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Abstract—The problem of direction of arrival (DOA) estimation
with a circular microphone array has been addressed with classical
source localization methods, such as the model-based methods
and the param etric methods. These methods have an advantage
in estimating the DOAs in a blind manner, i.e. with no (or lim-
ited) prior knowledge about the sound sources. However, their
performance tends to degrade rapidly in noisy and reverberant
environments or in the presence of sensor array limitations, such
as sensor gain and phase errors. In this paper, we present a new
approach by leveraging the strength of a convolutional neural
network (CNN)-based deep learning approach. In particular, we
design new circular harmonic features that are frequency-invariant
as inputs to the CNN architecture, so as to offer improvements
in DOA estimation in unseen adverse environments and obtain
good adaptation to array imperfections. To our knowledge, such a
deep learning approach has not been used in the circular harmonic
domain. Experiments performed on both simulated and real-data
show that our method gives significantly better performance, than
the recent baseline methods, in a variety of noise and reverberation
levels, in terms of the accuracy of the DOA estimation.

Index Terms—Acoustic source localization, circular harmonic,
convolutional neural network (CNN), deep learning architecture,
microphone array signal processing.

I. INTRODUCTION

ACOUSTIC source localization using sensor arrays is an
active area of research in speech signal processing [1], with

various practical applications. For example, in home assisted
living, the ability to localize a speaker in daily environments
is important for a voice-based interface such as Amazon Echo
and Google Home [2]; in autonomous driving, sound source
localization is useful for autonomous vehicles in perceiving
their surrounding environment [3]; in audio surveillance sys-
tems, the spatial information derived from the measurements
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of microphones can be used as a fundamental monitoring unit
of drones [4] and robots [5]; in human-computer interaction,
the directions of sound sources are essential for enhancing the
sources of interest or for reproducing the acoustic scene with the
presence of such sources [6], among many others [7]–[9].

Direction of arrival (DOA) estimation methods in the liter-
ature can be broadly classified into four categories. The first
one is based on the time difference of arrival (TDOA) of sound
sources, e.g. by exploiting the Generalized Cross Correlation
PHAse Transform (GCC-PHAT), which was originally designed
to localize a single sound source with the highest signal-to-
noise ratio (SNR) in an environment [10], and then extended
to localize multiple sources with various SNRs [11]. While in
environments with strong reverberation and directional or dif-
fuse noise, the summation of the GCC-PHAT coefficients would
exhibit high peaks from interference sources [12]. The second
category is represented by the subspace-based approaches, in-
cluding the popular methods e.g. multiple signal classification
(MUSIC) [13] and estimation of signal parameters via rotational
invariance techniques (ESPRIT) [14]. Subspace methods can be
applied with different array types and produce high resolution
DOA estimates for multiple narrow-band sources. They are
generally robust to diffuse noise, whereas they tend to be sensi-
tive to directional noise sources and room reverberations [15].
The reason is that the noise subspace constructed from the
eigenvectors corresponding to the smallest eigenvalues of noisy
speech covariance matrices may not be the true noise sub-
space [12]. The third are beamforming based approaches such as
steered response power with phase transform (SRP-PHAT) [16]
and minimum variance distortionless response (MVDR) [17]
methods. Owing to their limitations on spatial resolution, these
methods may fail to localize the speakers that are close to each
other [18]. The fourth methods are based on sound intensity
vectors, which determine the magnitude and direction of the
transport of acoustic energy, related to the DOA of a sound
wave [19]. Unfortunately, it is difficult to measure particle
velocity, although attempts have been made to use the finite
difference method with two microphone arrays [20].

In the past several years, modal signal processing using sensor
array has received increasing attention [21], since it can provide
a frequency-invariant eigenbeam that is useful for localizing
wideband source without a narrowband assumption underlying
the traditional signal model [22]. The authors of [23] developed
the time-frequency circular harmonic beamforming (TF-CHB),
which was reported to achieve better DOA resolution than the
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eigenbeam (EB)-ESPRIT under a high level of reverberation and
noise. In [19], a method using the pseudointensity vector (PIV) is
designed for the localization of a single source, which uses sound
field information with low order spatial information. In [24],
MUSIC with direct-path dominance (DPD) test is used to im-
prove source localization in highly reverberant environments by
exploiting the sparsity of speech in the TF domain. Furthermore,
in our earlier work [25], [26], model and parametric methods
for circular harmonic DOA estimation have been proposed to
enhance the localization robustness in adverse environments.

Although the aforementioned circular harmonic DOA esti-
mation approaches have achieved certain degree of success in
a variety of acoustic conditions, they are still limited in one or
more of the following aspects. First, their performance degrades
in adverse environments with high-level background noise e.g.
SNR below 0 dB, or high-level room reverberation with reverber-
ation time in RT60 greater than 700 ms. Specifically, since mode
strengths are sensitive to background noise and reverberation,
the performance of circular harmonic based methods degrades
in such environments. Second, the characteristics of the array,
particularly the small-sized array, may affect the localization
performance or limit its practical applications, for instance, the
number of transducers, the radius, and whether the sensors are
mounted on a scatter such as a rigid cylinder or a sphere. In the
TF-CHB method, the localization performance can be improved
by increasing the number of sensors and the radius of the array
simultaneously as this increases the maximum order that can
be used. Third, low accuracy in mismatched conditions. Owing
to the lack of adaptation to various array imperfections, uncer-
tainties would be introduced to the DOA estimation, which may
lead to negative impacts on the performance. Fourth, unreliable
performance in real acoustic environments. The reason is that
accurate localization would require tuning of model parameters
which may not be easy to achieve in a complex acoustic envi-
ronment. Here we aim to develop methods that could potentially
mitigate these issues.

Recently, deep learning based methods have been proposed
for DOA estimation of acoustic sources. In general, these meth-
ods involve a feature extraction step from the acquired speech
signals, followed by a deep neural network (DNN) that is trained
to map the features from the microphone signals to the DOAs
of the sources. In Xiao et al. [27], the authors proposed a
robust DOA estimation method based on multi-layer perceptron
neural network, with GCC-PHAT from pairs of microphone
signals as the input feature, and the results demonstrated its
effectiveness against low level noise and strong reverberations.
In Takeda and Komatani [28], similar to the computations in-
volved in the MUSIC method for localization, the eigenvalue
decomposition of the spatial correlation matrix was performed
to get the eigenvectors corresponding to the noise subspace, and
these vectors were provided as input to a DNN. However, the
experimental results showed that this method is sensitive to re-
verberations. In [29], [30], convolutional neural network (CNN)
based method was proposed, in which phase component of short
time Fourier transform (STFT) was used as feature of CNN.
The CNN-based method showed robustness to noise and small
perturbations in sensor positions. In Perotin et al. [31], [32], the

first-order ambisonic (FOA) signals were applied as inputs to a
stacked convolutional and recurrent neural network (CRNN) for
localization, which achieved promising results. In [12], [33], the
bidirectional long short-term memory (BLSTM) neural network
is used for estimating the TF masks (i.e., ideal ratio mask
(IRM) and phase sensitive mask (PSM)) at each microphone
channel, and only using TF units for multichannel localization.
This approach uses deep learning for TF unit level classification
or regression for robust localization. Generally speaking, when
compared with the conventional DOA estimation counterparts
mentioned above, the learning-based methods are data-driven
and offer several advantages, for example, (i) they can adapt
to diverse unseen acoustic scenarios, (ii) they tend to be more
robust against different noise and reverberation levels, and (iii)
they do not rely on prior assumptions about array geometries,
(e.g., including the condition of array imperfections [34]).

