR OF THESE MIXTURES IS —3 DB. EACH RESULT IS THE AVERAGE VALUE OF 200 EXPERIMENTS. Italic SHOWS THE PROPOSED METHODS.
BOLD INDICATES THE BEST RESULT

STOI Unprocessed | cIRM-DNN [18] | ¢I[RM-LSTM | oSA-DNN [1] | oSA-LSTM | c¢SA-LSTM
Factory 60.35% 68.31% 70.59% 70.21% 72.42% 73.57%
Babble 57.04% 69.22% 70.00% 68.33% 74.12% 76.70%

Cafe 58.07% 65.45% 68.62% 66.11% 69.03% 75.44%

F16 62.54% 71.11% 72.58% 72.02% 74.17% 75.20%

Tank 70.93% 75.48% 79.04% 76.11% 85.35% 86.77%

Averaged 61.79% 69.91% 72.17% 70.56% 75.01% 77.54%
TABLE II

SEPARATION PERFORMANCE COMPARISON IN TERMS OF STOI WITH DIFFERENT TRAINING TARGETS, NOISES AND NEURAL NETWORK ARCHITECTURES,
THE SNR OF THESE MIXTURES IS 0 DB. EACH RESULT IS THE AVERAGE VALUE OF 200 EXPERIMENTS. [falic SHOWS THE PROPOSED METHODS.
BOLD INDICATES THE BEST RESULT

STOI Unprocessed | cIRM-DNN [18] | cIRM-LSTM | oSA-DNN [1] | oSA-LSTM | c¢SA-LSTM
Factory 67.42% 74.20% 77.92% 76.33% 78.92% 79.59%
Babble 64.22% 73.87% 76.81% 72.91% 78.99% 79.47%

Cafe 63.21% 70.36% 75.38% 71.38% 75.44% 77.61%

F16 65.31% 74.20% 77.26% 74.87% 79.77% 80.13%

Tank 75.34% 80.92% 83.75% 81.25% 87.51% 88.03%

Averaged 67.10% 74.74% 78.22% 75.35% 80.12% 80.96%

In our evaluation studies where the interference is undesired
speech signal, in both training and testing stages, the target
speech signals are randomly selected from the TIMIT dataset.
Then, interfering speech signals are randomly selected from the
remaining signals in the dataset to ensure the speakers of the
target speech and the interfering speech signals are different.
At the testing stage, the desired speech signals are unseen in
the training stage, but the interfering speech signals are seen
in the training stage. Therefore, the trained neural network is
able to differentiate the target and undesirable speech signals.
Similarly, the SNR levels are —3 dB, 0 dB and 3 dB and the
number of mixtures in training, development and testing data is
12,000, 1200 and 2400, respectively.

2) Network Architecture: Both the DNNs of the compari-
son group and the LSTM RNN have three hidden layers and
each hidden layer has 512 units. The dimension for the input
layer is 1722 (246 x (3 x 2 + 1)). In terms of the DNN, ac-
cording to [18], the activation function for each hidden unit is
selected as the rectified linear unit (ReL.U) to avoid the gra-
dient vanishing problem and the output layer has linear units
[31]. In the LSTM RNN, the activation function for each hidden
unit is selected as the sigmoid and the output layer has linear
units. When the training target is the cIRM, the correspond-
ing neural network outputs the estimates of real and imaginary
components of the predicted cIRM. When the training target
is the clean spectrum of the desired speech signal, two LSTM
RNNSs are trained separately. The DNN and the LSTM RNN are
trained by using the RMSprop algorithm [37] with a learning
rate of 0.001. The number of epochs is 100 and the batch size
is 1024. Auto-regressive moving average (ARMA) filtering is
applied to reduce the interference from the background noise,
as in [38].

3) Comparisons and Performance Measures: In the experi-
ments, the proposed cIRM- and cSA-based LSTM RNN meth-
ods are compared with DNN-based approaches: the cIRM [18]
and the oSA estimation [20]. In the oSA-based method, the
T-F mask is an IRM, which is estimated by minimizing the
discrepancy between the estimated spectrum and the spectrum
of the target speech signal. In 0SA-based DNN and LSTM
RNN methods, the target signal is reconstructed without using
the phase information of the clean speech signal, meanwhile,
the cIRM- and the cSA-based methods utilize both the ampli-
tude and phase information from the clean signal. The proposed
methods are shown in italics. The separation performance is
evaluated with three measurements. The short-time objective
intelligibility (STOI) [39], the perceptual evaluation of speech
quality (PESQ) [40] and the SDR [41]. The values of the STOI
are in the range of [0, 1] and the PESQ are in the range of
[—0.5, 4.5]. The STOI and the PESQ indicate the intelligibility
scores and human speech quality scores, respectively. The SDR
is exploited to evaluate the overall separation performance. In
this paper, we use SDR value of the separated speech signal and
the SDR value of the unprocessed speech mixture to calculate
the improvement of the SDR.

