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Abstract
Automated audio captioning (AAC) which generates textual
descriptions of audio content. Existing AAC models achieve
good results but only use the high-dimensional representation
of the encoder. There is always insufficient information learn-
ing of high-dimensional methods owing to high-dimensional
representations having a large amount of information. In
this paper, a new encoder-decoder model called the Low-
and High-Dimensional Feature Fusion (LHDFF) is proposed.
LHDFF uses a new PANNs encoder called Residual PANNs
(RPANNs) to fuse low- and high-dimensional features. Low-
dimensional features contain limited information about specific
audio scenes. The fusion of low- and high-dimensional fea-
tures can improve model performance by repeatedly emphasiz-
ing specific audio scene information. To fully exploit the fused
features, LHDFF uses a dual transformer decoder structure to
generate captions in parallel. Experimental results show that
LHDFF outperforms existing audio captioning models.
Index Terms: PANNs, fused feature, high-dimensional feature,
dual transformer decoder, audio captioning.

1. Introduction
Automated audio captioning (AAC) is a cross-modal translation
task that generates a text description for a given audio clip [1].
The problem of AAC has recently received much attention in
the fields of acoustic signal processing and machine learning
due to its potential applications such as describing audio content
for hearing impaired people and generating text descriptions for
audio search, retrieval, and indexing [2, 3, 4].

Conventional AAC models are generally based on an
encoder-decoder architecture in which an encoder is used to ex-
tract the latent embedding from the audio clip and a decoder is
used for text generation based on the audio embedding [1, 5, 6].
In the architectures used for the encoder, pre-processing is of-
ten employed to extract useful information for the latent em-
bedding representation. Tran et al. proposed an encoder with
three learnable processes to extract and fuse local and temporal
information [7]. Xu et al. explored a transfer learning method
to learn local and global information [8] in which audio tag-
ging (AT) and acoustic scene classification (ASC) were em-
ployed to represent local and global audio information. Mei et
al. employed a transformer encoder to process audio informa-
tion, which can capture the temporal relationship among audio
events [9]. Moreover, Liu et al. employed a contrastive loss to
cluster the representations of the audio-text paired data in latent
space while distinguishing between unpaired negative data [10].
After that, Chen et al. proposed an interactive audio-text repre-
sentation method for the audio encoder using contrastive learn-
ing [11]. With the popularity of multimodal approaches, Liu

et al. investigated to the introduction of visual modality for
improving the performance of existing audio captioning sys-
tems [12].

The majority of existing methods mentioned above only
use high-dimensional representation output by the encoder as
the input of the decoder to generate the captions. AAC is a
highly challenging task, as existing methods may not be able
to fully learn the vast amount of information present in high-
dimensional representations. Using low-dimensional represen-
tations can address the issue of existing methods being un-
able to fully learn the vast amount of information in high-
dimensional representations. However, low-dimensional fea-
tures only contain limited information for a fixed number of
specific audio scenes. To better balance the problem of low-
and high-dimensional features, in this paper, a new encoder-
decoder model called the Low- and High-Dimensional Feature
Fusion (LHDFF) is proposed. In LHDFF, a new encoder is used
called Residual PANNs (RPANNs) by fusing the low- and high-
dimensional features generated in the intermediate and final
convolution blocks, respectively. This fusion allows the low-
and high-dimensional features to cooperate and complement
each other, which can emphasize the recurring audio scenes (as
observed in Section 3.5). We then obtain the final captioning
by using a fused probabilistic approach, leading to more ac-
curate captions due to the complementary nature of low- and
high-dimensional features.

The remainder of the paper is organized as follows. Our
proposed LHDFF model is introduced in Section 2. Section 3
shows experimental results. Finally, Section 4 draws conclu-
sions.

2. Proposed method
In this section, we present the proposed LHDFF architecture
that consists of the RPANNs encoder and the dual transformer
decoder. The overall LHDFF architecture is depicted in Fig. 1,
where, in the encoder part, the low- and high-dimensional fea-
tures are fused to cooperate and complement each other.