In a recent work [25], we proposed a robust localization
method that incorporated circular harmonic pseudointensity
vector through joining the least-squares decomposition and the
spatial processing. In [26], we presented a multi-speaker local-
ization method in the circular harmonic domain based on the
acoustic holography beamforming technique and the Bayesian
nonparametrics method. These methods are all based on model
and parametric methods, where several model parameters need
to be tuned accordingly when they are applied to the practical ap-
plications. This may result in unstable DOA estimation in diverse
environments and limit their flexibility in these applications. In
this paper, we study the use of deep learning based method for
acoustic source localization in the circular harmonic domain,
which, to our knowledge, has not been done in the literature.

Our novel contributions are on the design of new features for
the learning of deep models based on circular harmonic analysis
in far-field wave propagation. The first feature is obtained by
constructing the matrix of the equalized circular harmonics via
using the data model of circular harmonics representation and
the related equalization coefficient vector, and using its real
and imaginary components. The second feature is obtained by
simultaneously utilizing the magnitude and phase of circular
harmonic modes as features to improve the localization accuracy,
as the phase information is a key factor in DOA estimation. The
third feature is built on the second by making use of the energy
of zero mode strength to form the circular harmonic enhanced
function and employing this function to produce the circular
harmonic enhanced modes magnitude and phase as features,
which can reduce the impact of noise and room reverberation
and further improve the DOA performance.

Based on these features, we present a CNN architecture for ro-
bust indoor DOA estimation, by treating the DOA estimation as
a classification problem, as in a previous work [29], where each
discretized DOA corresponding to a class is recognised with
the CNN model. However, DOA estimation can also be treated
as a regression problem as in [35]. In our work, the focus is on
analyzing the impact of the features based on circular harmonics,
therefore, we choose an existing CNN architecture [29] to build
the model for classifying the DOA of the sources. Furthermore,
our proposed deep learning method is suitable for most circular
arrays. Simulations and real-data experiments show the superior
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Fig. 1. Configuration of the uniform circular sensor array.

performance of our proposed method in noisy and reverberant
environments when compared with the existing deep learning
methods, and also exhibit good adaptation and robustness to the
variations in array and unseen scenarios.

The remainder of this paper is structured as follows. Section II
provides a problem formulation. Section III reviews the basic
CHB approach in detail. Section IV presents three novel circular
harmonic features. Section V shows the practical systems for
DOA estimation, which contain two aspects, i,e., CNN network
architecture and block diagram of the proposed algorithm. The
simulation and real-data experimental results are discussed in
Section VI. Finally, the conclusions are drawn in Section VII.

II. PROBLEM FORMULATION

Consider a sound source with azimuth angle φs and elevation
angle ηs, impinging on a uniform circular sensor array consisting
ofM omnidirectional sensors, as shown in Fig. 1. The geometric
center of the uniform circular array is chosen as the origin of the
coordinate system, the radius of the array is r (the diameter
d = 2r), and the azimuth angle of each sensor is θm, namely

θm = (m− 1)
2π

M
, (1 ≤ m ≤M). (1)

The signal received at the mth sensor can be modeled as

pm(t̃) = hm(t̃) ∗ s(t̃) + vm(t̃), (2)

where s(t̃) is the sound source signal, hm(t̃) is the room impulse
responses (RIRs) from the source to the mth sensor, ⊗ is the
convolution operator, vm(t̃) is the background noise, and t̃ is a
discrete time index.

In the STFT domain, (2) can be transformed to

Pm(k, t) = Hm(k, t)S(k, t) + Vm(k, t), (3)

where k = 2πf/c is the wavenumber, f is the frequency, t is the
time frame index, c is the speed of sound, and Pm(k, t), S(k, t),
Hm(k, t), and Vm(k, t) are the STFT of pm(t̃), s(t̃), hm(t̃), and
vm(t̃), respectively.

In this work, our objective is to utilize a deep learning archi-
tecture for acoustic source localization in the circular harmonic
domain by learning the mapping from the acquired sensor sig-
nalsPm(k, t) to the DOA information using a large set of labeled
training data. To this end, we propose a new learning approach
where the circular harmonic representation of the observed

signals is fed into a DNN framework, and the DOA estimation is
formulated as an I-class classification problem, where each class
corresponds to a possible angle in a set {φ1, . . . , φi, . . . , φI}.
Then the DOA estimate is obtained as the DOA class with the
highest posterior probability. Therein, the number of classes I
depends on the resolution of the whole range of DOAs, and φi
is the DOA corresponding to the ith class.

III. CIRCULAR HARMONIC BEAMFORMING

The aim of CHB is to combine different harmonic com-
ponents to form a beam with appropriate spatial selectivity
properties [37]. Ideally, the continuous circular apertures are
used and the ideal beamformer response can be represented as
a delta function as follows

Bideal(k) = P0δ(φ− φs), (4)

where P0 is the amplitude of the impinging source and φ ∈
[−π, π).

It can be shown that this ideal response can be obtained by
adding an infinite number of modes, so that the ideal beamformer
can be written as [37], [39]

Bideal(k) =
∞∑

n=−∞

Cn(k)

jnJn(kr)
ejnφ, (5)

where j =
√−1, n is the order of harmonic. Jn(·) is the nth-

order Bessel function of the first kind and Cn(k) represents the
Fourier coefficients (or circular harmonics) [21]:

Cn(k) = P0j
nJn(kr sin ηs)e

−jnφs . (6)

In real-life applications, the discretization of the continuous
aperture by means of a uniform circular array with M omnidi-
rectional sensors results in the following circular harmonics [37]

C̃n(k, t) =
1

M

M∑
m=1

P̃m(k, t)e−jnθm , (7)

where P̃m(k, t) is the STFT of the measured sound pressure at
the mth sensor.

In (5), substituting Cn(k) with C̃n(k, t) yields the nth-order
circular harmonic beams response [23], [25]

B(k, t) =

N∑
n=−N

C̃n(k, t)

jnJn(kr)
ejnφ

=
1

M

N∑
n=−N

M∑
m=1

P̃m(k, t)e−jnθm
1

jnJn(kr)
ejnφ. (8)

Note that in practice [21], the number of harmonics must be
truncated to a maximum order N , which is related to the
number of sensors, i.e., N =

{
M/2− 1, M even
(M − 1)/2, M odd . As a rule of

thumb, N = �kr	 is usually chosen, where �·	 is the ceiling
function [37].

Equation (8) forms the basis of the proposed circular harmonic
features discussed in the ensuing sections. To facilitate the

Authorized licensed use limited to: University of Surrey. Downloaded on August 24,2022 at 16:07:33 UTC from IEEE Xplore.  Restrictions apply. 