B. Experimental Results and Analysis

1) Experimental Results With Seen Noise Interference in
Terms of the STOI and PESQ: The separation results based on
the STOI are shown in Tables I, IT and III. The results based on
PESQ are shown in Tables IV, V and VI. Each experimental re-
sultin Tables I-VIis the average value over 200 testing mixtures.
In total, 43,200 tests are performed. The baseline is calculated
by using the unprocessed mixture and the clean speech signal.
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TABLE III
SEPARATION PERFORMANCE COMPARISON IN TERMS OF STOI WITH DIFFERENT TRAINING TARGETS, NOISES AND NEURAL NETWORK ARCHITECTURES,
THE SNR OF THESE MIXTURES IS 3 DB. EACH RESULT IS THE AVERAGE VALUE OF 200 EXPERIMENTS. Ifalic SHOWS THE PROPOSED METHODS.
BOLD INDICATES THE BEST RESULT

STOI Unprocessed | cIRM-DNN [18] | cIRM-LSTM | oSA-DNN [1] | oSA-LSTM | cSA-LSTM
Factory 70.36% 81.39% 83.94% 81.95% 84.89% 85.99%
Babble 71.22% 80.01% 82.99% 80.03% 85.28% 86.03%

Cafe 70.47% 79.20% 81.14% 79.30% 80.97% 82.06%

F16 72.45% 81.34% 82.62% 81.66% 84.02% 84.71%

Tank 79.66% 84.37% 87.77% 84.66% 89.20% 89.26%

Averaged 72.83% 81.26% 83.69% 81.52% 84.87% 85.61%
TABLE IV

SEPARATION PERFORMANCE COMPARISON IN TERMS OF PESQ WITH DIFFERENT TRAINING TARGETS, NOISES AND NEURAL NETWORK ARCHITECTURES,
THE SNR OF THESE MIXTURES IS —3 DB. EACH RESULT IS THE AVERAGE VALUE OF 200 EXPERIMENTS. Italic SHOWS THE PROPOSED METHODS.
BOLD INDICATES THE BEST RESULT

PESQ Unprocessed | cIRM-DNN [18] | cIRM-LSTM | oSA-DNN [1] | oSA-LSTM | cSA-LSTM
Factory 1.63 2.07 2.33 2.11 2.30 2.41
Babble 1.76 2.05 2.12 2.03 2.22 2.28

Cafe 1.75 2.03 2.16 2.10 2.14 2.38

F16 1.64 2.13 2.25 2.10 2.27 2.38

Tank 1.92 2.29 2.49 2.33 2.72 2.74

Averaged 1.74 2.11 2.27 2.13 2.33 2.44
TABLE V

SEPARATION PERFORMANCE COMPARISON IN TERMS OF STOI WITH DIFFERENT TRAINING TARGETS, NOISES AND NEURAL NETWORK ARCHITECTURES,
THE SNR OF THESE MIXTURES IS 0 DB. EACH RESULT IS THE AVERAGE VALUE OF 200 EXPERIMENTS. Ifalic SHOWS THE PROPOSED METHODS.
BOLD INDICATES THE BEST RESULT

PESQ Unprocessed | cIRM-DNN [18] | ¢c/IRM-LSTM | oSA-DNN [1] | 0SA-LSTM | ¢SA-LSTM
Factory 1.80 2.34 2.54 2.41 2.50 2.59
Babble 1.89 2.19 2.37 2.14 2.49 2.51
Cafe 1.95 2.27 2.38 2.29 2.32 2.49
F16 1.79 2.30 2.47 2.25 2.49 2.61
Tank 2.01 2.58 2.67 2.59 2.88 291
Averaged 1.88 2.34 2.49 2.37 2.54 2.62
TABLE VI

