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Abstract—Circular microphone arrays have been used for
multi-speaker localization in computational auditory scene anal-
ysis, for their high flexibility in sound field analysis, including
the generation of frequency-invariant eigenbeams for wideband
acoustic sources. However, the localization performance of ex-
isting circular harmonic approaches, such as circular harmonics
beamformer (CHB) depends strongly on the physical characteris-
tics (such as shape) of sensor arrays, and the level of uncertainties
presented in acoustic environments (such as background noise,
room reverberation, and the number of sources). These uncer-
tainties may limit the performance or practical application of
the speaker localization algorithms. To address these issues, in
this paper, we present a new indoor multi-speaker localization
method in the circular harmonic domain based on the acoustic
holography beamforming (AHB) technique and the Bayesian
nonparametrics (BNP) method. More specifically, we use the AHB
technique, which combines the delay-and-sum beamforming with
acoustic-holography-based virtual sensing, to generate direction
of arrival (DOA) measurements in the time-frequency (TF)
domain, and then design a BNP algorithm based on the infinite
Gaussian mixture model (IGMM) to estimate the DOAs of
the individual sources without the prior knowledge about the
number of sources. These estimates may degrade in the presence
of room reverberation and background noise. To address this
issue, we develop a robust TF bin selection and permutation
method on the basis of mixture weights, using power, power
ratio and local variance estimated at each TF bin. Experiments
performed on both simulated and real-data show that our method
gives significantly better performance, than four recent baseline
methods, in a variety of noise and reverberation levels, in terms
of the root-mean-square error (RMSE) of the DOA estimation
and the source detecting success rate.

Index Terms—Multi-speaker localization, Bayesian nonpara-
metrics (BNP), circular harmonics, direction of arrival (DOA)
estimation, microphone array signal processing.

I. INTRODUCTION

SPEAKER localization, or the direction of arrival (DOA)
estimation of speech sources, using acoustic sensor ar-

rays, has received extensive attention in recent years. As an
important and active research topic in audio signal processing,
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it has a wide variety of practical applications, e.g., in video
teleconferencing, where the knowledge of the location of a
speaker helps steer a camera to focus on the speaker [1];
in robotics, where microphones can be installed on robots to
estimate human positions for effective human-robot interaction
[2]; in smart home design, where the locations of the sources
can be taken into account to facilitate the design of smart
devices [3]; and in hearing aids, speech source location can
be used to enhance its intelligibility in a noisy environment
[4], among many others [5]–[7].

Existing approaches for DOA estimation can be classi-
fied approximately into four categories, namely, the steered-
response power (SRP) beamforming methods [8], [9], the
subspace-based methods [10]–[12], the time-difference-of-
arrival (TDOA) estimation methods and the intensity-based
methods. The SRP beamforming methods [8] are an intuitive
solution for DOA estimation, by steering the beam over DOAs
and analyzing the highest power. Owing to their limitations
on spatial resolution, SRP methods may fail to localize the
speakers that are close to each other [2]. To overcome this
limitation, a method based on the spatial sound presence prob-
ability (SSPP) was proposed in [9], where spatial probabilities
based on a relative transfer function (RTF) correlation feature
are used to incorporate knowledge of the anechoic RTFs in the
directions of interest for the localization of multiple simultane-
ously active sources in adverse environments. The subspace-
based methods, including the popular methods e.g. multiple
signal classification (MUSIC) [10] and estimation of signal
parameters via rotational invariance techniques (ESPRIT) [11],
utilize the eigen-decomposition of the covariance matrix of
the received signals at microphones to achieve good DOA
resolutions. They are mainly applicable to source localization
in anechoic environments, whereas the coherent signal sub-
space (CSS) based framework presented in [12] can be used
to deal with reverberant scenarios. The TDOA based methods
are often exploiting the Generalized Cross-Correlation PHAse
Transform (GCC-PHAT) [13]. However, they are designed
originally for single source localization and the localization
results may be sensitive to room reverberation due to the
free-field plane-wave model it assumes [14]. The intensity-
based methods determine the magnitude and direction of the
transport of acoustic energy, related to the DOA of a sound
wave [15]. Unfortunately, in practice, it is difficult to measure
particle velocity, although attempts have been made to use the
finite difference method with two microphone arrays [16].

In common with most speaker localization methods, how-



2

ever, there are still several challenges remaining: (1) the
characteristics of the array, particularly the small-sized array,
may affect the localization performance or limit its practical
application, (2) localizing multiple and simultaneously active
speakers is an extremely important and challenging issue,
especially when the number of sources is unknown, and (3)
the presence of room reverberation and background noise in
the microphone measurements further complicates the problem
and degrades the accuracy of DOA estimation.

In the last several years, modal signal processing using
sensor array [17] has received increasing attention. The reason
for this is that it can provide a frequency-invatiant eigenbeam
and be used for localizing wideband source without a nar-
rowband assumption underlying the traditional signal model
[18]. The authors of [19] developed the circular harmonics
beamformer (CHB), which belongs to a more recent class of
methods often referred to as eigenbeamforming. This method
is shown to achieve better resolution and sidelobe properties
than delay-and-sum beamforming by selectively processing
a different number of phase modes. In particular, a time-
frequency (TF) - CHB [20] was reported to have outperformed
the eigenbeam (EB) - ESPRIT [21] in localizing multiple
sources under a high level of reverberation and noise. Despite
being straightforward, the localization performance of these
methods depends strongly on the physical characteristics of
the sensor array. In [15], a method using the pseudointensity
vector (PIV) is designed for the localization of a single source,
which uses sound field information with low spatial resolution.
As an extension of PIV, the Subspace PIV (SS-PIV) [22]
uses the low order spatial information of signal subspace for
the localization of multiple sources. However, this method is
sensitive to noise and room reverberation. In [23], MUSIC
with direct-path dominance (DPD) test is used to improve
multi-source localization in highly reverberant environments
by exploiting the sparsity of speech in the TF domain. The
DPD test aims to identify TF bins that contain significant
contributions from a single source, i.e. the direct signal.
However, as described in [23], the DPD test is reported to
be satisfied in only 3% of the TF regions. As a result, there
may not be any DOA estimates in some time frames, which
is problematic in practice.

Although the multi-speaker localization methods based on
circular harmonics are promising as aforementioned, they still
suffer from several limitations in practical applications: (1)
the accuracy of DOA estimation may be limited by the shape
of sensor arrays, for instance the number of transducers, the
radius and whether the sensors are mounted on a scatterer
such as a rigid cylinder or a sphere. Specifically, the TF-
CHB method is improved by increasing the number of sensors
and the radius of the array simultaneously as this increases
the maximum order that can be used [20]. However, the
requirements said above are not all met in practical appli-
cations, because the number of sensors and the array radius
cannot be increased without limit; (2) all the aforementioned
multi-source localization approaches have a common issue
that the maximum number of sources has to be specified in
advance, which is often unknown in practical situations. Since
a priori knowledge about the acoustic environment including
the source number is often difficult to obtain, an all-round

method applicable to a wide range of environments is desirable
[24]; and (3) although the existing circular harmonic DOA
estimation methods perform well in low or moderate noise
conditions [19], they are known to be sensitive to noise and
reverberation [14], [20], and hence degrade in these adverse
conditions for multi-speaker scenarios.

In this paper, we present an indoor multi-speaker localiza-
tion method in the circular harmonic domain. We firstly de-
velop an acoustic holography beamforming (AHB) technique
in the TF domain, which is in some sense analogous to the
technique commonly used for capturing the evanescent waves
to enhance spatial resolution [25], [26]. The acoustic hologra-
phy method was introduced originally in [27] and conceived
for array measurements in the near-field of a source to predict
the sound field close to it, with the aim to visualize the source
radiation characteristics. Recently, the combination of acoustic
holography and beamforming has been examined by Fu et al.
[28] for visualization of sound sources with high temperature.
Different from these works, here we develop an AHB tech-
nique in the TF domain, where delay-and-sum beamforming
is combined with acoustic-holography-based virtual sensing,
for modelling multi-speaker localization, thereby overcoming
the limitations of the conventional circular harmonic DOA
estimation methods, which are strongly influenced by practical
constraints of array characteristics as aforementioned. To our
knowledge, this is the first time that AHB is used for multi-
speaker localization. Secondly, we develop a Bayesian non-
parametrics (BNP) algorithm [24] for the DOA estimation of
the sources under the AHB model. The BNP algorithm is able
to determine the complexity of the model without the prior
knowledge about the number of sources. More specifically,
the BNP clustering method is used to address this problem by
assuming that there is an infinite number of latent clusters, but
only a finite number of them is used to generate the observed
data [29]. Furthermore, the BNP models allow the complexity
to grow as more data are observed, such as in [30]. Thus,
we can overcome the source number uncertainty issue using
a BNP method. In addition, we modify the BNP formulation
to allow more emphasis on the DOA observations by using
the mixture weights, which can eliminate the permutation
problem introduced by noise and reverberation. The results of
simulations and real-data experiments in noisy and reverberant
environments show the superior performance of our proposed
multi-speaker localization method when compared with the
existing circular harmonic methods.