2478 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 30, 2022

Fig. 2. Beampatterns for DOA φs = 0◦: (a) 4mic-2 cm; (b) 12mic-11.9 cm.

explanation in the following sections, we re-write (8) as

B(k, t) =
N∑

n=−N

C̃n(k, t) ·Gn(k) ·Hn(φ), (9)

where Gn is an equalization factor given by

Gn(k) =
1

jnJn(kr)
, (10)

and Hn is a frequency-independent phase factor,

Hn(φ) = ejnφ. (11)

Here, we further clarify the limitations of the conventional
CHB approach. As mentioned in [25], [37], [39], we know that
the DOA estimation accuracy offered by CHB is affected by
the number of sensors and the radius of the array. When two
factors are increased simultaneously, the performance will be
improved as this increases the maximum order that can be used.
Fig. 2 shows the beampatterns with 4mic-2 cm (M = 4 and
r = 2 cm) and 12mic-11.9 cm (M = 12 and r = 11.9 cm [39])
arrays for DOA φs = 0◦. From Fig. 2, we can notice that the
beampattern of the 12mic-11.9 cm array has better directivity
than the 4mic-2 cm array. Furthermore, the mode strengths
are sensitive to reverberation and noise, which may lead to
degraded DOA estimation performance for the CHB method
in such environments.

Thus, we aim at developing a new localization approach
based on deep learning in the circular harmonic domain, which
is suitable for most circular microphone arrays, especially for
the small-sized array (i.e. 4mic-2 cm), under variant acoustic
conditions.

IV. NOVEL CIRCULAR HARMONIC FEATURES

Selecting suitable features is an important aspect for creating
a deep model for the localization problem. In this section, we
introduce three novel features based on circular harmonic.

A. Equalized Circular Harmonic (ECH) Features

Using the model presented in (7) for circular harmonics
representation, the vector of circular harmonics can be written
as the following structure

C̃(k, t) = [C̃0(k, t), C̃1(k, t), C̃−1(k, t), . . . ,

C̃N (k, t), C̃−N (k, t)]. (12)

Next, we form the equalization coefficients in a vector for
each frequency as follows

G(k) = [G0(k), G1(k), G−1(k),· · · ,GN (k), G−N (k)], (13)

where the elements Gn(k) are computed as in (10).
Thus, using (12) and (13), the equalized circular harmonic

can be calculated as

CECH(k, t) = C̃(k, t) ◦G(k)

= [CECH
0 (k, t), CECH

1 (k, t), CECH
−1 (k, t),

· · · , CECH
N (k, t), CECH

−N (k, t)]. (14)

where ◦ represents the Hadamard product operator, and the
elements CECH

n (k, t) are computed as

CECH
n (k, t) = C̃n(k, t) ·Gn(k), n = −N, · · · 0, · · ·N, (15)

In the following, we use the real and imaginary components
of the equalized circular harmonic as features. Therefore, we
obtain (2N + 1)× 2 components, which can be represented as,

FECH(k, t)

=
[
[CECH

0 (k, t)]R, [CECH
0 (k, t)]I , . . . , [CECH

N (k, t)]R,

[CECH
N (k, t)]I , [CECH

−N (k, t)]R, [CECH
−N (k, t)]I

]T
, (16)

where the superscripts (·)R and (·)I stand for real part and
imaginary part of a complex number, respectively, and (·)T
represents the transpose of a matrix.

In addition, it can be observed that, for the ECH features,
the input size of the network is 2(2N + 1)×Nfb (number of
frequency bins) in this study. In our experiments, this feature was
not normalized, as we empirically observed that normalization
can lead to performance degradation (results omitted due to
space limitation).

B. Circular Harmonic Modes Magnitude and Phase
(CH-MMP) Features

In the case of far-field DOA estimation, the phase component
of the received signal at multiple microphones contributes to
DOA estimation [38]. For this reason, we consider simultane-
ously using the magnitude and phase of the circular harmonic
modes as features.

According to (11), we firstly define the following frequency-
independent phase matrix PH, which is formed by I different
weighting vectors covering the azimuth range φi ∈ [−π, π),
i = 1, . . . , I . Herein, I represents the number of DOA classes,
which depends on the resolution of the whole range of DOAs, as
aforementioned in Section II, and φi is the DOA corresponding
to the ith class,

PH = [H(φ1), . . . ,H(φi), . . . ,H(φI)], (17)

where

H(φi)=
[
ej0φi ,ej1φi , ej(−1)φi ,· · · ,ejNφi , ej(−N)φi

]T
. (18)
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Thus, using (14) and (18), the magnitude and phase matrix of
the circular harmonic modes can be calculated as

CMMP (k, t, φ) = CECH(k, t)×PH

= [CMMP (k, t, φ1), . . . , C
MMP (k, t, φi),

· · · , CMMP (k, t, φI)], (19)

where

CMMP (k, t, φi) = CECH(k, t) ·H(φi)

=

N∑
n=−N

C̃n(k, t) ·Gn(k) ·Hn(φi). (20)

Therefore, the feature of the circular harmonic modes magni-
tude and phase, which contains I components, can be expressed
as

FMMP (k, t, φ) =
[
CMMP (k, t, φ)

]T
, (21)

In order to make an equal contribution to each TF unit, we
normalize the elements of FMMP (k, t, φ). Since the power
spectrum peak contains information about DOA, we use the
power spectrum as input. Note that, the difference between the
CH-MMP and the ECH features is that the latter does not include
the term Hn(φ) in (9).

In addition, it can be observed that, for the CH-MMP features,
the input size of the network is I ×Nfb in this study.

C. Circular Harmonic Enhanced Modes Magnitude and
Phase (CH-E-MMP) Features

Since mode strengths are sensitive to noise and reverberation,
this may degrade the performance of the two features afore-
mentioned for the DOA estimation in adverse environments. To
address this issue, we propose another feature based on circular
harmonic enhanced modes magnitude and phase, to further
improve their robustness against noise and room reverberation.

In our earlier work [26], we demonstrated that DOA estima-
tion accuracy can be improved by selecting TF bins of higher
power, which is often an indication for an active source at
this direction [40]. Furthermore, as mentioned in [38], with an
increase in n, the mode strength is decreasing. As a result, the
mode strengths at higher orders become small, and are thus
prone to the corruption by noise and reverberation. For these
reasons, we employ the power of n = 0 mode strength, which
represents omnidirectional fields that have no variation in the
azimuth direction, when compared with mode strength of other
orders. This can help us more accurately find the useful TF bins
with high power in the circular harmonic domain.

The power of the 0-th mode strength, which has no variation in
the azimuth direction, on the basis of TF units can be calculated
by the following equation

E0(k, t) =
∣∣∣C̃0(k, t) ·G0(k) ·H0(φi)

∣∣∣2 . (22)

Subsequently, we sort the powers according to their levels

E0(k1, t1) ≥ E0(k2, t2) · · · ≥ E0(kq, tq) · · · , (23)

where E0(k1, t1) corresponds to the highest power at (k1, t1)
TF bin, E0(k2, t2) corresponds to the second highest, and q =
1, 2, . . . , Q with Q representing the total number of TF bins.