SEPARATION PERFORMANCE COMPARISON IN TERMS OF STOI WITH DIFFERENT TRAINING TARGETS, NOISES AND NEURAL NETWORK ARCHITECTURES,
THE SNR OF THESE MIXTURES IS 3 DB. EACH RESULT IS THE AVERAGE VALUE OF 200 EXPERIMENTS. Ifalic SHOWS THE PROPOSED METHODS.
BOLD INDICATES THE BEST RESULT

PESQ Unprocessed | cIRM-DNN [18] | ¢cIRM-LSTM | oSA-DNN [1] | 0SA-LSTM | ¢SA-LSTM
Factory 1.98 2.61 2.73 2.63 2.71 2.81
Babble 1.96 2.40 2.56 2.29 2.69 2.76

Cafe 2.01 2.46 2.58 2.48 2.55 2.62
F16 1.97 2.42 2.64 2.37 2.67 2.77
Tank 2.19 2.69 2.88 2.70 3.12 3.17
Averaged 2.02 2.51 2.67 2.49 2.75 2.82

It can be observed in Tables I-VI that the performance of
LSTM RNN-based methods is better than the DNN-based meth-
ods. This is because the memory component in the LSTM RNN
can better exploit the temporal information. In addition, the
phase information is also beneficial and cSA-based LSTM RNN
method outperforms all other methods. Besides, both values of
the STOI and PESQ are increased when the SNR level changes
from —3 dB to 3 dB.

2) Experimental Results With Noise Interference in Terms of
the SDR: These experiments aim to evaluate how the variations
of the training targets, types of neural network models and SNR
levels affect the SDR. The experimental settings are consistent
with Section IV-A. The SDR values with different training tar-
gets and SNR levels are shown in Fig. 4. It is shown in Fig. 4
that the proposed cSA-based LSTM RNN method achieves the
largest SDR improvement in all scenarios. When the vanilla
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Fig. 4. Average SDR improvement (dB) for different training targets and
neural network models with five types of seen noise. Each result is the average
value of 200 experiments.

TABLE VII
SEPARATION PERFORMANCE COMPARISON IN TERMS OF STOI AND PESQ
‘WITH DIFFERENT METHODS AND THE UNSEEN NOISES, THE SNR LEVELS OF
THESE MIXTURES ARE —3, 0, AND 3 DB. EACH RESULT IS THE AVERAGE
VALUE OF 200 EXPERIMENTS. Ifalic SHOWS THE PROPOSED METHODS.
BOLD INDICATES THE BEST RESULT

STOI PESQ

SNR level -3 dB 0 dB 3 dB -3dB | 0dB | 3dB
Unprocessed 59.50% | 66.16% | 73.00% | 1.61 | 1.80 | 2.01
cIRM-DNN [18] | 64.33% | 70.68% | 76.92% | 2.07 222 | 237
cIRM-LSTM 65.56% | 72.78% | 79.43% | 2.17 2.34 | 2.53
0oSA-DNN [1] 63.17% | 69.06% | 75.81% | 2.09 2.25 | 2.36
0SA-LSTM 66.30% | 75.99% | 81.02% | 2.24 | 2.35 | 247
cSA-LSTM 75.14% | 78.87% | 83.52% | 2.29 | 247 | 2.60

DNN is trained, the cIRM- and oSA-based methods offer al-
most the same SDR improvement. While comparing the cIRM-
and oSA-based methods with DNN and LSTM RNN, the per-
formance of the LSTM RNN is again better than the DNN. By
using the proposed LSTM RNN, the oSA-based method can
gain 3.08, 3.11 and 2.58 dB more SDR improvements at —3,
0, and 3 dB SNR Ilevels, respectively. In addition, the phase in-
formation of clean speech signal in complex domain provides
further SDR improvement, e.g. by comparing with the oSA- and
the cSA-based LSTM RNN methods.

3) Experimental Results With Unseen Noise Interference in
Terms of the STOI and PESQ: In the real-world environments
where the situations varies, it is important to provide the gener-
alization ability of the proposed methods. Therefore, the evalua-
tion results based on the STOI and PESQ are shown in Table VII
for unseen noise cases.

It can be known from Table VII that when the noise in-
terference is unseen, the separation performance is decreased,
compared with the seen noise interference case. It is difficult
to obtain the accurate estimate in the testing stage with unseen
noise interference. For example, when the noise interference is
seen, in 0 dB SNR level, the cIRM-based DNN method can gain
7.64% improvement in terms of the STOI. However, if the noise
interference is unseen, the improvement decreases to 4.83%.