2.1. RPANNs encoder

Classical PANNs have used the CNN10 model, which consists
of four convolutional blocks, and each block has two convolu-
tional layers with a 3×3 kernel size, followed by batch normal-
ization and ReLU. The channel number of each convolutional
block is 64, 128, 256, and 512. Moreover, an average pooling
layer with the kernel size 2 × 2 is applied for downsampling.
After the last convolutional block, a global average pooling is
applied along the frequency axis to align the dimension of the
output with the hidden dimension D of the decoder.

To further improve the performance of PANNs, we propose
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Figure 1: The architecture of the proposed LHDFF. LHDFF
consists of an RPANNs encoder and a dual decoder. The
RPANNs encoder outputs two embedding features, i.e., the
high-dimensional feature xhigh and the fusion feature xfusion.
Moreover, xfusion and xhigh are input into the dual trans-
former decoder TD1 and TD2, respectively. The dual decoder
consists of two transformer decoders, i.e., TD1 and TD2. Each
transformer decoder TD1 and TD2 follows a linear layer and
a log softmax layer to output the probability distribution along
the vocabulary vector. The final fused probability result is ob-
tained by fusing the log softmax probability distribution of the
transformer decoder TD1 and TD2.

a new PANNs encoder called RPANNs. The basic architecture
of the proposed RPANNs is similar to PANNs. In Fig. 2, we
can see the RPANNs consist of four convolutional blocks. The
channel number D of each convolutional block is 64, 128, 256,
and 512. The difference between PANNs and RPANNs is that
RPANNs fuse the low-dimensional feature from the third con-
volutional block and the high-dimensional feature from the fi-
nal layer. The RPANNs encoder takes the log mel-spectrogram
of an audio clip as the input and generates the high dimen-
sional feature I ∈ RT×D , where T denotes the numbers of
time frames, and D represents the dimension of the spectral
features at each time frame. Let x3 be the output of the third
convolutional block indicating a low dimensional feature. Then,

x3 ∈ RT
′
×D , where D = 256, i.e. x3 ∈ RT

′
×256. Let xfinal

denote the output of the final layer, which is a high-dimensional
feature. The final layer is a linear layer with 1024 dimen-
sional, then the high-dimensional feature xfinal ∈ RT×D ,
where D = 1024, i.e. xfinal ∈ RT×1024.

In RPANNs, we set the dimension of the high-dimensional
feature D = 128. The low- and high-dimensional fused feature
xfusion and high-dimensional feature xhigh are summarized as
follows:

xhigh = Relu(f128(xfinal)), xhigh ∈ RT×128;

xlow = Relu(f128(x3)), xlow ∈ RT
′
×128;

xfusion = xhigh ⊕ xlow, xfusion ∈ RT×128.

(1)

As T
′
̸= T , the technology of filling 0 is used to make the

dimension of T
′

and T the same. After that, xfusion and xhigh

are fed into the dual decoder at the same time.
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Figure 2: The architecture of the proposed RPANNs. RPANNs
consist of four convolutional blocks. The RPANNs encoder out-
puts two features, i.e., the high dimensional feature xhigh and
the fused feature xfusion. Where the fused feature xfusion is
fused by the low-dimensional feature from the third convolu-
tional block and the high-dimensional feature xhigh.

2.2. Dual decoder

We design a dual decoder to exploit the information of the fused
feature, xfusion, and high-dimensional feature xhigh. The dual
decoder is based on two standard transformer decoders consist-
ing of eight parts, a word embedding layer, two standard Trans-
former decoders, two linear layers, two softmax probability lay-
ers, and one fusion layer, as shown in Fig. 1. The word embed-
ding layer is represented with V × d word embedding matrix
W , where V denotes the size of the vocabulary and d is the
dimension of each word vector. The word embedding layer is
frozen in training after random initialization.