The remainder of this paper is structured as follows. Section
II provides a problem formulation. Section III presents an
overview of the proposed method, which contains three main
stages as detailed in Sections IV, V and VI, respectively.
Section IV presents the exploitation of the TF-AHB technique
in the circular harmonic domain for generating the TF mea-
surements. Section V presents a BNP model and an inference
algorithm for the estimation of the number of sources and
their DOAs. Section VI presents a technique to improve the
parameter estimation of the BNP model in reverberant and
noisy conditions based on the use of mixture weight and
TF bin selection. The simulation and real-data experimental
results are discussed in Section VII. Finally, the conclusions
are drawn in Section VIII.
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II. PROBLEM FORMULATION

A uniform circular array (UCA) consisting of M omnidirec-
tional sensors is adopted for sound source capture as shown
in Fig. 1(a). This is mainly due to its simple and compact
structure, and also its DOA estimation range from −180◦ to
180◦. The geometric center of the UCA is chosen as the origin
of the coordinate system, the radius of the array is r, and the
azimuth angle of each sensor is ϑm, namely

ϑm = (m− 1)
2π

M
, (1 ≤ m ≤ M). (1)
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Fig. 1. (a) Configuration of the uniform circular sensor array. (b) The virtual
array used in acoustic holography, where the gray points denote the positions
of the virtual array elements. Note that the figures are not drawn to scale.

Suppose that D far-field speech sources in a reverber-
ant enclosure impinge on the array. Herein, the DOAs are
defined with respect to the positive x-axis, which implies
θd ∈ [−180◦, 180◦), d = 1, . . . , D. The source signal received
at the mth sensor can be modeled as

pm(τ) =
D∑

d=1

hdm(τ) ∗ sd(τ) + vm(τ), (2)

where sd(τ) is the signal induced by one of D speech sources
at rd distance from the centre O of microphone array, hdm(τ) is
the room impulse responses (RIRs) from the dth source to the
mth sensor, τ is the discrete time index, ∗ is the convolution
operator, and vm(τ) is the additive background noise.

In the short-time Fourier transform (STFT) domain, (2) can
be transformed to

Pm(k, t) =
D∑

d=1

Hdm(k, t)Sd(k, t) + Vm(k, t), (3)

where k = 2πf/c is the wavenumber, t is the time frame
index, f is the frequency, c is the speed of sound, and Pm(k, t),
Sd(k, t), Hdm(k, t), and Vm(k, t) are the STFT of pm(τ),
sd(τ), hdm(τ), and vm(τ), respectively.

Speech signals, in general, are considered sparse in the
TF domain [14], and as a result, the speech sources from
multiple speakers will not be substantially overlapping in the
TF domain. In other words, at each TF bin, it could be
assumed that only one source is dominant, i.e., the probability
of one source presenting at this TF bin is higher than those of
other sources. With the sparsity assumption, (3) can be further
simplified as follows

Pm(k, t) ≈ Hdm(k, t)Sd(k, t) + Vm(k, t). (4)

Such an assumption has been exploited in source localiza-
tion [31] and source separation [6], [32], [33]. In a reverberant
environment, the presence of room reverberation increases the
chance of source overlap in the TF domain. Nevertheless, we
characterize the presence of each source with a probability
showing how likely it occurs at each TF bin. Due to such a
representation, our method allows the presence of reverbera-
tion and overlap between sources in the microphone signals to
be described using a probabilistic model and quantified with
source presence probabilities at each TF bin. We argue that
the sparsity assumption is less restrictive than the W-disjoint
orthogonality (W-DO) assumption [34], which is less likely to
hold for multiple sources and reverberant environments.

Our objective is to estimate the DOAs θd of the speech
sources based on the received mixture signals Pm(k, t) in an
indoor environment. To this end, we propose a new method
where the AHB technique is used to generate the DOA
measurements for all the TF bins, and then the BNP method is
developed to estimate the DOAs of all the sources, without the
prior knowledge about the number of sources. We also present
a new and robust method for estimating the parameters of the
BNP model based on mixture weights, in the presence of noise
and room reverberation.

III. OVERVIEW OF THE PROPOSED METHOD

The proposed method, as shown in Fig. 2, is composed
of three core stages. First, given the microphone signals
pm(τ), the DOA measurements in the TF domain, i.e. Θ̂ =
{θ̂(k, t)} = {θ̂1, · · · , θ̂i, · · · , θ̂I}, where I is the total number
of TF bins, are generated by the AHB approach with the
steps shown in the blue boxes in Fig. 2, which include the
conversion of pm(τ) to a TF domain representation Pm(k, t),
and the formation of acoustic holography beamforming in
order to obtain the measurements Θ̂.

Second, an Infinite Gaussian Mixture Model (IGMM) of l
components with hyperparameters Ψl is used to model Θ̂. The
BNP method is used to estimate, in an iterative and alternating
manner, the model parameters Ψl, the posterior probability of
ki (i.e. the shift required to unwrap the original θ̂i to a range
outside [−π, π), i = 1, ..., I), and the posterior probability
of class label zi (i.e. indicating to which mixture component
l that θ̂i belongs). Here, Gibbs sampling is used to simplify
the computation of the posterior probability of zi. This stage
corresponds to the black boxes in Fig. 2.
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Third, a refined set of DOA measurements Θ̂′ is obtained by
selecting Q most reliable measurements from Θ̂, i.e. those with
highest mixture weights W (k, t) computed at corresponding
TF bins. The measurements in Θ̂′ are further re-aligned to
mitigate permutation ambiguities, leading to Θ̂′′, which are
then used as inputs to the BNP algorithm to refine the estimate
of the model parameters Ψl and the posterior probabilities zq
and kq , q=1, ..., Q. This stage corresponds to the green boxes
in Fig. 2. Finally, the number of mixture components l, i.e.
estimated D and their DOAs, i.e. the estimated θ̂d, d=1, ..., Q,
can be obtained upon the convergence of BNP algorithm, after
all the θ̂(k, t) have been clustered into one of the l mixture
components, with l being updated in each iteration.

The details of the proposed method are presented in the next
three sections.
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Fig. 2. Block diagram showing the main stages of processing in the proposed
method.

IV. TIME-FREQUENCY ACOUSTIC HOLOGRAPHY
BEAMFORMING

Acoustic holography is a sound visualization technique that
makes it possible to reconstruct the entire acoustic field via
expanding the measured sound field into a series of basis
functions [26]. In this paper we focus on a circular array,
making use of the fact that the sound field can be predicted
on different radii by using Bessel functions that account for
the propagation in the radial direction.

We consider the scenario where the plane waves travelling
from the speakers in a two-dimensional (2D) plane (e.g. xy-
plane) are captured by a UCA at the same plane. For the
case of 3D plane, a spherical array [35] is often used, but
is not considered here. The sound field in the 2D plane can
be decomposed into a Fourier series in terms of the azimuth
coordinate, ϑ. After applying the boundary conditions (i.e. the
sound field at the origin must be finite) [36], the sound pressure
at any point of the array (e.g. at an arbitrary radius R) can be
written as

P (kR, ϑ) =

∞∑
n=−∞

AnJn(kR)ejnϑ, (5)

where j =
√
−1, n is the number of harmonics, Jn (·)

is the nth-order Bessel function of the first kind, and An

is an expansion coefficient of the nth term. With (5), the

sound pressure at an arbitrary point of the sound field can
be determined via acoustic holography [36], using different
values of An. Thus, the pressure at the UCA, namely, at the
array radius R = r (see Fig. 1(a)), can be computed as

P (kr, ϑ) =
∞∑

n=−∞
AnJn(kr)e

jnϑ, (6)

where the terms ejnϑ, often referred to as the circular harmon-
ics, form a set of orthogonal functions,

1

2π

∫ 2π

0

ejnϑ(ejuϑ)∗ dϑ = δnu, (7)

where δnu is the Kronecker delta function, which equals unity
when n = u and zero otherwise, and (·)∗ denotes the complex
conjugate.