Besides, in the unseen noise interference case, when the SNR
level is increased, the separation performance is improved and
the best separation performance is given by the proposed cSA-

S CcIRM-DNN [18]
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Fig. 5. Average SDR improvement (dB) for different training targets and
neural network models with 100 types of unseen noise. Each result is the
average value of 200 experiments.

based LSTM RNN method. For instance, in —3 dB SNR level
case, the cSA-based LSTM RNN method achieves 75.14% and
2.29 in STOI and PESQ, respectively. While the oSA-based
DNN method only achieves 63.17% and 2.09, respectively.

Hence, if LSTM RNN is selected as the neural network model,
the generalization of the related methods is enhanced, which has
been confirmed by our experimental results similar to [21].

4) Experimental Results With Unseen Noise Interference in
Terms of the SDR: These experiments aim to evaluate how the
variations of the SNR levels affect the SDR performance in
terms of the proposed methods with unseen noise interference.
Besides, the generalization ability is further evaluated. Fig. 5
gives the SDR improvement with different training targets and
neural network models.

It can be seen from Fig. 5 that in the unseen noise case,
compared with the cIRM-based DNN method, the cIRM-based
LSTM RNN method gives more SDR improvement from —3 dB
to 3 dB SNR levels. Similarly, the oSA-based LSTM RNN
method achieves a higher SDR improvement than the oSA-
based method by using the vanilla DNN. It is clear to observe
that when the SA approach is operated in the complex domain
and the LSTM RNNS are trained to predict the corresponding
training targets, the separation performance outperforms others.
For example, in the scenario, when the SNR level is —3 dB,
the separation performance of 0SA-based DNN method is 6.68
dB and the cSA-based LSTM RNN method gives 7.77 dB SDR
improvement.

From Tables I-VII and Figs. 4 & 5, the best separation per-
formance in noise interference case is given by the proposed
cSA-based LSTM RNN method. There are two main reasons:
(1) The phase information of clean speech signal is used to re-
cover the desired speech signal; (2) the LSTM RNN exploits the
temporal information and the generalization ability is enhanced.
Besides, it can be seen from Table VII that by using the proposed
cSA-based LSTM method, the best performance in terms of the
STOI and PESQ is obtained in all SNR levels, although there are
some discrepancies in the level of improvements across these
performance metrics. One possible reason is that when the SNR
level is low, by using the proposed cSA-based LSTM method,
the intelligibility of the separated speech, as assessed by the
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TABLE VIII
SEPARATION PERFORMANCE COMPARISON IN TERMS OF STOI AND PESQ WITH
DIFFERENT METHODS AND THE SPEECH INTERFERENCE, THE SNR LEVELS OF
THESE MIXTURES ARE —3, 0, AND 3 DB. EACH RESULT IS THE AVERAGE
VALUE OF 200 EXPERIMENTS. [talic SHOWS THE PROPOSED METHODS.
BOLD INDICATES THE BEST RESULT

STOI PESQ
SNR level -3 dB 0 dB 3 dB -3dB | 0dB | 3dB
Unprocessed 64.84% | 69.03% | 76.62% | 1.63 1.92 | 2.01
cIRM-DNN [18] | 69.27% | 73.82% | 80.16% | 2.02 | 2.23 | 2.37
cIRM-LSTM 69.13% | 73.11% | 80.33% | 2.05 | 2.19 | 2.39
0oSA-DNN [1] 70.84% | 74.37% | 81.79% | 2.02 | 2.30 | 2.38
0SA-LSTM 72.84% | 76.54% | 82.25% | 2.14 | 2.36 | 2.48
cSA-LSTM 75.80% | 79.26% | 82.59% | 2.32 | 2.54 | 2.57
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Fig. 6. Average SDR improvement (dB) for different training targets and

neural network models with speech interferences. Each result is the average
value of 200 experiments.

STOI, is better improved, due to the time-frequency weighting
of the speech spectrum. In a high SNR level, less processing is
enforced on the separated speech signal. As a result, the level of
artefacts introduced by the proposed cSA-based LSTM method
is lower, as shown by the PESQ measure.