The two transformer decoders are denoted as TD1 and
TD2, with W , together with xfusion and xhigh, as their in-
puts, respectively. Each transformer decoder includes a multi-
head attention mechanism. Empirically, we set the number of
attention heads as 4 for each transformer decoder, and the di-
mension of the hidden layer is 128. Both transformer decoders
have a multi-head attention mechanism in which the number of
heads and the size of the hidden layer is set to four and 128,
respectively, based on extensive empirical evaluations. In ad-
dition, TD1 and TD2 are followed by linear layers fTD1 and
fTD2 , and a softmax probability layer to output the probability
distribution along the vocabulary vector.

Let m represent the number of words in the dictionary for a
dataset. Then, the outputs of linear layers xTD1 and xTD2 are
calculated as follows:

xTD1 = fTD1(xfusion), xTD1 ∈ RT×m;

xTD2 = fTD2(xhigh), xTD2 ∈ RT×m.
(2)



The final fused probability distribution Pfusion for the vo-
cabulary can be calculated by fusing the probability distribution
of each transformer decoder PTD1 and PTD2 , as follows:

PTD1 = log(softmax(xTD1)), PTD1 ∈ RT×m;

PTD2 = log(softmax(xTD2)), PTD2 ∈ RT×m;

Pfusion = PTD1 ⊕ PTD2 , Pfusion ∈ RT×m.

(3)

Where the operator symbol ⊕ means that the corresponding el-
ements in two probability distribution vectors are added.

The training objective of RPANNs is to optimize the cross-
entropy (CE) loss defined in terms of all the possible model
parameters θ as:

LCE(θ) = − 1

T
ΣT

t=1logPfusion(yt|y1:t−1, θ) (4)

where yt represents the ground truth word at time step t.

3. Experiments
This section discusses experimental evaluations of the proposed
LHDFF on Clotho [13] and AudioCaps [14] datasets as com-
pared with state-of-the-art baseline approaches. We start with
a description of the datasets, pre-processing, experimental se-
tups, and performance metrics, before giving the analysis and
comparison of the results.

3.1. Datasets

Clotho [13] is a well-known audio captioning dataset with audio
clips collected from the Freesound archive. The audio clips are
between 15 and 30 seconds long and contain five captions with
8 to 20 words annotated by different Amazon Mechanical Turk
employees. In our experiment, the Clotho v2 is used that was
released for Task 6 of DCASE 2021 Challenge, which contains
3839 development, 1045 validation, and 1045 evaluation sam-
ples. To comply with the settings of the baseline methods, we
also merge the development and validation samples, which re-
fer to the training dataset with 4884 audio clips. The evaluation
split is selected as the test set with 1045 audio clips. Moreover,
each audio clip is combined one of its five captions as a training
sample in the training set.

AudioCaps [14] is the largest audio captioning dataset,
which includes 50k audio clips with a duration of 10 seconds.
AudioCaps is divided into three parts with 49274 audio clips
for training, 497, and 957 audio clips for validation and testing,
respectively. Each audio clip has one caption in the training set,
and each audio clip involves 5 captions in the validation and test
sets, respectively. The length of the captions ranges from 3 to
20 words.

3.2. Data pre-processing

For the audio clips, we use a 1024-point Hanning window with
a hop size of 512 points to obtain 64-dimensional log mel-
spectrograms as the LHDFF input features. Moreover, the
SpecAugment [16] method is employed to augment the log mel-
spectrogram of an audio clip in the training data using the “zero-
value masking” and “mini-batch based mixture masking” [17].
The captions in the Clotho and AduioCaps datasets are con-
verted to lowercase with punctuation removed. Moreover, we
pad two special tokens “<sos>” and “<eos>” at the beginning
and end of each caption.

