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ABSTRACT

Acoustic signal processing in the circular harmonic domain
(CHD) is an appealing method for speaker localization,
since it inherently supports wideband acoustic sources and
provides frequency invariant beampatterns. However, the
performance of existing circular harmonic direction-of-arrival
(DOA) estimation approaches can be degraded by a variety
of factors, including background noise and reverberation
in the acoustic environments, small aperture size of the
circular array and the presence of multiple active sources.
This paper addresses these issues by proposing a novel
multi-speaker CHD localization method with small-sized
microphone arrays using deep convolutional neural networks
(CNN). The core idea is to construct circular harmonic
features through joining the selected time-frequency (TF)
bins of higher power and the operation of a randomization
process by mimicking the sparsity property of speech signals.
After that, we implement multi-speaker estimation as a
multi-label classification task, and propose to use CNN with
binary cross-entropy as the loss function. Experimental
results show that our method performs significantly better
than the baseline methods, on both simulated and real data,
in terms of the accuracy of DOA estimation.
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1. INTRODUCTION

Acoustic source localization (ASL) is the problem of
estimating the position of single or multiple sound sources,
relative to the position of recording microphone array. In
most cases, ASL is simplified to estimate the DOAs of
the sound sources, i.e., the azimuth or/and elevation angles
of these sources [1,2]. ASL is crucial for a variety of
practical applications, such as smart home, robotics, among
many others [3-5]. In the literature, DOA estimation
methods can be broadly classified into five categories: 1)
the time difference of arrival (TDOA) of sound sources,
e.g. by exploiting the Generalized Cross Correlation
PHAse Transform (GCC-PHAT) [6], 2) the subspace-based
approaches, including the popular methods e.g. multiple
signal classification (MUSIC) [7] and estimation of signal
parameters via rotational invariance techniques (ESPRIT)
[8], 3) the beamforming based approaches, e.g. steered
response power with phase transform (SRP-PHAT) [9], 4) the
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intensity-based methods, e.g. via determining the magnitude
and direction of the transport of acoustic energy, related
to the DOA of a sound wave [10], and 5) the emerging
ASL approaches based on data-driven deep neural networks
(DNNGs) technique, which utilize the variety of input features,
e.g. inter-channel features [11], cross correlation-based
features [12], spectrogram-based features [13], ambisonic
signal representation based features [14], intensity-based
features [15] and waveforms [16].

In the past several years, the circular harmonic DOA
estimation technique has received increasing attention, since
it can provide a frequency-invariant eigen-beam pattern
that is useful for localizing wideband sources without the
narrowband assumption used by traditional signal models
[5]. However, the performance of this method degrades in
high level of background noise and room reverberation, for
multiple speakers, and in the presence of small-sized arrays.

On the basis of our prior work for studying the single
source localization based on CNN [17], in this paper, we
proposed a novel CHD multi-speaker localization method
on small-sized microphone arrays using deep convolutional
networks. Our objective is to localize multiple sound sources
in the CHD by learning the mapping from the acquired sensor
signals to DOA of sources using a large set of training data
with multiple labels, using CNN with a binary cross-entropy
(BCE) loss. First, we construct the circular harmonic features
through joining the selected time-frequency (TF) bins of
higher power and the operation of a randomization process
by exploiting the sparsity property of speech signals, which
can reduce the adverse impact of noise, reverberation and
multi-source. Then, we leverage the advantage of DNNs in
generalizing to diverse scenarios and array geometries, for
example the small aperture arrays, to further improve the
localization performance. Through experimental evaluations,
we show the superior performance of the proposed method.

2. SIGNAL MODEL

A uniform circular array (UCA) consisting of M
omnidirectional sensors is adopted for sound source
capture as shown in Fig. 1. The radius of the array is r, and
the azimuth angle of each sensor is ¥,,, namely,
2
i (m—l)%, 1<m<M). )
Suppose that D far-field speech sources in a reverberant
enclosure impinge on the array. Herein, the DOAs are
defined with respect to the positive x-axis, which implies
0y € [-m,7m),d = 1,...,D. In the short-time Fourier



Fig. 1. Configuration of the uniform circular sensor array.

transform (STFT) domain, the source signals received at the
mth sensor can be modeled as

D
Pp(kt) = > Ham(k,t)Sa(k,t) + Vin(k,t), (2)
d=1

where k = 27 f/c is the wavenumber, ¢ is the time frame
index, f is the frequency and c is the speed of sound.
Sq(k, t) is the signal induced by one of the D speech sources
at ry distance from the centre O of the microphone array,
H g (k,t) is the room impulse responses (RIRs) from the
dth source to the mth sensor, and V,,,(k,t) is the additive
background noise.