The coefficients An can be computed by making use of the
continuous orthogonality property of the circular harmonics
given in (7) and retrieved by multiplying each side of (6) by
a complex conjugated circular harmonic and then integrated
over the entire circle, from 0 to 2π, as follows

An =
1
2π

∫ 2π

0
P (kr, ϑ)e−jnϑ dϑ

Jn(kr)
. (8)

This expression represents a continuous integral of the
sound pressure. However, with an array of M microphones,
the sound pressure is sampled at discrete positions, rather than
in a continuous circle. This implies that the coefficients defined
in (8) need to be approximated by a finite summation∫ 2π

0

P (kr, ϑ)e−jnϑ dϑ ≈
M∑

m=1

2π

M
P (kr, ϑm)e−jnϑm , (9)

Therefore, the coefficients An can be calculated as

Ãn =
1
M

∑M
m=1 P (kr, ϑm)e−jnϑm

Jn(kr)
. (10)

In theory, the sound pressure is represented by an infinite
number of Fourier coefficients. In practice, however, the num-
ber of coefficients used can be truncated to a finite value that
follows N = ⌈kr⌉ + 1, where ⌈·⌉ is a ceiling function, as
the contributions from the terms associated with the orders
higher than n are very small [42]. According to the theory
for sampling in space [17], the number of sensors required
should satisfy M > 2N , in order to capture the sound
field up to an order N . Thus, when using M microphones,
a wavefield can be decomposed into a combination of har-
monic components with a limited number of orders, namely,

N =

{
M/2− 1, M even
(M − 1)/2, M odd

.

As a result, the sound pressure described in (5) can be
truncated as

P̃ (kR, ϑ) =
N∑

n=−N

ÃnJn(kR)ejnϑ, (11)

where Ãn are the truncated coefficients denoted in (10), which
is calculated by the radius of actual array r.
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The speech sources can be localized using a beamforming
technique. With a delay-and-sum beamformer (DSB), the
output at the UCA [19] can be expressed as

B(kR, θ) =
1

M

M∑
g=1

P (kR, ϑg, θd)e
jkR cos(ϑg−θ)

=
1

M

M∑
g=1

P (kR, ϑg)e
jkR cos(ϑg−θ), (12)

where P (kR, ϑg, θd) is the pressure measured at the gth mi-
crophone due to a plane wave with origin at θd, for simplicity,
P (kR, ϑg, θd) = P (kR, ϑg), and θ ∈ [−π, π).

Next, we combine acoustic holography and beamforming
to estimate the DOA of sources in the circular harmonic
model. As shown in Fig. 1(a), the pressure is measured with a
UCA of radius r and M microphones placed at ϑm. Using
acoustic holography, the pressure at a virtual array with a
larger radius r̆, as presented in Fig. 1(b), can be predicted.
In the present study, the number of virtual microphones and
their azimuth angles are the same as those for the actual array,
namely ϑm = ϑg . In fact, as shown in [36], we know that
the position of the microphones is not that relevant as long
as the distance between microphones remains constant. This
makes sense since UCAs are practically shift-invariant, i.e.,
the beamforming pattern is the same regardless of the focusing
direction [26].

The pressure predicted with acoustic holography by evaluat-
ing (11) at (R = r̆, ϑ = ϑg), i.e. P̃ (kr̆, ϑg), is then used as the
input to the beamformer. The coefficients Ãn given in (10) are
obtained by the pressure measured with the microphones of
the actual array at (r, ϑm). Therefore, the acoustic holography
beamforming (AHB) with the radius r̆ can be obtained by
substituting (10) and (11) into (12),

BAH(kr̆, θ) =
1

M2

M∑
g=1

N∑
n=−N

M∑
m=1

P (kr, ϑm)×

Jn(kr̆)

Jn(kr)
ej(n(ϑg−ϑm)+kr̆ cos(ϑg−θ)), (13)

where N = ⌈kr̆⌉ + 1, up to a maximum value M/2 − 1. In
our work, we set M = 12.

Using a property of the Bessel functions, i.e. ejkr̆ cos(ϖ) =∑N
n=−N jnJn(kr̆)e

jnϖ, we can establish the relationship be-
tween the AHB and conventional CHB as follows

BAH(kr̆, θ) =
1

M
BCH(kr)[Jn(kr̆)]

2, (14)

where BCH is the CHB output [19], expressed as

BCH(kr)=
1

M

M∑
m=1

P (kr,ϑm)
N∑

n=−N

1

(−j)nJn(kr)
e−jn(ϑm−θ). (15)

Here, we further clarify the difference between the AHB
and conventional CHB. The conventional CHB is based on
the actual array with a fixed radius, while the AHB exploits
the technique of acoustic holography to predict the sound
pressure at different radii of the sound field that would be
captured by a virtual array. As a result, it allows the array to
work at different radii with the same number of microphones,
positioned similarly to those in the actual array, as in Fig. 1(b).

An advantage of AHB over the CHB and DSB is depicted
in Fig. 3, which shows the beampatterns provided by a DSB
method with the actual array (r = 0.05 m and r = 0.1 m), an
AHB method with the virtual array (r̆ = 2r = 0.1 m), and a
CHB method [19] with the actual array (r = 0.05 m), using
a UCA with M = 12 for DOA θd = 0◦. Comparing Fig. 3
(c) with Fig. 3 (a) and (d), we can notice that the beampattern
provided by the virtual array for the radius r = 0.05 m is
more directive, as expected from the theory. From Fig. 3 (b)
and (c), we can observe that the virtual array is almost the
same as the actual array with radius r = 0.1 m.

We can also notice a singularity (zero) at the frequency
2603 Hz in Fig. 3 (c) and (d), due to the use of the Bessel
function in the denominator [19]. This is the well-known
forbidden frequency problem or singularity problem, as shown
in [37]. This problem can be avoided by using a cylindrical
array or directional microphones, however, in practice, this
may not be realistic and flexible to achieve [38]. In our work,
we avoid this problem by limiting the upper frequency at
2500 Hz, which also mitigates the spatial aliasing problem
(occurring at 3300 Hz for r̆ = 0.1 m). Here, we choose
r̆ = 2r = 0.1 m for two reasons. Firstly, as shown in Fig. 3,
it provides a better beampattern than r = 0.05 m and almost
the same pattern as r = 0.1 m. Secondly, as in [39], the actual
array with a radius 0.1 m is usually chosen for convenience.

As aforementioned, there is one dominant sound source at
each TF. Note that, P (kr, ϑm) = Pm(k, t). Therefore, the
equation (13) can be written as

BAH(kr̆, t, θ) =
1

M2

M∑
g=1

N∑
n=−N

M∑
m=1

Pm(k, t)×

Jn(kr̆)

Jn(kr)
ej(n(ϑg−ϑm)+kr̆ cos(ϑg−θ)), (16)

(a) (b) (c) (d)

Fig. 3. Beampatterns for DOA θd = 0◦ using a UCA with M = 12. (a) The actual array with r = 0.05 m by DSB. (b) The actual array with r = 0.1 m
DSB. (c) The virtual array with r̆ = 2r = 0.1 m by AHB. (d) The actual array with r = 0.05 m by CHB.
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For simplicity, we denote BAH(kr̆, t, θ) = BAH(k, t, θ).
The TF-AHB output will have maximum power at its cor-

responding arrival direction. Thus, the DOA estimate θ̂(k, t)
at each TF bin can be represented as

θ̂(k, t) = arg max
θ

|BAH(k, t, θ)|2. (17)

V. BNP FOR DOA ESTIMATION OF UNKNOWN NUMBER
OF SOURCES

In practice, we often need to localize multiple speakers
without the prior knowledge about the number of speakers,
i.e., D. To address this problem, we develop a BNP method
by modelling Θ̂ = {θ̂(k, t)} = {θ̂1, · · · , θ̂i, · · · , θ̂I} with an
IGMM, and estimate D and θd (d = 1, ..., D) via an iterative
inference process alternating between the update of the model
parameters and the estimation of posterior probability of the
class labels zi of each θ̂i.

A. Probabilistic Modelling of DOA Measurements

We model Θ̂ with an IGMM [30] containing l components
with l being unknown. The Probability Density Function
(PDF) of θ̂i generated by the mixture component l is given by

p(θ̂i|µl, σ
2
l , ki) =

1√
2πσ2

l

e
−(θ̂i+2πki−µl)

2

2σ2
l , (18)

where µl and σ2
l are the mean and variance of the Gaussian

component l, and ki is an integer parameter accounting for the
shift of θ̂i. The original DOAs measurements θ̂i are wrapped
within the range of [−π, π), and for estimates close to −π
and π, the estimated distribution would become bimodal.
Introducing ki can avoid the bimodal issue as it unwraps θ̂i
to values outside the range of [−π, π) [29].