3.3. Experimental setups

The proposed LHDFF model is trained using the Adam opti-
mizer [18] with a batch size of 32. We set the model training
epoch to 30 with an initial learning rate (LR) of 5 × 10−4, be-
cause the model performs best at epoch 30 on the validation set.
In the first 5 epochs, warm-up is applied to increase the initial
LR linearly. Then, the LR is decreased to 1/10 every 10 epochs.
For all the captioning, the Word2Vec model is used to pre-train
the word embedding in Clotho and AudioCaps [19].

3.4. Performance metrics

To evaluate the performance of AAC models, several met-
rics are employed including machine translation metrics:
BLEUn [20], METEOR [21], ROUGEL [22] and captioning
metrics: CIDEr [23], SPICE [24], SPIDEr [25]. BLEUn mainly
measures the n-gram precision of a generated text while ME-
TEOR is a word-to-word matching-based harmonic mean of re-
call and precision. ROUGEL computes F-measures based on
the longest common sub-sequence. The term frequency-inverse
document frequency of the n-gram is used in the calculation of
CIDEr. SPICE takes captions from scene graphs and uses them
to determine F-score. SPIDEr is the mean of CIDEr and SPICE
scores.

3.5. Results

The proposed LHDFF model was evaluated in the Clotho
dataset and compared with three representative baseline meth-
ods including conventional encoder-decoder based audio cap-
tioning system [6], CL4AC model [10], and AT-CNN10 [8].
The baseline model [6] contains a PANNs encoder and a trans-
former decoder, which uses reinforcement learning techniques.

For a fair comparison, we only report the results of the
baseline model without reinforcement learning. CL4AC [10]
is based on contrasting learning to reduce the domain differ-
ence by learning the correspondence between the audio clips
and captions. AT-CNN10 [8] method mainly uses transfer learn-
ing to initialize the encoder parameters of the audio captioning
by learning the local feature from the audio tagging task and
the global feature from acoustic scene classification. In addi-
tion, we consider a Pre-Bert method for audio captioning as a
baseline where the Pre-trained BERT language is used as the
decoder for the AudioCaps dataset [15]. Table 1 shows the per-
formance comparison of the proposed and baseline models. It
can be seen that the proposed LHDFF outperforms the baseline
models. Moreover, Table 2 shows the proposed LHDFF can
learn more audio information than the baseline model only uses
the high-dimensional feature.

High- vs. fusion and low- embedding feature We re-
port the result of the proposed LHDFF model using only the
fusion embedding feature as the input to a single transformer
decoder, i.e., the LHDFF (fusion) in Table 1. In addition, in
Table 1, we report the result of the Baseline that only outputs
a high-dimensional feature in the encoder, which is then input
to the transformer decoder. It can be observed that the per-
formance of the baseline model with only a high dimensional
feature is worse than the LHDFF model which uses only the
fusion embedding feature. Moreover, we also report the result
of the LHDFF using the high- and low-dimensional features as
the inputs to the dual transformer decoder, i.e., LHDFF (nonfu-
sion). From the results, it is easy to find that the performance
of LHDFF (nonfusion) is worse than the Baseline and LHDFF
fusion methods. These results show that the low-dimensional



Table 1: The comparative experimental results on Clotho and AudioCaps datasets. Where the Baseline method does not use reinforce-
ment learning (RL).

Dataset Model BLEU1 BLEU2 BLEU3 BLEU4 ROUGEL METEOR CIDEr SPICE SPIDEr

Baseline [6] (without RL) 0.561 0.364 0.243 0.159 0.375 0.172 0.391 0.120 0.256
Clotho CL4AC model [10] 0.553 0.349 0.226 0.143 0.374 0.168 0.368 0.115 0.242

AT-CNN10 [8] 0.556 0.363 0.242 0.159 0.368 0.169 0.377 0.115 0.246
LHDFF (nonfusion) 0.555 0.363 0.245 0.161 0.375 0.173 0.381 0.117 0.249

LHDFF (fusion) 0.570 0.370 0.246 0.158 0.378 0.174 0.401 0.120 0.261
LHDFF (fusion block2) 0.565 0.366 0.245 0.159 0.377 0.174 0.392 0.120 0.256