Since speech signals are considered sparse in the TF
domain, at each TF bin, it could be assumed that only one
source is dominant [18]. Thus, (2) can be further simplified
as

P (k,t) =~ Hgn(k,t)Sa(k,t) + Vi (k,t). (3
3. PROPOSED METHOD

3.1. Circular Harmonic Beamforming (CHB)

The aim of CHB is to combine different harmonic
components to form a beam with appropriate spatial
selectivity properties. In real-life applications, the
discretization of the continuous aperture by means of a
uniform circular array with M omnidirectional sensors leads
to the nth-order circular harmonic beam response [3, 19], as
follows

N
B(k,t)=Y_ Cn(k,t) - Gn(k) - Hy(0)
n=—N

N 1 M 1
— . Pm k t _j7“97n_ . jné 4
> 372 Pk t)e AR

n=—N m=1

where § € [—m, ), j = +/—1, and n is the order of
harmonic. J,, () is the nth-order Bessel function of the

first kind, C,, (k,t) represents the circular harmonics, G, is
an equalization factor, and H,, is a frequency-independent
phase factor [20]. Thus, Equation (4) forms the basis of the
proposed circular harmonic features discussed in the ensuing
sections. Note that in practice, the number of harmonics must
be truncated to a maximum order N, which is related to the
M/2—-1, M even A
(M —1)/2, Modd **
arule of thumb, N = [kr] is usually chosen, where [-] is the
ceiling function.

number of sensors [20],i.e., N =

3.2. The Circular Harmonic Feature based on Selected
and Randomized Processing

Since the baseline TF-CHB method is sensitive to background
noise, reverberation and the characteristics of the array,
particularly the small aperture array, this may degrade
the performance of the DOAs estimation in adverse
environments. To address this issue, we propose a novel
circular harmonic feature based on selected and randomized
processing.

Selected Processing: In our earlier work [5], we
demonstrated that DOA estimation accuracy can be improved
by selecting TF bins of higher power, which is often an
indication for an active source at this direction. Herein, we
employ the power of n = 0 mode strength, which represents
omnidirectional fields that have no variation in the azimuth
direction when compared with mode strength of other orders,
to help us find the useful TF bins with high power in the CHD.

The circular harmonic feature based on selected
processing, which contains I components, can be represented
as

T
F(k,t, 9)=[BE(k, t.00) - BE(k,t,0;) - -, BE (k,t, 91)}(5)

where

N
B (k,t,0:)=)_Es(k,t)-Cp(k,t)-Gp(k)-Hu(0:),  (6)

n=—N

and the number of classes I depends on the resolution of the
whole range of DOAs, and 6; is the DOA corresponding to the
ith class. The selected function Ey(k,t) can be represented
as

1, if Ey(kq,tq) > Eo(ku,tu)

Ey(k,t) = {O, otherwise, @

where Eo(k,t) = ’C*o(k,t)-Go(k)-Ho(Gi) ’

of the 0-th mode strength. Ey(k,,t,) is the power at the
uth TF bin, v = a@), with a € (0,1] being a pre-defined
threshold, e.g. a = 0.9. @ stands for the total number of TF
bins. Ey(kg,t,) is the power at the gth TF bin.

Randomized Processing: With the sparsity property of
speech as aforementioned, we introduce a randomization
process to exploit the non-overlapping and sparsity property
of speech signals [21]. More specifically, we randomly
assign the activity of each sub-band source across different
frequency bands to ensure that each TF bin corresponds
to the activity of a separate source, with different sources
being active in different TF bins.  Consequently, the
resulting training signal more realistically reflects the
sound distribution and characteristics of a multi-source
environment, allowing the neural network to effectively
learn relevant TF-CHB-Selected-Randomized feature (for
simplicity, TF-CHB-S-R) for localization.

As an example, we consider two speakers.  The
randomization process is conducted as follows.  First,
for a given small-sized array setup, the selected TF-CHB
representation of multi-microphone signals, corresponding to
two different angles of speakers, are concatenated along the
time frame. Then, for each sub-band, the TF bins across

is the power



Table 1. Changeable-room configurations in training process and test process.

Array: M=4,r=0.02 m; DOAs: —120°,80°; Sound speed: 340 m/s; TIMIT speech signals: 0.5 s length; Sampling rate: 16 kHz;
Noise types [23]: training process — Babble, Factory2 and Volvo, test process — Destroyerops and Hfchannel.