The next step is to use the sorted powers to form the enhanced
function Ef (k, t), as follows

Ef (k, t) =

{
1, if E0(kq, tq) ≥ E0(ku, tu)
0, otherwise,

(24)

where E0(ku, tu) is the power at the uth TF bin that u = αQ,
with α ∈ (0, 1] being a pre-defined threshold, whose selection
will be discussed in Section V-C. The reason for choosing the
binary masks instead of soft masks is that using binary masks,
we can obtain a cleaner signal by selecting the reliable TF
bins dominated by the target sound and removing those from
noise and reverberation. However, if the soft mask is used, some
interference may still remain in the signal, which can lead to
inaccurate DOA estimation.

Therefore, the feature of circular harmonic enhanced modes
magnitude and phase, which contains I components, can be
represented as

FE−MMP (k, t, φ)

=
[
CE−MMP (k, t, φ1), . . . ,

CE−MMP (k, t, φi), . . . , C
E−MMP (k, t, φI)

]T
, (25)

where CE−MMP (k, t, φi) can be obtained by substituting (24)
into (20) as follows

CE−MMP (k, t, φi)

=
N∑

n=−N

Ef (k, t) · C̃n(k, t) ·Gn(k) ·Hn(φi), (26)

Similar to the CH-MMP features, we normalize the elements of
FE−MMP (k, t, φ) and use the power spectrum as input, which
has size I ×Nfb. Note that, different from the ECH features,
we have applied normalization to the CH-MMP and CH-E-
MMP features to make the beam pattern in these features look
smoother, as often done in the literature of circular harmonic
beamforming. However, we empirically observed that the per-
formance difference between the normalized and un-normalized
version for these two features is negligible.

V. PRACTICAL SYSTEMS FOR DOA ESTIMATION

After obtaining the input features, we can learn a mapping
from the input features to the DOA classes. In this section, we
develop a CNN framework for DOA estimation of an acoustic
source with these features as inputs.

A. CNN Network Architecture

Many different network architectures could be employed for
the DOA classification purpose. CNNs have a property, namely,
translation shift-invariant [42], which means that the shifts in
input would lead to shifts in the output, otherwise, they would
remain unchanged. With this property, if the CNN has learned
a circular harmonic feature useful for detecting a DOA angle
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Fig. 3. The architecture of the proposed CNN for acoustic source localization. Each convolutional layer has 64 filters and is followed by a ReLU layer. After the
convolutional layers, a fully connected (FC) layer is used (followed by ReLU activation functions). Dropout layers are employed between the convolutional layer
and the FC layer and after each FC layer, to mitigate potential overfitting problem.

during training, it is expected to capture the similar feature
related to such a DOA during testing [43]. Therefore, we choose
the popular CNNs, as they are translation shift-invariant, and
also robust to unseen acoustic scenarios [41]. The detailed CNN
that we used is composed of an input layer, few convolutional
layers, two fully connected layers, and an output layer. The
activation function of convolutional layers and fully connected
(FC) layers is rectified linear units (ReLU). Dropout with a rate
0.5 is used between the convolutional layer and the FC layer,
and after each FC layer, which is used to mitigate overfitting.
Each convolutional layer has 64 local filters of size 3× 3 to learn
local correlation at local frequency regions. Since resolution is
important for the accurate estimation of an acoustic source, max
pooling (or any other down-sampling after each convolutional
layer) is not used in our work. The architecture of the proposed
CNN is illustrated in Fig. 3.

In this study, the three DOA estimation approaches based
on deep learning in the circular harmonic domain are ECH-
CNN, CH-MMP-CNN and CH-E-MMP-CNN, respectively. We
should note that, with a more sophisticated network [44], the
ECH feature may be exploited more efficiently. However, the
focus of this work is on the performance of the features designed
with circular harmonics, therefore, we have chosen CNN as the
network architecture, despite the availability of a wide range of
network architectures including end-to-end systems.

The given circular harmonic features F, namely FECH ,
FMMP and FE−MMP , which contain information about DOA,
are first input to the convolutional layer [45], and the correspond-
ing outputs are determined according to

X = f(Wc4 ∗ f(Wc3 ∗ f(Wc2 ∗ f(Wc1 ∗ F
+ bc1) + bc2) + bc3) + bc4), (27)

where Wc1, Wc2, Wc3 and Wc4 refer to the weight of the
convolution kernel corresponding to each convolutional layer,
respectively, and bc1, bc2, bc3 and bc4 represent an additive
bias corresponding to each convolutional layer, respectively. The
activation function f is chosen as ReLU [45], which is defined
as f(x) = max(0, x).

The cross-entropy [45] is used as the loss function, which is
given by

L = −
I∑

i=1

gi log(PCNN (φi|F)), (28)

where gi denotes the ground-truth label corresponding to the
ith class, and PCNN (φi|F) stands for the posterior probability
of the DOA candidates for the acoustic source, which can be
written as

PCNN (φi|F) = exp(oi)∑I
i=1 exp(oi)

, (29)

where oi is the output value of the output layer corresponding
to the ith class.

In the final layer, we use the softmax activation function [45]
to perform classification. The softmax function generates the
posterior probability for each of the ith class. The final source
DOA is estimated by maximizing the posterior probability, i.e.,

φ̂s = argmax
φi

(PCNN (φi|F)), (30)

where φ̂s denotes the estimated source DOA.
We use stochastic gradient descent with momentum

(SGDM) [45] as the optimizer. The value of minibatches is
set as 64, the initial learning rate is set to be 10−3, and the
maximum number of epochs is chosen as 100. Early stopping
with a patience of 10 epochs measured on the validation set is
also used to prevent overfitting.

B. The Block Diagram of the Proposed Algorithm

Fig. 4 illustrates the entire process of the proposed method,
which consists of a training and a test phase. In the training
phase, the CNN is trained with a data set that consists of feature
vectors of fixed dimension based on circular harmonics, namely
ECH, CH-MMP and CH-E-MMP, and the corresponding true
DOA class labels. This stage corresponds to the blue boxes in
Fig. 4. In the test phase, given microphone signals, our aim is
to estimate the posterior probability of each DOA class based
on the input feature representations on the basis of circular
harmonic derived from the microphone signals. Finally, the DOA
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TABLE I
FIXED-ROOM CONFIGURATIONS IN TRAINING PROCESS AND TEST PROCESS

TABLE II
CHANGEABLE-ROOM CONFIGURATIONS IN TRAINING PROCESS AND TEST PROCESS

Fig. 4. Block diagram illustrating the proposed DOA estimation method.

estimate is obtained by selecting the DOA class with the highest
probability. This stage corresponds to the green boxes in Fig. 4.

VI. EXPERIMENTAL EVALUATIONS

This section studies the performance of the proposed method
through simulations and real data experiments. DOA estimation
using the proposed method is investigated and compared to
baseline methods. Experiments 1 and 2 are designed to evaluate
the performance of the proposed algorithm in the presence of
room reverberation and background noise at different levels,
respectively, which are tested in two situations: fixed-room and
changeable-room. Experiments 3, 4 and 5 investigate the influ-
ence of array sizes, microphone imperfections and elevations,
respectively. Lastly, the algorithms are further tested with real
data. The section starts with a description of datasets, evaluation

Fig. 5. Illustration of the simulation setup. The black solid dots, distributed
uniformly on the dash-dotted circle with a diameter of 0.04 m, denote the UCA.
The gray circles, distributed around the dash-dotted circle, denote the acoustic
sources.

metrics and parameter setup, and then presents the experimental
results.