LHDFF 0.570 0.370 0.247 0.159 0.378 0.175 0.408 0.122 0.265
Baseline [6] (without RL) 0.667 0.491 0.350 0.248 0.468 0.229 0.643 0.165 0.404

AudioCaps Pre-Bert [15] 0.667 0.491 0.354 0.247 0.475 0.232 0.654 0.167 0.410
AT-CNN10 [8] 0.655 0.476 0.335 0.231 0.467 0.229 0.660 0.168 0.414

LHDFF (nonfusion) 0.662 0.484 0.344 0.244 0.467 0.226 0.639 0.167 0.403
LHDFF (fusion) 0.674 0.500 0.367 0.263 0.481 0.231 0.666 0.171 0.419

LHDFF (fusion block2) 0.668 0.494 0.358 0.254 0.479 0.231 0.663 0.170 0.417
LHDFF 0.674 0.502 0.368 0.267 0.483 0.232 0.680 0.171 0.426

Table 2: The generated captioning results on a test audio clip
of the AudioCaps dataset.

Audio clip Yti66RjZWTp0.wav
Ground truth a male speaks as metal clicks and a

gun fires once.
Baseline a man speaks followed by

several gunshots.
LHDFF(our model) a man speaks followed by several

loud clicks and a gun shots.

feature can learn limited useful information. But, when we use
the fusion way that can allow the low- and high-dimensional
features to cooperate and complement each other that can better
emphasize some audio scenes.

Performance analysis of different low-dimensional fea-
tures While the encoder of the proposed LHDFF consists of
four convolutional layers, the low-dimensional feature is ob-
tained from the third convolutional block. To test the effi-
ciency of low-dimensional features from different convolutional
blocks, we report the result of the proposed LHDFF using the
low-dimensional feature from the second convolutional block,
i.e., LHDFF (fusion block2). Therefore, in the encoder of
LHDFF (fusion block2), the fused feature of LHDFF (fusion
block2) is fused by the low-dimensional feature from the second
convolutional block and the high-dimensional feature. From Ta-
ble 1, we can find that the proposed LHDFF outperforms the
LHDFF (fusion block2) which implies that the low-dimensional
feature from the third convolutional block includes more useful
information than the low-dimensional feature from the second
convolutional block.

Dual decoder vs. Single decoder We also evaluate the ef-
fectiveness of the dual decoder in the proposed LHDFF, as com-
pared with those of the Baseline and the LHDFF (fusion) that
use a single decoder using the high-dimensional feature and fu-
sion embedding feature. From the results, we can find that the
proposed LHDFF with dual decoder outperforms the Baseline
and LHDFF (fusion) which are based only on a single decoder.
The main motivation behind using a dual decoder is similar to
ensemble learning which aims to utilize multiple algorithms to
achieve better performance than can be obtained with a single
algorithm.

4. Conclusion
A new encoder-decoder model called the LHDFF model is
proposed for AAC. In LHDFF, a residual PANNs encoder
(RPANNs) is proposed by fusing the low-dimensional feature
of the third convolutional block and the high-dimensional fea-
ture from the final layer of PANNs. The low-dimensional ap-
proach successfully overcomes the high-dimensional problem
of learning the audio scenarios with available training data by
learning models, it only works with specific audio scene types.
In addition, there is always insufficient information learning
of high-dimensional methods owing to high-dimensional rep-
resentations having a large amount of information. The fusion
of the low- and high-dimensional features allows the low- and
high-dimensional features to cooperate and complement each
other, which can emphasize the reoccur audio scenes. In ad-
dition, a dual transformer decoder is designed to generate the
captions from these features in parallel. In a dual transformer
decoder, a probabilistic approach is designed to fuse the outputs
of the two transformer decoders. Experimental results show that
LHDFF achieves considerable improvements over the existing
audio captioning models.
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