For all the l ∈ (1, · · · ,∞) components, µl is sampled from
the conditional Gaussian distribution with mean χl, variance
σ2
l /ξl and concentration ξl, namely (µl|σ2

l ) ∼ N(χl, σ
2
l /ξl),

and σ2
l is sampled from an Inverse-Gamma distribution with

shape ηl and scale γl, namely σ2
l ∼ I −G(ηl, γl). Thus, we

can get the joint PDF of µl and σ2
l as follows

p(µl, σ
2
l |Ψl) = p(µl|σ2

l , χl, ξl)p(σ
2
l |ηl, γl)

=
γηl

l e−γl/σ
2
l

Γ(ηl)σ
2(ηl−1)
l

(
ξl

2πσ2
l

)1
2
e

[
− ξl

2σ2
l

(µl−χl)
2

]

∝ 1

σ2ηl−1
l

e

{
− 1

2σ2
l

[ξl(µl−χl)
2+2γl]

}
, (19)

where Ψl = {ξl, ηl, χl, γl} represents the hyperparameters of
the IGMM.

Our aim is to estimate the class labels zi for each θ̂i, i.e. to
which mixture component l we can assign θ̂i. This is achieved
by finding the maximum posterior probability of zi = l, via
iteratively updating the model parameters Ψl as discussed in
the next section. For clarity, we show a graphical model for
BNP in Fig. 4, and the notations in Table I.

0 iz ik
i

2
,

l l

l

{1, , }i I

{1, , }l

0 iz ik
i

2
,

l l

l

{1, , }i I

{1, , }l

Fig. 4. Graphical model depicting the Bayesian nonparametrics.

B. Inference of Model Parameters
For model inference, we use the maximum a posteriori

(MAP) [29] and Gibbs sampling [40] approaches. First, we
compute the posterior probability of the shift ki, given all other
variables and all DOA measurements θ̂i, and then determine
the shift ki that maximizes the posterior probability. Assuming
a uniform prior for ki, then the posterior probability follows
a Student′s-t distribution T

2η
(a)
l

(·), with degrees of freedom

2η
(a)
l ,

p(ki|θ̂i, θ̂\i, zi = l,k\i, z\i,Ψ
(a)
l )

∝ T
2η

(a)
l

[
(θ̂i + 2πki)

∣∣∣∣χ(a)
l ,

γ
(a)
l (ξ

(a)
l + 1)

η
(a)
l ξ

(a)
l

]
,(20)

TABLE I
NOTATIONS

Symbol Meaning

Θ̂ DOA measurements at all the TF bins Θ̂ = {θ̂1, · · · , θ̂i, · · · , θ̂I}
Θ̂′ DOA measurements at Q selected TF bins with highest weights Θ̂′ = {θ̂′1, · · · , θ̂′q , · · · , θ̂′Q}
Θ̂′′ Refined and re-aligned DOA measurements at the Q selected TF bins Θ̂′′ = {θ̂′′1 , · · · , θ̂′′q , · · · , θ̂′′Q}

l Number of mixture components in IGMM Number of speakers
zi Class label of the ith DOA estimate
ki Shift of the ith DOA estimate

Ψl Hyperparameters of IGMM Ψl = {ξl, ηl, χl, γl}
Ψ

(0)
l Initial hyperparameters Ψ

(0)
l = {ξ(0)l , η

(0)
l , χ

(0)
l , γ

(0)
l }

z\i Set of class labels without the ith class z\i = {z1, z2, · · · , zi−1}
θ̂\i Set of all the DOA estimates without the ith DOA estimate θ̂\i = {θ̂1, θ̂2, · · · , θ̂i−1}
k\i Set of all the shifts in the DOA estimates without the ith shift k\i = {k1, k2, · · · , ki−1}
a BNP iteration number Initial value a = 0
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where θ̂\i denotes the set of all the DOA measurements
without θ̂i, k\i is the set of all the shifts without ki, z\i
denotes the set of class labels without the ith label zi, and
Ψ

(a)
l = {ξ(a)l , η

(a)
l , χ

(a)
l , γ

(a)
l } is the set of hyperparameters

for component l, at the current iteration a.
Next, we calculate the posterior probability of zi = l, i.e.

the class label zi belonging to the mixture component l, at
the current iteration a, given all θ̂i and Ψ

(a)
l . However, this

probability cannot be computed directly. To address this issue,
we use Gibbs sampling to approximate the posterior probabil-
ity by drawing samples from two probability distributions that
have simpler forms and can be computed, as follows

p(zi = l|θ̂i, θ̂\i,k\i, z\i,Ψ
(a)
l )

∝ p(zi = l|z\i)p(θ̂i|θ̂\i, zi = l,k\i,z\i,Ψ
(a)
l ), (21)

where the mixture component term p(zi = l|z\i) is updated
by the Chinese Restaurant Process (CRP) as follows [30],

p(zi = l|z\i)=



il
i+ α0 − 1

, if l is an existing mixture

component
α0

i+ α0 − 1
, if l is a new mixture

component

(22)

where il is the number of DOA estimates assigned to the lth
mixture component and the parameter α0 is the concentration
parameter of the Dirichlet Process [40].

The second term of (21) can be calculated by marginally
integrating out the parameters {µl, σ

2
l } for the product of (18)

and (19), and summing over ki,

p(θ̂i|θ̂\i, zi = l,k\i,z\i,Ψ
(a)
l )

∝
∑
ki

∫
p(θ̂i|µl, σ

2
l , ki)p(µl, σ

2
l |θ̂\i, zi = l,k\i, z\i,Ψ

(a)
l ) dµldσ

2
l

∝
∑
ki

T
2η

(a)
l

[
θ̂i + 2πki|χ(a)

l ,
γ
(a)
l (ξ

(a)
l + 1)

η
(a)
l ξ

(a)
l

]
.

(23)

Note that, in the second line of (23), the integration cannot be
computed directly. To address this issue, we have referred to
the results in [41] in order to obtain the likelihood function
shown in the third line of (23), which turns out to be also a
Student’s t-distribution.

After obtaining the posterior probabilities of the shifts ki
by (20) and class labels zi by (21), we can recalculate the
parameters Ψ(a+1)

l at the next iteration (a+1) according to θ̂i.
Here, we adopt the theory of conjugate priors in the Classical
Bayesian Statistics [40], namely, the posterior probability and
the prior probability belong to the same distribution family,
and derive the update formula for the model parameters
(details given in Appendix A), as follows

ξ
(a+1)
l = ξ

(a)
l + 1, (24)

η
(a+1)
l = η

(a)
l +

1

2
, (25)

χ
(a+1)
l =

ξ
(a)
l χ

(a)
l + (θ̂i + 2πki)

ξ
(a)
l + 1

, (26)

γ
(a+1)
l = γ

(a)
l +

ξ
(a)
l (θ̂i + 2πki − χ

(a)
l )2

2(ξ
(a)
l + 1)

, (27)

where a is the BNP iteration number with initial value a = 0.
In summary, by using (20) and (21), we can obtain the pos-

terior probability of ki and zi for each DOA measurement θ̂i,
thereby assign this θ̂i to the corresponding mixture component
l (i.e., zi = l) that gives the highest probability among all the
components. Then, we recalculate the hyperparameters using
(24), (25), (26) and (27) to update the model. This process is
iterated until all θ̂is in Θ̂ have been assigned to one of the l
mixture components (or clusters). Note that l is also updated
in each iteration. Finally, the number of speakers D and the
DOAs θ̂d, d = 1, ..., D, are obtained as the number of mixture
components l and the cluster centroids in the final iteration,
upon convergence of the BNP iterations.

VI. ROBUST PARAMETER ESTIMATION

Although the IGMM can adjust the model adaptively to
locate multi-speakers on the basis of DOAs, the permutations
of the estimates are usually random, and not every estimate
is valid, in other words, the established mixture model may
be easily affected by the random permutation and the invalid
or erroneous estimates, resulting in the inaccurate localization
results. In addition, due to the presence of reverberation
and background noise in an indoor environment, some DOA
estimates may be inaccurate, and are likely to spread over
the whole possible DOA region, which can lead to inaccurate
localization. To address this problem, we propose a reliable
TF bin selection and permutation alignment scheme on the
basis of the mixture weights.