A. Datasets

The simulated data used for training were generated in a
fixed-room and changeable-room, respectively, and the detailed
configurations are shown in Tables I, II and Fig. 5. Since our
proposed algorithm is suitable for most circular arrays, we chose
to use the small-sized array (namely M = 4 and r = 0.02 m)
in our experiments, which can demonstrate the flexibility of our
proposed method.
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In Fig. 5, the UCA with M = 4 equidistant omnidirectional
sensors and the diameter d = 0.04 m, was placed in the center
of the room, coinciding with the origin of the x and y axes.
The speaker was located at the same height as the microphone
array, namely ηs = 90◦, with distance from the speaker to the
center of the array being 1.5 m. Subsequently, we considered that
the spatial resolution for source location was set to be 10◦ in the
simulations. Thus, the total number of candidate source locations
was 36, namely I = 36, which were distributed uniformly from
−180◦ to 170◦, shown as the dash-dotted circle in Fig. 5. Since
we have 36 classes, the sources whose DOAs deviate from these
discretized DOAs, i.e. off the grid, will be assigned with one
of these 36 classes. For example, the DOA of a source at 173◦

would be estimated as 170◦. To generate the RIRs [46] from
acoustic sources to sensors, we used a software that was based
on the well-known image method for simulating a reverberant
environment in a room [47].

Three types of noise (i.e., Babble and Destroyerops which
are from the Noisex-92 dataset [48], and white Gaussian noise
(WGN)) were used as the background noise sources. Several
levels of room reverberation with various reverberation times
were tested, which will be specified later. The sound speed was
340 m/s. Speech signals of 0.5 s length, sampled at 16 kHz,
were chosen randomly from the well-known TIMIT speech
database [49]. The utterances in TIMIT are continuous speech.
For intermittent speech, there are silent periods, in which case,
the proposed method would need to be slightly modified to
include a class of no direction as in [50]. More specifically,
we would have I = 37 that corresponds to 36 directions and
1 no direction. The source was convolved with the simulated
RIRs from the source to every microphone. For all the evaluated
algorithms, the STFT was calculated using a Hamming window
of 1024 samples with 50% overlap between consecutive frames
and the number of frequency bins was 511, namelyNfb = 511.
Thus, for the CH-MMP and CH-E-MMP features, the input size
of CNN is 36 × 511. While for the ECH features, the input size
of CNN is 2(2N + 1) × 511, and its exact size is determined
by the value of maximum order N . Specifically, when N = 1,
the input size is 6 × 511, as a result, we can use at most two
convolutional layers. Except for this special case, we all use four
convolutional layers in our designed CNN network.

In the following, to analyze the source localization perfor-
mance systematically, we considered six different aspects in the
simulations. For each experiment, the data used for training,
validating and testing are described below:

(1) Effect of Room Reverberation: To evaluate the influence
of reverberation on the performance of the proposed method,
we considered two different scenarios, i.e., a fixed-room and
changeable-room, under varying levels of reverberation times
in the first experiment. As aforementioned, theRT60 was varied
from 200 to 800 ms with a step increase of 100 ms, the SNR
is 10 dB and the number of candidate source locations is 36.
Under the fixed-room condition, 250 utterances from TIMIT
database were randomly selected, which outputs 250 × 36 ×
7 = 63000 training signals, while another 60 utterances were
utilized as the validation data, which output 60 × 36 × 7 =
15120 signals in the validation set. In the testing phase, for

each candidate source location, we randomly selected another
20 utterances to generate a test set of 20 × 36 × 7 = 5040
signals. Then, in the changeable-room condition, the acoustic
localization algorithms were trained in the three different rooms
(as mentioned in Table II) and tested in one room. As a result,
the training data was 250 × 36 × 7 × 3 = 189000 signals and
the validation data was 60 × 36 × 7 × 3 = 45360 signals, while
the testing set had 20 × 36 × 7 = 5040 signals.

(2) Effect of Noise Level: The second experiment was carried
out to investigate the influence of noise on the proposed method.
In this experiment, all the configurations were the same as the
first experiment, except the SNR which is varied from −5 to
20 dB with a step increase of 5 dB with the reverberation time
of RT60 = 300 ms. Thus, for the fixed-room condition, there
were 250 × 36 × 6 = 54000, 60 × 36 × 6 = 12960 and 20
× 36 × 6 = 4320 signals for training, validating and testing,
respectively. Similarly, for the changeable-room condition, the
training set was composed of 250 × 36 × 6 × 3 = 162000
signals and the validation set had 60 × 36 × 6 × 3 = 38880
signals, while the testing set had 20 × 36 × 6 = 4320 signals.

(3) Effect of Array Size: This experiment was designed to
evaluate the performance of array size. The data were simulated
in the rectangular room, whose dimensions are 9.7 m × 7.05 m
× 3 m, with a reverberation time of 300 ms and a noise level of
10 dB. The array size d was varied from 0.02 m to 0.3 m (i.e.,
0.02 m to 0.1 m with a step increase of 0.01 m and 0.12 m to
0.3 m with a step increase of 0.02 m). Thus, we had 19 cases
of array size. As a result, there were 250 × 36 × 19 = 171000
signals for training, 60 × 36 × 19 = 41040 for validating and
20 × 36 × 19 = 13680 for testing.

(4) Effect of Microphone Mismatches: It is known that small-
sized microphone arrays are usually sensitive to microphone
mismatches, such as microphone gain and phase errors. In
this experiment, we compare the performance of the various
methods in the presence of microphone gain and phase errors.
The dimensions of the simulated rectangular room are 9.7 m ×
7.05 m × 3 m, with a reverberation time of 300 ms and a noise
level of 10 dB. Herein, assume that the microphone gain and
phase errors are unknown and bounded, respectively, by

ε ∈ λ[−0.1, 0.1], ψ ∈ λ[−5◦, 5◦], (31)

where ε represents the microphone gain error, ψ represents the
microphone phase error, and λ is a scale parameter used to
control the error ranges, which is varied from 0 to 1 with a
step increase of 0.2, i.e., with the microphone mismatches being
gradually increased. In the simulations, the gain and phase errors
of each microphone were randomly selected within the error
range given by (31). In total, the training set had 250 × 36 × 6
= 54000 signals, the validation set had 60 × 36 × 6 = 12960
signals and the testing set had 20 × 36 × 6 = 4320 signals.

(5) Effect of Elevation: This experiment aimed at assessing
the impact of elevation angles on our proposed three methods.
We considered different elevation angles, i.e., ηs = 30◦, 60◦ and
90◦, in the simulated rectangular room of 9.7 m× 7.05 m× 3 m,
respectively. The other datasets were the same as described in
Table I.
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Fig. 6. Photography showing the real-world experiment and the uniform
circular sensor array used. The diameter of the circular microphone array is
0.04 m.