In summary, in the seen noise interference case, the separation
performance is better than the unseen case. When the SNR level
is changed from —3 dB to 3 dB, all of the methods achieve better
separation performance. Moreover, compared with the vanilla
DNN, using the LSTM RNN as the neural network model,
the proposed method provides improvement in all performance
measures.

5) Experimental Results With Speech Interference in Terms
of the STOI and PESQ: When the interference is the undesired
speech signal, the task is more difficult to address because the
speech signals are highly non-stationary. In this subsection, the
evaluations with undesired speech interferences are shown in
Table VIII and Fig. 6.

From Table VIII, it can be observed that when the interfer-
ence is the undesired speech signal, compared with the noise
interference cases, the separation performance decreases in all
cases. The proposed cSA-based LSTM RNN method provides
the highest values of both STOI and PESQ. Compared with the
noise interference, when the interference is speech signal, be-
cause the indeterminacy of the speech interference, the related
neural network model is more difficult to train, which effects on
the overall separation performance.

After introducing the LSTM RNN, the separation perfor-
mance is improved. For example, when the speech interference
is used, in 0 dB SNR level, the 0SA-based DNN method can
gain 5.34% improvement in terms of the STOI, the 0SA-based
LSTM RNN method gives 7.51% improvement. In general, the
phase information is beneficial and it can be observed that in
—3 dB SNR level, the PSEQ value of oSA-based LSTM RNN
method is 2.14 and cSA-based LSTM RNN method achieves
2.32.

6) Experimental Results With Speech Interference in Terms
of the SDR: The variations of the SNR levels affect the SDR
performance in terms of the proposed methods with speech in-
terference is shown in Fig. 6. It can be seen from Fig. 6 that in the
speech interference case, the cSA-based LSTM RNN method
gives the largest SDR improvement over the other methods and
SNR levels. It is shown that because the strong ability of us-
ing temporal information, the SDR improvement of the LSTM
RNN-based method is always larger than the DNN-based meth-
ods. For instance, when the SNR level is —3 dB, the SDR
improvement of the oSA-based DNN method is 4.11 dB and the
improvement of the 0SA-based LSTM RNN method is 6.24 dB.

However, in cIRM-based methods, due to the indeterminacy
of the undesired speech signal, and the corresponding neural
network is Y-shape, the T-F mask in the complex domain cannot
be accurately estimated sometimes. For example, in Fig. 6, when
the SNR level is —3 dB, the cIRM-based DNN achieves higher
SDR improvement than the cIRM-based LSTM RNN method.
To address this issue, in the proposed cSA-based LSTM RNN
method, two individual LSTM RNNSs are used to estimate the
real and imaginary components separately. It can be observed
from Fig. 6, when the SNR level is —3 dB, the performance of
the proposed cSA-based LSTM RNN method is 8.91 dB, which
confirms the efficacy of the proposed method.

In summary, in the speech interference case, the separation
performance is less than the noise interference case. When the
SNR level varies from —3 dB to 3 dB, all of these methods
achieve better separation performance in both noise interfer-
ence and speech interference cases. From Tables I to VIII and
Figs. 4 to 6, it is confirmed that the LSTM RNN is a better
neural network model to utilize the long-term temporal infor-
mation, which helps the trained model to obtain better separation
performance.

It should be noted that although the phase information is
helpful to improve the separation performance, which can be
observed by comparing the results of the oSA-based method
with those of the cSA-based method, the major improvement
actually comes from the use of the SA-base method, which can
be observed by comparing the performance of the oSA-based
method with that of the cIRM-based method. The proposed
cIRM-based LSTM RNN method not only has the benefits from
the SA formulation but also the clean phase information.

V. CONCLUSION

In this paper, the cSA-based method with LSTM RNN was
proposed to address the monaural source separation problem.
By introducing cIRM, both real and imaginary components
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can be calculated and estimated in the cSA-based LSTM RNN
method. Compared with 0SA-based method, if the complex do-
main training targets were exploited, the phase information can
be used in the SA-based approach. Hence, in the cSA-based
method, both clean magnitude and phase information were uti-
lized and the separation performance was further improved. The
proposed method was evaluated using STOI, PESQ and SDR
with two interfering cases. The unseen noise interference and un-
desired speech signal interference cases were evaluated to show
the generalization ability of the proposed cSA-based LSTM
RNN method. All the experimental results confirmed that the
proposed method outperformed the oSA- and the cIRM-based
approaches in all tested scenarios.
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