A. Calculation of Mixture Weights

Speech signals are sparse in the TF domain, and some
TF bins may contain only background noise. Moreover, due
to the presence of room reverberation, the received signals
by sensors usually vary over different TF bins. As a result,
only a fraction of TF bins corresponds to the accurate source
DOA in the estimated instantaneous DOAs. Therefore, we
develop a scheme for selecting reliable TF bins to improve
the robustness of the proposed algorithm against noise and
room reverberation, in terms of the mixture weights derived
from the following features.

• Power: The power at each TF bin can be expressed as
E(k, t) =| Pm(k, t) |2. According to [24], we know
that higher power at a TF bin is less affected by the
environmental noise than lower power. Thus, this feature
can be used to mitigate noise.

• Power Ratio: The power ratio at a TF bin can be obtained
from the two TF bins in the adjacent time frames and
expressed as E(k,t)

E(k,t−1) [43]. If the ratio is greater than 1,
then the energy of the current time frame is increased
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Fig. 5. The locations of reliable TF bins in the spectrogram of the two speakers. One (speaker 1) is at θ1 = −100◦ and the other (speaker 2) is at θ2 = 80◦.
(a) RT60 = 200 ms and SNR = 20 dB (RMSE = 1.27◦/1.58◦ with/without TF selection); (b) RT60 = 200 ms and SNR = 5 dB (RMSE = 3.21◦/8.06◦

with/without TF selection); (c) RT60 = 500 ms and SNR = 20 dB (RMSE = 3.72◦/7.52◦ with/without TF selection).

compared with the previous time frame, which may sug-
gest that the speech signal transitions from an unvoiced
part to a voiced part. These TF bins have relatively little
influence on room reverberation, which can be used as an
important parameter to represent the TF bin reliability.

• Local Variance: The reliable instantaneous DOAs often
exhibit low local DOA variances [44]. In contrast, high
variances, however, indicate the TF regions where the
instantaneous DOA estimates are corrupted by the room
reverberation. In other words, the TF bins with low
local DOA variance, are less affected by noise and room
reverberation. The local DOA variance at the TF bin can
be expressed as

σ2
θ̂
(k, t) =

1

Ntf − 1

∑
(k,t)∈Ω(k,t)

[θ̂(k, t)− θ̄(k, t)]2, (28)

where Ω(k,t) denotes the neighborhood centered at (k, t),
Ntf is the number of TF bins within Ω(k,t), and θ̄(k, t) =
1

Ntf

∑
(k,t)∈Ω(k,t)

θ̂(k, t) is the local DOA mean at (k, t).
With the power, the power ratio and the local variance, we

can now develop a scheme for the selection of reliable TF bins
using a mixture weight W (k, t), computed as

W (k, t) = 3[wp(k, t)wpr(k, t)wvar(k, t)]
2, (29)

where wp(k, t) denotes the weight of power at the TF bin
(k, t), wpr(k, t) denotes the weight of power ratio, and
wvar(k, t) denotes the weight of local DOAs variance, de-
termined via the sigmoid compression, respectively

wp(k, t) =
1

1 + e−α1[logE(k,t)−β1]
, (30)

wpr(k, t) =
1

1 + e
−α2[log

E(k,t)
E(k,t−1)−β2]

, (31)

wvar(k, t) =
1

1 + e−α3[log σ2
θ(k,t)−β3]

. (32)

The α1, α2, α3 and the β1, β2, β3 are the sigmoid slope and
center parameters, respectively [45]. We set them empirically
in our experiments as discussed in Section VII-C. In addition,
the purpose of using a square and a constant factor 3 in

(29) is to empirically enlarge the difference among different
weights which can improve the performance as observed in
our experiments.

An example is given in Fig. 5, where we plot BAH(kr̆, t, θ)
obtained from (16) with the color showing the values of
10 log10(BAH), to demonstrate the TF selection based on
W (k, t), where the reliable TF bins are indicated, for which
the difference between the estimated and true DOAs is less
than 5 degrees. Here, the mixtures of two speech sources,
at −100◦, and 80◦, respectively, are considered, and the
reverberation times RT60 are {200 ms, 500 ms} and the
SNR are {5 dB, 20 dB}. From Fig. 5, it is noticed that a
certain amount of reliable DOA estimates were selected and
demonstrated in the spectrogram under different environments
(e.g. low SNR or high reverberation), which further confirms
the validity of the proposed method for the TF bin selection
based on the mixture weights. The improved performance by
the TF selection can be seen from the RMSE results given on
the caption of Fig. 5.

B. Refinement of DOA Measurements
The mixture weights can be used jointly to determine the

reliability of the TF bins to improve the robustness against
noise and room reverberation. Note that the greater the mixture
weight is, the higher the reliability of the TF bin is, and vice
versa. Therefore, we select Q DOA estimates with the highest
weight Θ̂′ = {θ̂′1, · · · , θ̂′q, · · · , θ̂′Q}, and only use these data
in the permutation procedure, as described below. The value
of Q is given in Section VII-C.

(i) We form a histogram from Θ̂′ and smooth it by applying
an averaging filter with a window. Denote each bin of the
smoothed histogram as υ, then its cardinality, y(υ), is given
by

y(υ) =

Q∑
q=1

ω

(
υ × 360◦/Υ− θ̂′q

hQ

)
, 1 ≤ υ ≤ Υ, (33)

where Υ is the number of bins in the histogram, and ω(·) is the
blackman window of length hQ, where empirically hQ = 21
[31].

(ii) We normalize the smoothed histogram y(υ) by

y′(υ) =
y(υ)

max{y(υ)}
. (34)
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(iii) We perform peak search of y′(υ) to find all the peaks
that exceed a pre-defined threshold thps, and obtain the pre-
estimation θ̂pk = {θ̂pk1, θ̂pk2, · · · }. The choice of thps is
discussed in Section VII-C.

(iv) We calculate the difference between the qth DOA
estimation and the pre-estimation, and assign the minimum
difference to diffmq as

diffmq = min{θ̂′q − θ̂pk}. (35)

(v) By sorting diffmq in ascending order, we realign
the DOAs estimation Θ̂′ and obtain the new Θ̂′′ =
{θ̂′′1 , · · · , θ̂′′q , · · · , θ̂′′Q}, which is used as the input to the BNP
algorithm discussed in Section V.

C. Parameter Update with Mixture Weights
We update the hyper-parameters in terms of the mixture

weights. With the parameter update, the greater the mixture
weights of the TF bins are, the stronger the decisive role and
the update degree are. Incorporating the mixture weights as in
(28), we can obtain the new update formula [41]:

ξ
(a+1)
l = ξ

(a)
l +Wq, (36)

η
(a+1)
l = η

(a)
l +

1

2
Wq, (37)

χ
(a+1)
l =

1

ξ
(a+1)
l

[
ξ
(a)
l χ

(a)
l +Wq(θ̂

′′
q + 2πkq)

]
, (38)

γ
(a+1)
l = γ

(a)
l +

1

2

[
Wq(θ̂

′′
q + 2πkq)

2 + ξ
(a)
l (χ

(a)
l )2 −

ξ
(a+1)
l (χ

(a+1)
l )2

]
, (39)

In addition, W sum
l denotes the sum of the mixture weights

for the lth class of the DOA estimation. The number of W sum
l

that is greater than the threshold thW is taken as the estimated
number of speakers. The threshold thW can be calculated as

thW = b0

[
mean(W sum

l ) +
√
var(W sum

l )

]
, (40)

where mean(·) and var(·) represent taking the mean and
variance over its argument, respectively, and b0 is a constant.

Finally, the proposed TF-MX-BNP-AHB method is sum-
marized in Algorithm 1. Note that, the method starts with no
DOAs estimation assigned to a mixture component and no
mixture components created. The DOA estimates are assigned
to the chosen or created mixture components in the first
iteration and then added to the corresponding statistics. The
hyperparameters obtained after the final iteration are then used
for the estimation of the DOAs of the speakers. The lines 3
and 4 of Algorithm 1 are corresponding to stage 1 described
in Section III, the lines 7, 8 and 9 are corresponding to stage
2 (here, for line 8, if the robust parameter estimation method
is not used, then the hyperparameters Ψl are updated using
equations (24), (25), (26) and (27)), and the lines 5 and 6
are corresponding to stage 3. The algorithm stops finding new
DOA clusters when it has gone through all the obtained DOA
estimates in Θ̂′′.