(6) Effect of Temperature: We include an analysis for the
potential impact of the indoor temperature on the performance
of the proposed method.

To further evaluate the effectiveness of the proposed method,
we also selected 20 utterances and recorded them in a real
rectangular conference room with dimensions of approximately
9.7 m × 7.05 m × 3 m and a reverberation time of 350 ms.
A small-sized array was placed horizontally around the center
of the room, and the other conditions resembled those in the
above simulations. A photograph of the real experiment and
microphone array is shown in Fig. 6. In addition, we used the
publicly available LOCATA dataset [51], [52] to evaluate our
proposed method.

The sensors used in the real-world experiments were all
1/2-inch sensors (MPA201; BSWA Technology Co., Ltd.). The
received sensor signals were sampled at 16 kHz through a data-
acquisition device (NI-USB-4432 and cDAQ-9178; National
Instruments) with 24-bit. In the real experiments, the actual
speaker locations were determined using protractors and rulers,
and the spatial resolution is 20◦ (i.e., −170◦ to 170◦ with 18
candidate positions, namely I = 18). As a result, there were 20
× 18 = 360 signals for testing.

B. Evaluation Metrics

To facilitate evaluations, we use the localization accuracy
(Acc) as performance metrics, which is defined as:

Acc =
Ncr

Ne
× 100%, (32)

whereNe represents the number of source locations being eval-
uated, and Ncr denotes the number of source locations that are
correctly recognized. Herein, an acoustic source is considered
being correctly localized if the deviation of the estimated DOA
from the actual DOA is within ±φ0 for a spatial resolution of
φ0, namely, ±10◦ for the simulations and ±20◦ for the real data
experiments.

Fig. 7. Normalized histograms of original TF bins (grey bins) and suitable TF
bins (blue bins) for DOA φs = 60◦ with choosing α = 0.2: (a) SNR = 0 dB
and RT60 = 300 ms; (b) SNR = 10 dB and RT60 = 700 ms.

C. Parameter Setup

For the pre-defined thresholdα discussed in Section IV-A, we
tested α ∈ [0.1, 0.5] for finding the suitable uth TF bin when the
total number of TF binsQ = 14322. Since the proposed method
is data-driven, we empirically choose α = 0.2, which seems to
be appropriate for most scenarios. An example is given in Fig. 7,
where we plot the normalized histograms of original TF bins
(grey bins) and suitable TF bins (blue bins) for DOA φs = 60◦

with (a) SNR = 0 dB, RT60 = 300 ms and (b) SNR = 10 dB,
RT60 = 700 ms, respectively. From Fig. 7, it is noticed that a
certain amount of suitable TF bins were calculated by using
α = 0.2 and demonstrated in the normalized histograms in ad-
verse environments (e.g. low SNR or high reverberation), which
further confirms the validity of the enhanced function in the
circular harmonic domain. We have also evaluated the DOA
estimation accuracy by using the CH-E-MMP-CNN method
for the fixed room under reverberant and noisy conditions, for
α = 0.2 and 0.6. We found that α = 0.2 offers better results as
compared with α = 0.6. Such results were not shown here due
to the space limitation.

D. Baseline Methods

The performance of the proposed ECH-CNN, CH-MMP-
CNN and CH-E-MMP-CNN are evaluated and compared with
several baselines including the STFT-CNN [29], [30], GCC-
PHAT-CNN [9], [27], IRM-BLSTM [33] and PSM-BLSTM [12]
methods in both simulated and real room environments. The
environmental conditions and noise types are the same as those
aforementioned.

STFT-CNN: This is a broadband DOA estimation method
based on CNN, in which phase component of the short-time
Fourier transform (STFT) coefficients of the received micro-
phone signals are used as features and directly fed into the
CNN. The STFT-CNN model consists of three convolutional
layers, each containing 64 small filters of size 2× 2 and two
fully connected layers with each having 512 units. At the end
of the three convolution layers and after each fully connected
layer, dropout with a rate of 0.5 was used to mitigate the potential
overfitting problem. The activation function used in the output
layer is softmax and the others are ReLU. Cross-entropy is used
as the loss function and Adam is used as the optimizer.
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GCC-PHAT-CNN: In this method, the popularly used fea-
tures, i.e., generalized cross correlation with phase transform
(GCC-PHAT), are extracted from pairs of microphone signals
and provided as input to the CNN framework for sound source
localization. The GCC-PHAT-CNN model consists of three con-
volutional layers, each containing 64 small filters of size 3× 3,
two max pooling layers and one fully connected layer. A batch
normalization layer is used after each convolutional layer. The
activation function of the output layer is softmax and those of
the others are ReLU. Cross-entropy is used as the loss function
and Adam is used as the optimizer.

IRM-BLSTM and PSM-BLSTM: Both methods are guided by
the TF masks. The ideal ratio mask (IRM) is ideal for speech
enhancement only when the mixture phase is the same as the
clean phase at each TF unit. While the phase-sensitive mask
(PSM) takes the phase difference into consideration by scaling
down the ideal mask when the mixture phase is different from
the clean phase using a cosine operation. The bi-directional
long short-term memory (BLSTM) is trained to estimate the
IRM and PSM, respectively, yielding better mask estimation
for localization. The BLSTM contains two hidden layers each
with 600 units in each direction. Sigmoidal units are used in the
output layer. The Adam algorithm is used to minimize the mean
squared error for mask estimation.

E. Source Localization Results in Simulation Experiments

1) Effect of Room Reverberation: In our first set of simula-
tions, we investigated the localization accuracy under different
room reverberation. Figs. 8 and 9 show the localization accu-
racy of each method under the conditions of the fixed-room
and changeable-room, respectively, when the reverberation time
RT60 is varied from 200 to 800 ms with a step increase of 100 ms
and the level of noise in terms of SNR is 10 dB, in Babble,
Destroyerops and WGN noise types. In general, the performance
of all tested algorithms degrade with the increase in the level
of reverberation. The proposed CH-E-MMP-CNN outperforms
all the methods including CH-MMP-CNN. With the circular
harmonic enhanced function, more reliable TF bins, which are
dominated by the sound source, are selected, leading to improved
localization performance, especially for the changeable-room in
WGN noise. In contrast, the ECH-CNN method performs less
effectively, which could be ascribed to the use of the equalized
circular harmonic, thus lacking the related phase information,
which is crucial for far-field acoustic localization when the
microphones are placed close to each other. The IRM-BLSTM
and PSM-BLSTM methods perform well except for the De-
stroyerops noise, in which persistent interference appears at
low frequencies, caused by the background noise from the
operating room in the destroyer. In addition, according to [33],
the IRM/PSM masks are more accurately estimated at speech
onsets and lower frequencies, probably because the energy of the
direct speech is relatively stronger in these TF regions. These
probably are the reasons why these two mask-based methods
are sensitive to Destroyerops noise. As a result, both methods
degrade by around 30% in reverberation.

Fig. 8. Effect of room reverberation on the performance of each method for
localization accuracy in the fixed-room with SNR = 10 dB: (a) Babble; (b)
Destroyerops; (c) WGN.