Reverberant Conditions

Type || Length(m) X Width(m) X Height(m) | Distance(m) | RT60(ms) [ SNR(dB)
Length: picked randomly between 7 and 12; icked randoml
Train Width: picked randomly between 5 and 9; p y picked randomly between 200 and 800 20
S . 1.5and 2
Height: picked randomly 3 and 4;
Test 9.7 x 7.05x 3.0 1.5 200 to 800 with an increment of 100 20
Noisy Conditions
Type || Length(m) x Width(m) x Height(m) | Distance(m) | SNR(dB) [ RTso(ms)
Length: picked randomly between 7 and 12; icked randoml
Train Width: picked randomly between 5 and 9; P y picked randomly between 0 and 30 200
R . 1.5 and 2
Height: picked randomly 3 and 4;
Test 9.7 x 7.05 x 3.0 1.5 0 to 30 with an increment of 5 200

all the microphones are randomized, resulting in a single
multi-channel signal [21]. This process ensures that the
number of TF bins that contain activities related to the two
desired DOAs is approximately the same for each time frame.
Note that, the dimension of the input to the network is I X N
(number of frequency bins) for the proposed TF-CHB-S-R.
The selected and randomized processing is summarized in
Algorithm 1.

Algorithm 1 The Selected and Randomized Processing
Input: P, (k,t), Ef(k,t), u.
1: foreachg € I do
2 using (6) to obtain BY (ky, t.,0,) for DOA 6,
3 foreach h € I and h # g do
4: using (6) to obtain Bf(ku, ty, 0y,) for DOA 6y,
5: th : concatenate Bf with BY along time axis
' and randomize TF bins
6: calculate the TF-CHB-S-R feature, i.e. the I x
N 7, matrix for each time frame v« from th
7: end for
8: end for

3.3. CNN Network Architecture

Table 2. The architecture of the CNN for multi-speaker
localization.
L1 (Layer 1): Input

64 filters

L6: Conv 3 @2x 1

I x Ny LI11: ReLU 4

L2: Convolutional Layer 1 | 64 filters || ; 5. p o (53

(Conv 1) @2x 1 LI2: FC2 512

L3:ReLU 1 L8: Dropout 1 0.5 L13: Dropout3 | 0.5
X 64 filters || L.9: Fully Connected 1 .
L4: Conv 2 @2x 1 Y 512 L14: ReLU 5
L5: ReLU 2 L10: Dropout 2 0.5 L15: Output Ix 1

In this study, we choose the CNNs as the network for
the multi-DOAs classification purpose. The architecture of
the detailed CNN is illustrated in Table 2. The stochastic
gradient descent with momentum (SGDM) is chosen as the
optimizer. Dropout with a rate 0.5 is used to mitigate
overfitting. The size of mini-batches is set as 4, the initial
learning rate is set to be 10~3, and the maximum number of
epochs is chosen as 100. Early stopping with a patience of 10
epochs measured on the validation set is also used to prevent
overfitting. To address the multi-label classification problem,
we use the binary relevance method. The output layer of the

CNN consists of I sigmoid activations, each corresponding
to a DOA class, using BCE as the loss function. Thus, the
DOA estimation approaches based are TF-CHB-SR-CNN,
TF-CHB-S-CNN and TF-CHB-R-CNN. The latter two are the
methods using the proposed features TF-CHB-Selected and
TF-CHB-Randomized, respectively.

4. EXPERIMENTAL EVALUATIONS
4.1. Datasets and Set up

The simulated data used for training were generated in a
changeable-room and the detailed configurations are shown
in Table 1. Herein, the presented objective evaluations were
for the two speakers scenario. Please note that, by following
the same procedure as aforementioned, the method can be
extended for estimating more than two speakers scenarios.
In the simulations, 100 utterances were randomly selected
for training, and another 20 utterances for testing. Thus,
for the reverberant condition, we used 100 x (18 x 17) x
7Tx(6x5x2)x2x3 = 77112000 training signals,
where 100 represents the number of utterances, 18 x 17
represents the number of candidate DOAs, 7 represents the
number of reverberant conditions with reverberation time
varied from 200 to 700ms, 6 x 5 x 2 represents the number
of the room size, 2 represents the number of sources to array
distances, and 3 represents the number of noise types. For
the noise condition, the number of training signals is also
77112000, where we consider 7 noise levels with signal to
noise ratio varied from O to 30 dB. The length of speech
signals is 0.5 s. We considered that the spatial resolution
for source location was set to be 20° in the simulations.
Thus, the total number of candidate source locations was
I = 18, which were distributed uniformly from —180° to
160°. To generate the RIRs [22] from acoustic sources to
sensors, we used a software that was based on the well-known
image method for simulating a reverberant environment in a
room. The performance of the proposed TF-CHB-S-CNN,
TF-CHB-R-CNN and TF-CHB-S-R-CNN are evaluated and
compared with the baselines including the STFT-CNN [21]
and the TF-CHB-Histogram [19] methods in both simulated
and real environments. For all the evaluated algorithms, the
STFT was calculated using a Hamming window of 1024
samples with 50% overlap between consecutive frames and
the number of frequency bins was 511, namely Ny, = 511.



The reason for using 511 bins is that the DC component and
Nyquist frequency are neglected as they do not provide any
useful localization information.