Algorithm 1 The proposed TF-MX-BNP-AHB method
Input: Microphone signals pm(τ), for m = 1 to M
Output: Number of speakers D and their DOAs θ̂d

1: Initialize M , N , r, r̆, ξ(0)l , η(0)l , α0, b0.
2: procedure
3: Perform STFT on pm(τ) to obtain Pm(k, t);
4: Perform TF-AHB to obtain DOA measurements Θ̂

using (16) and (17);
5: Construct mixture weights W (k, t) by (29), (30), (31)

and (32) to select reliable TF bins and obtain
Q DOAs estimates Θ̂′ with the highest weights;

6: Calculate diffmq by (33), (34) and (35), and sort them
in ascending order. Realign Θ̂′ and obtain the
new Θ̂′′;

7: Input Θ̂′′ to the IGMM, and calculate the posterior
probability of shift kq and class label zq
of current DOA estimate by (20) and (21);

8: Update the hyperparameters Ψl of corresponding class
with mixture weights by (36), (37), (38) and (39);

9: Input the updated hyperparameters Ψl to the IGMM.
Cluster and obtain the estimated number of
speakers D and their DOAs θ̂d.

10: end procedure

VII. EXPERIMENTAL EVALUATIONS

This section studies the performance of the proposed
method through simulations and real data experiments. DOA
estimation using the proposed method is investigated and
compared to baseline methods under different number of
sources and acoustic environments. The section starts with a
description of datasets, evaluation metrics and parameter setup,
and then presents the experimental results.

A. Datasets

Room height:3m

Height of the array above floor:1.3m

4.85m

9.7m

7
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Fig. 6. Illustration of the simulation setup. The black solid dots, distributed
uniformly on the dash-dotted circle with a radius of 0.05 m, denote the UCA.
The gray circles, distributed around the dash-dotted circle with a radius of
2 m, denote the speakers.

Both simulated data and real-world data are generated. The
simulation setup is shown in Fig. 6. The dimensions of the
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simulated rectangular room are 9.7 m × 7.05 m × 3 m. To
generate the RIRs [46] from speaker sources to sensors, we
use a software that is based on the well-known image method
for simulating a reverberant environment in a room [47]. The
UCA with M = 12 equidistant omnidirectional sensors and
the radius of r = 0.05 m (the radius of virtual array r̆ = 2r)
is placed in the center of the room at (4.85, 3.525, 1.3) m,
coinciding with the origin of the x and y axes. The speakers
are located at the same height as the microphone array with
distance from the speaker to the center of the array being 2 m.
The additive noises on the sensors are mutually uncorrelated
white Gaussian, and also are uncorrelated with the speech
signal. Several levels of room reverberation with various
reverberation times are tested, which will be specified later.
The sound speed is 340 m/s. Speech signals of 2 s length,
sampled at 16 kHz, are chosen randomly from the well-known
TIMIT speech database [48]. 100 Monte Carlo simulations are
conducted in each trial, and the source was convolved with
the simulated RIRs from the source to every microphone. For
all the evaluated algorithms, the STFT is calculated using a
Hamming window of 1024 samples with 50% overlap between
consecutive frames.

In order to analyze the source localization performance
comprehensively, we consider four different aspects in the
simulations:

(1) Angular Distance: To investigate the spatial resolution
for our proposed method, we consider various angular dis-
tances for pairs of speakers.

(2) Different Types of Noise: To evaluate the impact of noise
types, we consider five different types of background noise,
in addition to white Gaussian noise.

(3) Effect of Room Reverberation and Additive Noise: To
evaluate the influence of room reverberation and additive noise
on the performance of our proposed method, we consider three
different multi-speaker scenarios under varying levels of noise
and reverberation times. Herein, the reverberation time RT60

is varied from 200 to 700 ms with a step increase of 100 ms
and the SNR is varied from 0 to 20 dB with a step increase
of 5 dB. These three scenarios are detailed below.

• Two sources: Two different speakers (Speaker 1, female;
Speaker 2, male) are used and they are placed at DOAs
of −30◦ (Speaker 1) and 0◦ (Speaker 2), respectively.

• Three sources: Three different speakers (Speaker 1, fe-
male; Speaker 2, male; Speaker 3, female) are used
and they are placed at DOAs of −70◦ (Speaker 1), 0◦

(Speaker 2) and 45◦ (Speaker 3), respectively.
• Four sources: Four different speakers (Speaker 1, female;

Speaker 2, male; Speaker 3, female; Speaker 4, male)
are used and the speakers are located at DOAs of −110◦

(Speaker 1), 0◦ (Speaker 2), 30◦ (Speaker 3) and 100◦

(Speaker 4), respectively.
(4) Effect of Different Positions: To assess the impact of

different positions on our proposed method, we consider
diverse locations for two, three and four sources, respectively,
and demonstrate their performance.

To further evaluate the effectiveness of the proposed
method, we also recorded speech in a real rectangular confer-
ence room with dimensions of approximately 9.7 m × 7.05 m
× 3 m and a reverberation time of 350 ms. A small-sized array

was placed horizontally around the center of the room, and the
other conditions resembled those in the above simulations. A
photograph of the microphone array is shown in Fig. 7.

 

Fig. 7. Photograph showing the uniform circular sensor array used in the
experiments. The radius of the circular microphone array is 0.05 m.

The sensors used in the real-world experiments were Ar-
duino omnidirectional sensors with working voltage 5 V .
The received sensor signals were sampled with a sampling
frequency of 16 kHz through a data-acquisition device (NI-
USB-6363; National Instruments) with 16-bit resolution. In
the real-experiments, the actual speaker locations of the sound
sources were determined using protractors and rulers, and 50
independent experiments were conducted for each trial. The
duration of each of the received sensor signals was 2 s.

B. Evaluation Metrics
To facilitate evaluations, we use the root-mean-square error

(RMSE) and the source detecting success rate (SDSR) as
performance metrics, which are defined as:

RMSE =

√√√√ 1

DO

D∑
d=1

O∑
o=1

[
θ̂d(o)− θd

]2
, (41)

where θ̂d(o) is the DOA estimate of the dth speakers DOA θd
for the oth simulation or real-world experiment and O is the
number of simulations or real-world experiments.

Source Detecting Success Rate =
Ôds

O
× 100%, (42)

where Ôds is the number of experiments with source detecting
success, i.e., the error between the estimated and true DOAs
is no greater than 15◦ [22].

C. Parameters Setup
Over a number of trials, the corresponding parameters of

the proposed method are set empirically to ξ
(0)
l = 0.01,

η
(0)
l = 0.01, α0 = 150, b0 = 0.5, χ0 =

∑Q
q=1 Wq θ̂

′′
q∑Q

q=1 Wq
, and

γ0 =
∑Q

q=1 Wq(θ̂
′′
q −χ

(0)
l )2∑Q

q=1 Wq
. We set Q to be equal to 20 % of the

total number of TF bins.
We set the parameters in (30), (31), and (32) with empirical

tests based on our data. Here, we take the selection of α1 and
β1 as an example. As we know, the value of α1 controls the
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orientation of the S-shape of the sigmoid function, and we
want the weight wp(k, t) to be increasing with the increase in
value of E(k, t). We have tested α1 ∈ [−10, 10] and found
that α1 ∈ [−10,−1] meets our requirement. Thus, we choose
α1 = −1 in our experiments. The parameter β1 controls the
value of weight wp(k, t). In order to select the TF bins with
high power, we want the weights to be greater 0.5. In practice,
however, if the value of the weight is too large (e.g., 0.9), we
may lose some useful TF bins and as a result, we may not have
sufficient TF bins for the localization of the sources. Thus, we
consider a trade-off and select wp(k, t) to be around 0.5, which
corresponds to β1 = −8.5. Other parameters α2, β2, α3 and
β3 are chosen in a similar way, as α2 = −6, β2 = −0.5; and
α3 = 3, β3 = 8. The parameter values may not be optimal for
other data, which may need to be re-tuned similarly.

For the pre-defined threshold thps discussed in Section VI-B
for peak finding, we tested thps ∈ [0.25, 0.35]. Although the
values of several peaks are lower than 0.3, we empirically
choose the value of threshold thps = 0.3, which seems to be
appropriate for most scenarios.

D. Baseline Methods
The performance of the proposed TF-MW-BNP-AHB is

evaluated and compared with several baselines including the
TF-AHB, TF-CHB [20], CH-SS-PIV [22] and DPD-MUSIC
[23] methods in both simulated and real room environments.

TF-AHB: This is the AHB method over a TF processing
framework where DOAs are estimated by taking the histogram
with maximum power at the corresponding arrival direction,
as aforementioned, using (15) and (16).