The STFT-CNN and GCC-PHAT-CNN methods show differ-
ent results for different room environments. In the fixed-room
condition, the accuracy of both methods is mostly over 95%
for Babble and Destroyerops noise, whereas the performance
degrades for WGN, with an accuracy just over 60% for all the
reverberation levels. In the changeable-room condition, GCC-
PHAT-CNN performs well in Babble and Destroyerops noises,
with an accuracy at approximately 95%, but degrades 25% in
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Fig. 9. Effect of room reverberation on the performance of each method for
localization accuracy in the changeable-room with SNR = 10 dB: (a) Babble;
(b) Destroyerops; (c) WGN.

WGN noise. The performance of STFT-CNN decreases with the
increase in the reverberation level in all three types of noise. The
reason that GCC-PHAT-CNN performs better than STFT-CNN
is that the PHAT weighting function used in GCC-PHAT-CNN
can reduce the degradation from reverberation, while the spec-
trum used in STFT-CNN is prone to the degradation by room
reverberation.

Fig. 10. Effect of noise level on the performance of each method for lo-
calization accuracy in the fixed-room with RT60 = 300 ms: (a) Babble; (b)
Destroyerops; (c) WGN.

2) Effect of Noise Level: Figs. 10 and 11 show the local-
ization accuracy of each method under different noise types
(i.e., Babble, Destroyerops and WGN) under the fixed-room
and changeable-room conditions, respectively, when the SNR is
varied from −5 to 20 dB with a step increase of 5 dB with the re-
verberation time of RT60 = 300 ms. The proposed CH-E-MM-
CNN method offers better localization performance under all
three noise types in different room conditions as compared with
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Fig. 11. Effect of noise level on the performance of each method for local-
ization accuracy in the changeable-room with RT60 = 300 ms: (a) Babble; (b)
Destroyerops; (c) WGN.

other methods including the proposed CH-MMP-CNN method,
which degrades at low SNRs, i.e., SNR = 0 dB and −5 dB. This
is because the CH-E-MMP feature selects the TF bins, which
are less affected by noise, to achieve more accurate localization.
The proposed ECH-CNN method, however, is outperformed by
other methods in all situations (except the IRM-BLSTM and
PSM-BLSTM algorithms in Destroyerops noise). This could
be because the ECH features lack dominant phase information

Fig. 12. The localization accuracy of the proposed methods in the fixed-room:
(a) room reverberation; (b) WGN noise.

and are also corrupted in low SNRs, especially in the case of
WGN noise. The IRM-BLSTM and PSM-BLSTM approaches
perform well in Babble noise, but they appear to be sensitive to
Destroyerops noise. This is probably due to the strong energy
in the low frequencies of the Destroyerops noise, which can
distort the target sound significantly, as analysed in the section
of Effect of Room Reverberation. The other algorithms, such
as STFT-CNN and GCC-PHAT-CNN, provide good results in
Babble and Destroyerops noise under fixed-room condition,
whose accuracy is nearly 95%, but under changeable-room
condition, the STFT-CNN degrades to 85%, which implies that
the difference between the training and test conditions may affect
the DOA estimation accuracy. In addition, for WGN noise, the
accuracy of both two methods degrades rapidly with the increase
in noise level, and especially at low SNRs, the results are down
to nearly 20%. This suggests that using the PHAT weighting
function, we can potentially mitigate the detrimental impact of
noise on the features learned, e.g. SNR = 0 dB and −5 dB.

Note that, for the small-sized array with M = 4 and r =
0.02 m, we have the order N = 1 in terms of the discussions
after (8). Therefore, for the ECH feature, we have used two
convolutional layers, which is different from CH-MMP-CNN
and CH-E-MMP-CNN. To make a fair comparison, we have
also performed experiments for a different array with M = 8
and r = 0.1 m, in which case, we have the order N = 3. This
allows us to use the same number of convolutional layers, i.e.
four layers, for all the three proposed methods. Fig. 12 shows the
localization accuracy of the proposed methods under different
room reverberation and WGN noise, respectively. From this
figure, we can see that the performance of all proposed methods
for the array with M = 8 and r = 0.1 m has improved over the
array withM = 4 and r = 0.02 m. This is because the available
order of the circular harmonic has been increased. Specifically,
for the ECH method, the dimension of the input to the network
is expanded to 14 × 511. For the CH-MMP and CH-E-MMP
features, they can use higher orders of circular harmonic modes
information which can provide better directivity, hence their
performance has also been improved.

We have also tested another network architecture, i.e. the
combined CNN and long short term memory (LSTM) [50]
network, to evaluate our proposed ECH, CH-MMP and CH-E-
MMP features for different levels of noise, in the fixed-room with
RT60 = 300 ms. Here, we did not perform detailed parameter

Authorized licensed use limited to: University of Surrey. Downloaded on August 24,2022 at 16:07:33 UTC from IEEE Xplore.  Restrictions apply. 



SONGGONG et al.: ACOUSTIC SOURCE LOCALIZATION IN THE CIRCULAR HARMONIC DOMAIN USING DEEP LEARNING ARCHITECTURE 2487

Fig. 13. Effect of array size on the performance of each method for local-
ization accuracy with RT60 = 300 ms and SNR = 10 dB: (a) Babble; (b)
Destroyerops; (c) WGN.

tuning for this network. The CNN and LSTM network consists
of two convolutional layers, one LSTM layer and a FC layer.
The activation function used in the two convolutional layers and
the FC layer is ReLU. Softmax is used as the activation function
for the final layer. Cross-entropy is used as the loss function
and the optimizer is SGDM. Dropout with a rate of 0.5 is used
for the LSTM and FC layer to mitigate the potential overfitting
problem. Each convolutional layer has 16 local filters of size

Fig. 14. Effect of microphone mismatches on the performance of each method
for localization accuracy with RT60 = 300 ms and SNR = 10 dB: (a) Babble;
(b) Destroyerops; (c) WGN.

3×3 and the number of nodes for LSTM and FC layer is 600
and 1024, respectively. There are no subsampling layers after
the convolutional layers. All three proposed methods still work
in this architecture, which can demonstrate the flexibility of our
proposed features. The CH-E-MMP feature performs the best
among three, giving an accuracy of 88.21%.