To further evaluate the effectiveness of the proposed
method, we also selected 20 utterances and recorded them
in a real rectangular conference room with dimensions of
approximately 9.7 m x 7.05 m x 3 m and RTyy of
approximately 350 ms. The two speakers were located
at two DOAs of —120° and 80°, respectively, and other
conditions were similar to those in the above simulations.
The sensors used in the real-world experiments were all
1/2-inch sensors (MPA201; BSWA Technology Co., Ltd.).
The received sensor signals were sampled at 16 kHz through
a data-acquisition device (NI-USB-4432 and cDAQ-9178;
National Instruments) with 24-bit. A photograph of the real
experiment and microphone array is shown in Fig. 2.

Fig. 2. The uniform circular sensor array used in the
experiments, with a array radius of 0.02 m.

To facilitate evaluations, we use the localization accuracy
as performance metrics, which is defined as:

NW x 100%, 8)

€

Acc =

where N, represents the number of source locations being
evaluated, and V., denotes the number of source locations
that are correctly recognized. Herein, an acoustic source is
considered being correctly localized if the deviation of the
estimated DOA from the actual DOA is within £20°.

4.2. Results in Simulated Experiments

Effect of Room Reverberation: Fig. 3 shows the
localization accuracy of each method under the conditions
of the changeable-room with the RT§, varying. In general,
the performance of all tested algorithms degrades with
the increase in the level of reverberation. The proposed
TF-CHB-S-R-CNN outperforms all the baseline methods.
With the selected and randommized processing, more reliable
TF bins, which

are dominated by the multi-sources, are learned by the CNN,
leading to improved localization performance. In contrast,
the TF-CHB-Histogram method performs poorly, especially
under higher reverberation conditions, and have failed to
localize the sources when RT§o is over 500 ms. The main
reason is the small sized-array and the presence of strong
reverberations, which significantly degrade localization
results. We can also see that our method outperforms the
TF-CHB-S-CNN, the TF-CHB-R-CNN and the STFT-CNN
methods with various reverberant environments.

Effect of Noise Level: Fig. 4 shows the localization accuracy
of each method under the changeable-room conditions with
SNR varying. The proposed TF-CHB-S-R-CNN method

TF-CHB-Histrogram ~<- TF-CHB-R-CNN _ —5-STFT-CNN

TF-CHB-Histrogram ) TF-CHB-R-CNN__ —E~STFT-CNN
|[A-TF-CHB-S-CNN___ —eTF-CHB-S-R-CNN

‘-A—TF-CHB-S-CNN K- TF-CHB-S-R-CNN ‘

. _,destroyerops " N hfchannel

Accuracy (%)
2
3 8
(%
2 =
3 g

s
5
IS

5

N

S
N
8

ob— N
02 03 04 05 06 07 08 02 03 04 05 06 07 08
RTg, (s) RTg, ()

(a) Destroyerops (b) Hfchannel

Fig. 3. Effect of room reverberation on the performance
of each method for localization accuracy in the
changeabled-room with SNR = 20 dB.

offers better localization performance under both noise
types as compared with the baseline methods.  This
is because the proposed approach can select the TF
bins which are less affected by noise, and improve the
estimation accuracy of muliti-speaker with the help of
randomized processing. However, regarding the robustness,
the TF-CHB-Histogram method shows higher variances over
noisy conditions. In between are the remaining methods,
namely the TF-CHB-S-CNN, the TF-CHB-R-CNN and the
STFT-CNN.

TF-CHB-Histrogram — TF-CHB-R-CNN E—STFTVCNN‘

TF-CHB-Histrogram 0 TF-CHB-R-CNN B~ STFT-CNN
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Fig. 4. Effect of noise level on the performance of each
method for localization accuracy in the changeable-room with
RTGO = 200 ms.

4.3. Results in Real-World Experiments
The localization accuracy achieved on the real dataset
is  STFT-CNN: 35%, TF-CHB-Histogram: 35%,
TF-CHB-S-CNN: 50%, TF-CHN-R-CNN: 70% and
TF-CHB-S-R-CNN: 85%, respectively. As can be seen,
the localization results behave in a similar manner to those
found in the simulation results above. The results show good
performance of our proposed TF-CHB-S-R-CNN method,
which indicates the effectiveness of using the circular
harmonic feature based on the selected and randomized
processing in a practical environment.

5. CONCLUSION
We have presented a TF-CHB-S-R-CNN model to
estimate multi-source with a small-sized array in adverse
environments. Our contribution is on the way of designing
and improving the circular harmonic feature via selected
and randomized processing, which enables a CNN to be
utilized for multi-DOA estimation in noisy and reverberant
conditions.  The experimental results demonstrated that
the proposed method offers better performance than the
compared methods.
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