TF-CHB: This is a broadband source localization method
based on combination of TF processing and CHB. The his-
togram of DOA estimates computed over the TF plane shows
clear peaks corresponding to the locations of different sources
by taking the direction of maximum CHB output power.

CH-SS-PIV: This method performs subspace (SS) decom-
position of the spatial covariance matrix and computes a PIV
in the directions of the sound sources to directly obtain the
DOA estimates in the circular harmonic domain.

DPD-MUSIC: In this method, the MUSIC algorithm is used
with the DPD test. This test aims to estimate DOA of the
sources by identifying the TF bins in the microphone signal
that contain contributions from only one significant source and
no significant contribution from room reflections.

Here we assume that the number of speakers is known a
priori in all the compared methods except for our proposed
method.

E. Source Localization Results in Simulation Experiments
1) Angular Distance: In our first set of simulations we

investigated the spatial resolution of our proposed method,
i.e., how close two sources can be in terms of angular distance
while accurately estimating their DOAs.

Fig. 8 shows the RMSE when the SNR is varied from 0 to
20 dB with a step increase of 5 dB and the reverberation time
of RT60 = 300 ms, for pairs of active speakers with angular
separations from 180◦ down to 20◦. The simulation result
shows clearly that our method performs well for most angular

0 5 10 15 20
 SNR (dB)

1

2

3

4

5

6

7

8

 R
M

S
E

 (d
eg

re
es

)

 Separation=180°
 Separation=110°
 Separation=70°
 Separation=45°
 Separation=30°
 Separation=20°

Fig. 8. RMSE of DOA estimation versus pairs of active speakers with angular
separations from 180◦ down to 20◦ and RT60 = 300 ms.

separations. For example, when the separation is around 30◦,
the RMSE is about 5◦ for SNR = 0 dB, which shows that
the proposed method has a good angular distance in source
localization.

2) Different Types of Noise: This experiment was carried
out to evaluate the performance of proposed method in the
presence of different types of noise. For contrasting, five
types of noise (i.e., Destroyerops, Volvo, Factory1, Babble
and Buccaneer1) from the Noisex-92 dataset [49] were used
as background noise sources. We also compared them with
white Gaussian noise (WNG). Here, we consider a pair of
active speakers with angular separations 70◦.
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Fig. 9. RMSE of DOA estimation with different types of noise and RT60 =
300 ms.

Fig. 9 shows the RMSE of DOA estimation with different
types of noise when the SNR is varied from 0 to 20 dB with
a step increase of 5 dB and the reverberation time of RT60 =
300 ms. The simulation results show that our method performs
well for the five types of noises tested. The RMSE is mostly
smaller than 5◦, except for the case of Destroyerops noise with
SNR at 0 dB.

3) Effect of Room Reverberation and Additive Noise:
Fig. 10 and Fig. 11 show the RMSE and the Source Detecting
Success Rate of each method when the reverberation time
RT60 is varied from 200 to 700 ms with a step increase of
100 ms and the level of noise in terms of SNR is 15 dB.

From Fig. 10, we can see that the proposed TF-MW-BNP-
AHB method is quite robust to the change in reverberation for
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Fig. 10. Effects of room reverberation on the performance of each method for RMSE with SNR = 15 dB: (a) Two sources; (b) Three sources; (c) Four
sources.
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Fig. 11. Effects of room reverberation on the performance of each method for Source Detecting Success Rate with SNR = 15 dB: (a) Two sources; (b)
Three sources; (c) Four sources.

three scenarios. The RMSE for four sources is slightly higher
than those for two and three sources, due to the increase in
the number of sources. The DPD-MUSIC method performs
considerably worse than the proposed method, except for the
case e.g. RT60 = 200 ms for three sources. This may be
because the DPD test model described in [23] computes the
spatial spectrum over TF regions where one direct path is
dominant which may reduce the number of TF bins that passed
the DPD test [2]. This method is also relatively robust to
reverberation changes. The performance of CH-SS-PIV has
a similar trend to that of the DPD-MUSIC at the low to
modest level of reverberation, but degrades more considerably
at the higher level reverberation. This may be because of
improved DOA estimates given by the subspace technique
for the eigenbeams in CH-SS-PIV. Nevertheless, the increase
in RT60 has a negative influence on the signal subspace,
thus the localization accuracy of the sources. In contrast,
the TF-CHB and TF-AHB perform poorly in three scenarios,
especially under higher reverberation conditions, and have
failed to localize the sources when RT60 = 600 ms or 700 ms.
The main reason is that in two and four sources scenarios,
when the adjacent sources are separated by a smaller angle,
e.g. 30◦, some adjacent sources may be partially overlapped,
due to the presence of strong reverberations, which results
in significantly degraded localization results. It was reported,
however, that both methods worked well for the sources which
are widely separated by more than 45◦ [20].

Note that, CH-SS-PIV and DPD-MUSIC perform better in

the case of more sources (e.g. four sources) than that for
two sources at high reverberation. This is mainly because the
angular distances set for the case of two sources (Fig. 10(a))
are smaller than those of three sources (Fig. 10(b)) and four
sources (Fig. 10(c)). We also tested all the compared methods
for four sources with the same angular distance as used in
the case of two sources (e.g. 30◦), and their performance
is consistent with the case of two sources, which decreases
especially at high reverberation. Such results were not included
here for space limitation.

From Fig. 11, we can see that the Source Detecting Success
Rate also degrades with the increase in reverberation levels and
show the similar performance trend as in RMSE, as expected.
Our method provides more accurate estimates of the number of
sources than the baseline methods DPD-MUSIC, CH-SS-PIV,
TF-AHB and TF-CHB, while the latter two perform poorly
when the level of reverberation is high (e.g. RT60 = 600 ms
or 700 ms). Note here that assuming a known number of
speakers gives all baseline methods (apart from our proposed)
a considerable advantage, as this avoids the errors due to the
estimation of the number of speakers.

Fig. 12 and Fig. 13 show the RMSE and the Source
Detecting Success Rate of each method when the SNR is
varied from 0 to 20 dB with a step increase of 5 dB with
the reverberation time of RT60 = 300 ms.

From Fig. 12, we can see that the performance of the
proposed method is less affected by the changes in the input
SNR for the three scenarios, as compared with the baseline
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Fig. 12. Effects of additive noise on the performance of each method for RMSE with RT60 = 300 ms: (a) Two sources; (b) Three sources; (c) Four sources.
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Fig. 13. Effects of additive noise on the performance of each method for Source Detecting Success Rate with RT60 = 300 ms: (a) Two sources; (b) Three
sources; (c) Four sources.

methods. The simulation results show that the RMSE of the
proposed method is less than 10◦ when RT60 = 300 ms, for
most SNR levels. Both DPD-MUSIC and CH-SS-PIV show
a similar trend, but with higher RMSE, as compared with
the proposed method. Although both methods use subspace
decomposition to suppress noise, DPD-MUSIC achieves better
accuracy than CH-SS-PIV as DPD-MUSIC considers the TF
regions with a single dominant source [22].

However, regarding the robustness, the TF-CHB and the TF-
AHB methods show higher variances over noisy conditions.
They produce reliable DOA estimates at low reverberation
or high SNR, but have higher RMSE when the acoustic
conditions deteriorate (e.g. the RMSE result at SNR = 0 dB
was even invalid, therefore not shown in the figure). One
reason is that, under a high level of noise, there may be
mis-detection or spurious estimates, especially in cases with
adjacent sources of lower separation as described before. The
other one is that these two methods use higher mode order,
which may amplify the influence of the noise interference [20],
[26], and hence impact adversely on their ability to localize
the sources correctly. In addition, from Fig. 13, it is clear that
in all the tested cases, the proposed method can reliably detect
source number with over 70% in most noise conditions, except
when SNR= 0 dB, the correct rate is 55%, 68% and 42% for
two, three and four sources, respectively. Again assuming a
known number of speakers (which avoids the errors due to
estimation of the number of speakers at adverse conditions),
the DPD-MUSIC and CH-SS-PIV are less accurate than the

proposed method in terms of Source Detecting Success Rate,
while the TF-CHB and TF-AHB may not find the correct
numbers of sources as the noise level increases.

In general, compared with the baseline methods, the pro-
posed TF-MW-BNP-AHB offers higher accuracy in DOA
estimation in reverberant environments and gives also fairly
consistent results over different noise levels.

4) Effect of Different Source Positions: The RMSEs of
the compared methods for two sources, three sources and
four sources are given in Table II, Table III and Table IV
respectively, when the reverberant time RT60 = 300 ms and
SNR = 10 dB. From these tables we can see that the proposed
method performs the better than the baselines in terms of the
RMSE for different speakers located at a variety of positions in
the room. In comparison, simply picking the maximum from
the DOA histogram such as in TF-CHB, does not work well,
as it gives an overall larger RMSE in these conditions.