3) Effect of Array Size: Fig. 13 shows the localization ac-
curacy of each method when the array diameter d is varied
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Fig. 15. Effect of elevation on the performance of proposed methods for
localization accuracy in the fixed-room with various RT60 and SNR = 10 dB:
(a) Babble; (b) Destroyerops; (c) WGN.

from 0.02 to 0.3 m with RT60 = 300 ms and SNR = 10 dB.
We can see that the performance of the compared approaches
has been improved with the increase in array size. With the
proposed CH-E-MMP-CNN method, more reliable TF bins are
selected due to the use of an enhanced function with circular
harmonics which results in the accuracy greater than 90% in
different types of noise. Using a small scale array, e.g. d= 0.02
and 0.03 m, the performance of the proposed CH-MMP-CNN

Fig. 16. Effect of elevation on the performance of the proposed methods in
localization accuracy in the fixed-room with various SNR and RT60 = 300 ms:
(a) Babble; (b) Destroyerops; (c) WGN.

degrades to lower than 80%. This implies that the array size
impacts significantly on the DOA estimation accuracy. In con-
trast, due to the lack of phase information in the features, the
ECH-CNN method still gives the worst result, except in the case
for the Destroyerops noise. The remaining algorithms, i.e. the
IRM-BLSTM, PSM-BLSTM and STFT-CNN, all perform well
in Babble noise, but degrade significantly in other two types of
noise. To be specific, for different size array, the IRM-BLSTM
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TABLE III
THE LOCALIZATION ACCURACY OF THE EVALUATED METHODS IN THE REAL EXPERIMENTS, WHERE THE SPATIAL RESOLUTION IS 20◦

The results with the highest accuracy are highlighted in bold.

and PSM-BLSTM show better performance in WGN but worse
performance in Destroyerops noise, which illustrate the unstable
performance of these two methods in different types of noise, for
similar reasons we already discussed in the previous sections.
The STFT-CNN performs well in Destroyerops noise but poorly
in WGN noise (i.e., the accuracy is approximately at 55%).
Moreover, the GCC-PHAT-CNN shows a slightly better perfor-
mance in Babble and Destroyerops noise, and its result in WGN
noise increases rapidly with increase in the diameter, which is
over 90% when d is up to 0.1 m. This shows that the array size
has a significant impact on the performance by the GCC-PHAT
features, with a larger diameter usually giving better estimation
results.

4) Effect of Microphone Mismatches: Fig. 14 shows the lo-
calization accuracy of each method when λ is varied from 0 to
1 with a step size of 0.2, i.e., gradually increase in microphone
mismatches, where RT60 = 300 ms and SNR = 10 dB. From
Fig. 14, we can see that, the proposed CH-E-MMP-CNN method
provides superior performance with the increase in microphone
mismatches, and the proposed CH-MMP-CNN also achieves
stable results. This is probably because the microphone mis-
matches may affect the value of power spectrum peak, but not
the correspondence between the spectrum peak and DOA. In
contrast, the proposed ECH-CNN performs less well, due to
the gain errors of the microphone. The IRM-BLSTM and PSM-
BLSTM approaches are sensitive to the Destroyerops noise, as
aforementioned, giving the lowest performance at around 30%.
Moreover, the IRM-BLSTM and PSM-BLSTM perform well
and offer similar accuracy for Babble noise (around 95%) and
WGN (around 85%). The STFT-CNN and GCC-PHAT-CNN
algorithms are outperformed slightly by the proposed methods
for Babble and Destroyerops noises, but considerably for WGN
noise, with the accuracy dropped to nearly 30%. The gain errors
from the microphone signals may be the main reason for the
inaccurate DOA estimation results by the STFT-CNN method,

while the phase errors in the cross-spectrum may be the main rea-
son for inaccurate localization results by the GCC-PHAT-CNN
method.

5) Effect of Elevation: Fig. 15 shows the localization accu-
racy of our proposed methods when the elevation is 30◦, 60◦ and
90◦, respectively, with the reverberation timeRT60 varying from
200 to 800 ms and the level of noise in terms of SNR is 10 dB.
Fig. 16 shows the localization accuracy with the SNR varying
from −5 to 20 dB and the reverberation time atRT60 = 300 ms.
Herein, we only consider a fixed room of size 9.7 m × 7.05 m ×
3 m, to evaluate the effect of different elevations. From Figs. 15
and 16, we can see that the three proposed methods show similar
performance trends in reverberant and noisy conditions. Specif-
ically, the CH-E-MMP-CNN approach still outperforms other
two proposed algorithms. This result indicates the effectiveness
of the circular harmonic enhanced function and the reliability
of this proposed method. Likewise, the localization accuracy of
the proposed CH-MMP-CNN method is similar to that of the
CH-E-MMP-CNN method, under the various levels of SNR and
RT60. This demonstrates the effectiveness of modes magnitude
and phase based features. However, the proposed ECH-CNN
method gives the lowest localization performance among three
proposed algorithms, especially when the elevation is 30◦, the
accuracy is at 10% for SNR = −5 dB in WGN noise.

6) Effect of Temperature: We would like to remark that the
temperature only affects the speed of sound, thereby the choice
of the order N . When the indoor temperature is 15 ◦C as we
considered in our experiments, the speed of sound is 340 m/s.
When the indoor temperature is 10 ◦C, the speed is 337 m/s, and
when the indoor temperature is 20 ◦C, the speed is 343 m/s. Due
to the small change in sound speed, the impact on the choice of
the order N is negligible. For example, if the radius r = 0.02
m, f = 3500 Hz, M = 4, the order would be N = 1 for all the
three sound speeds. This means that the temperature changes
would not be an issue of concern for our methods.
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F. Source Localization Results in Real-World Experiments

Table III shows the localization accuracy of various methods
when the spatial resolution is 20◦. As can be observed, results
on real data are generally consistent with the aforementioned
results on synthetic data. For most of the DOAs, the proposed
CH-E-MMP-CNN algorithm provides the highest average lo-
calization accuracy, up to 97.50%, which indicates the effec-
tiveness of using the circular harmonic enhanced function in
a practical environment. The proposed CH-MMP-CNN method
shows slight degradation in accuracy, however, it performs better
than CH-E-MMP-CNN for some DOAs. Furthermore, similar
to the findings in the synthetic simulation, the IRM-BLSTM
and PSM-BLSTM approaches perform well, giving average ac-
curacy over 83%. The proposed ECH-CNN, GCC-PHAT-CNN
and STFT-CNN methods give the average localization accuracy
below 70%, which are inferior to those of the three methods
mentioned earlier.

To further evaluate our methods, we used the Task 1 of the LO-
CATA challenge [51], [52], which aims to localize a single and
static loudspeaker via using a spherical array from the Eigenmike
manufactured by mh acoustics [53]. Specifically, we choose
the microphone number 6, 12, 22, and 28 of the Eigenmike
to emulate the circular microphone, and use the same parame-
ter setup aforementioned. The localization accuracy achieved
on this dataset is STFT-CNN: 35.23%, GCC-PHAT-CNN:
54.55%, IRM-BLSTM: 72.73%, PSM-BLSTM: 77.27%, ECH-
CNN: 50.44%; CH-MMP-CNN: 81.82%; CH-E-MMP-CNN:
86.36%, respectively. These results further verify the effective-
ness of our proposed CH-MMP-CNN and CH-E-MMP-CNN
methods.

VII. CONCLUSION

We have presented a new acoustic source localization ap-
proach using deep learning architecture in the circular har-
monic domain. The novel contributions of our work are on
the new features designed in circular harmonic domain. This
enables a CNN framework to be applied to the microphone
signals to learn a mapping from the acoustic features to the
DOAs of the sources. Our approach achieves competitive per-
formance (e.g. accuracy and stability) in DOA estimation un-
der a variety of array size, noise and reverberation conditions
(including conditions unseen in the training stage). Numerical
results on simulated and real room environments demonstrated
the state-of-the-art performance of our proposed approaches
as compared with several recent baseline methods. In the fu-
ture, we will extend the proposed methods to multi-source
scenarios.
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