F. Source Localization Results in Real-World Experiments
Table V, Table VI and Table VII show the RMSE of all the

five evaluated methods for multi-speaker location at different
positions in real-world experiments (as in the simulations
study). As can be seen, the localization results behave in a
similar manner to those found in the simulation results above.
The proposed method manages to localize all the speakers with
the least RMSEs in the real environment, which imply that our
method outperforms the four baseline methods. In addition,
from these tables we can also see that the performance of the
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TABLE II
TWO SOURCES: THE RMSE OF THE EVALUATED METHODS

True sources TF-CHB TF-AHB CH-SS-PIV DPD-MUSIC TF-MW-BNP-AHB
(−30◦, 0◦) 15.13◦ 12.81◦ 12.70◦ 9.62◦ 3.69◦

(−35◦, 10◦) 14.56◦ 9.61◦ 10.30◦ 7.21◦ 2.76◦

(−50◦, 20◦) 13.00◦ 7.52◦ 8.23◦ 7.62◦ 2.33◦

(−80◦, 30◦) 11.40◦ 5.09◦ 5.16◦ 3.81◦ 1.84◦

(−100◦, 80◦) 5.38◦ 4.47◦ 3.94◦ 1.58◦ 0.86◦

TABLE III
THREE SOURCES: THE RMSE OF THE EVALUATED METHODS

True sources TF-CHB TF-AHB CH-SS-PIV DPD-MUSIC TF-MW-BNP-AHB
(−45◦, 0◦, 30◦) 7.87◦ 7.77◦ 9.33◦ 5.80◦ 4.37◦

(−70◦, 0◦ 45◦) 7.42◦ 7.44◦ 7.69◦ 5.00◦ 3.15◦

(−120◦, −10◦, 60◦) 5.72◦ 5.45◦ 5.44◦ 4.36◦ 2.96◦

(−150◦, 30◦, 100◦) 4.43◦ 3.79◦ 3.98◦ 3.41◦ 2.37◦

TABLE IV
FOUR SOURCES: THE RMSE OF THE EVALUATED METHODS

True sources TF-CHB TF-AHB CH-SS-PIV DPD-MUSIC TF-MW-BNP-AHB
(−30◦, 0◦, 45◦, 115◦) 10.10◦ 8.92◦ 8.31◦ 8.17◦ 6.50◦

(−110◦, 0◦ 30◦, 100◦) 8.14◦ 7.02◦ 7.03◦ 6.67◦ 5.38◦

(−150◦, −40◦, 30◦, 120◦) 6.71◦ 7.00◦ 5.93◦ 4.72◦ 4.24◦

(−160◦, −70◦, 20◦, 110◦) 4.77◦ 5.34◦ 4.19◦ 3.43◦ 3.40◦

proposed TF-MW-BNP-AHB method is less affected by prac-
tical reverberant and noisy environments, whose results have
less variations, when compared with the baseline methods.

VIII. CONCLUSION

We have presented an indoor multi-speaker localization
method TF-MW-BNP-AHB. This method exploits the acoustic

holography beamforming technique in the TF domain which
is less restricted by the practical constraints, such as the
array shape and the number of sensors, as compared with
conventional circular harmonic DOA estimation methods.

We have developed a BNP method based on the AHB
model for multi-source localization without the knowledge
of the number of sources, and the use of mixture weighting

TABLE V
TWO SOURCES: THE RMSE OF THE EVALUATED METHODS IN REAL-WORLD EXPERIMENTS

True sources TF-CHB TF-AHB CH-SS-PIV DPD-MUSIC TF-MW-BNP-AHB
(−30◦, 0◦) 15.50◦ 9.50◦ 10.41◦ 6.50◦ 5.37◦

(−35◦, 10◦) 14.00◦ 8.50◦ 7.29◦ 6.00◦ 4.59◦

(−50◦, 20◦) 10.50◦ 8.00◦ 7.07◦ 4.50◦ 3.82◦

(−80◦, 30◦) 11.50◦ 7.00◦ 7.16◦ 3.50◦ 3.34◦

(−100◦, 80◦) 7.00◦ 6.50◦ 3.65◦ 2.50◦ 1.22◦

TABLE VI
THREE SOURCES: THE RMSE OF THE EVALUATED METHODS IN REAL-WORLD EXPERIMENTS

True sources TF-CHB TF-AHB CH-SS-PIV DPD-MUSIC TF-MW-BNP-AHB
(−45◦, 0◦, 30◦) 11.67◦ 12.00◦ 9.61◦ 8.67◦ 6.93◦

(−70◦, 0◦ 45◦) 9.66◦ 10.67◦ 9.04◦ 7.33◦ 6.82◦

(−120◦, −10◦, 60◦) 8.33◦ 7.33◦ 6.78◦ 4.33◦ 3.75◦

(−150◦, 30◦, 100◦) 8.67◦ 8.33◦ 6.82◦ 6.00◦ 5.15◦

TABLE VII
FOUR SOURCES: THE RMSE OF THE EVALUATED METHODS IN REAL-WORLD EXPERIMENTS

True sources TF-CHB TF-AHB CH-SS-PIV DPD-MUSIC TF-MW-BNP-AHB
(−30◦, 0◦, 45◦, 115◦) 12.00◦ 12.50◦ 11.23◦ 9.75◦ 9.09◦

(−110◦, 0◦ 30◦, 100◦) 11.25◦ 9.75◦ 8.81◦ 6.75◦ 5.21◦

(−150◦, −40◦, 30◦, 120◦) 8.75◦ 10.75◦ 6.85◦ 5.00◦ 3.89◦

(−160◦, −70◦, 20◦, 110◦) 7.50◦ 9.00◦ 6.04◦ 4.75◦ 4.48◦
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to improve parameter estimation in reverberant and noisy
environments. The experimental results demonstrated that the
proposed TF-MW-BNP-AHB method offers significantly bet-
ter performance than the four baseline methods, in terms of the
estimation accuracy of DOA and source number estimation,
in a variety of acoustic conditions, including the challenging
environments of high reverberation (RT60 = 700 ms) and
low SNR (SNR = 0 dB). Furthermore, it was shown that
for the speakers located at a variety of positions in the room,
our proposed TF-MW-BNP-AHB offers a better consistency
for the changes in the source positions as compared with the
baseline methods.

APPENDIX A
DERIVATION OF THE FORMULA IN (24)-(27)

According to the theory of conjugate priors [40], the pos-
terior probability and the prior probability belong to the same
distribution family. Therefore, according to (18) and (19), we
can get the joint PDF of θ̂i and {µl, σ

2
l }

p(θ̂i, µl, σ
2
l |Ψl, ki) = p(θ̂i|µl, σ

2
l , ki)p(µl, σ

2
l |Ψl)

=
γηl

l e−γl/σ
2
l

Γ(ηl)σ
2(ηl−1)
l

(
ξl

2πσ2
l

) 1
2
e

[
− ξl

2σ2
l

(µl−χl)
2

]
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1√
2πσ2
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e
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2

2σ2
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∝ 1

σ2ηl

l

e

[
− ξl(µl−χl)

2+2γl+(θ̂i+2πki−µl)
2

2σ2
l

]
.

(43)

According to the Bayesian rule [24], the posterior probabil-
ity of the DOA estimate can be expressed as

p(µl, σ
2
l |θ̂i,Ψl, ki) ∝ p(θ̂i|µl, σ

2
l , ki)p(µl, σ

2
l |Ψl). (44)

Since the mean and variance of IGMM that we established
follows the Gaussian Gamma distribution, which is the conju-
gate prior of the Gaussian distribution [40]. According to the
property of the conjugate prior [29], we know that the posterior
probability also follows the Gaussian Gamma distribution and
can be written as

p(µl, σ
2
l |θ̂i,Ψl, ki) ∝ N(µl|χ̃l, σ

2
l /ξ̃l)G(σ−2

l |η̃l, γ̃l), (45)

For (45), the right side of ∝ can be represented as the
expanded form of (19), and the left side can be simplified as
the form of Gaussian Gamma distribution, therefore we can
obtain

1

σ2ηl
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e
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− 1

2σ2
l

[
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e
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− 1
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}
,

(46)
In (46), we know that both sides of the proportional sign

follow Gaussian Gamma distribution. Thus, the update formula
(24), (25), (26) and (27) can be obtained by one-to-one
corresponding parameters [41].
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