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Abstract--A robust constrained bl ind source separation (CBSS) algori thm has been 
developed as an effective means to remove ocular artifacts (OAs) from electro- 
encephalograms (EEGs). Currently, clinicians reject a data segment i f  the patient 
bl inked or spoke during the observation interval. The rejected data segment could 
contain important information masked by the artifact. In the CBSS technique, a 
reference signal was exploited as a constraint. The constrained problem was then 
converted to an unconstrained problem by means of non-linear penalty functions 
weighted by the penalty terms. This led to the modif icat ion of the overall cost function, 
which was then min imised with the natural gradient algorithm. The effectiveness of 
the algori thm was also examined for the removal of  other interfering signals such as 
electrocardiograms. The CBSS algori thm was tested with ten sets of data containing 
OAs. The proposed algori thm yielded, on average, a 19% performance improvement 
over Parra's BSS algori thm for removing OAs. 
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1 Introduction 

OCULAR ARTIFACTS (GAs), also called electro-oculograms 
(EGGs), axe the main source of interference within electro- 
encephalogram (EEG) signals. These pose a significant problem 
to clinicians and neurologists, because of the large number of 
data that can be lost owing to their presence. Such GAs refer to 
the potential difference that is generated when the eye moves in 
its socket or when a blink occurs. GAs propagate to other record- 
ing electrodes and superimpose themselves on the existing EEG. 
They can be measured by placing electrodes around the eyes. Hori- 
zontal eye movement can be measured by placing electrodes on 
either side of the eyes, whereas vertical movement and blinks 
can be measured by electrodes placed above and below the eyes. 

The interfering eye blinks generate a signal that is in the 
order of  ten times larger than cortical signals. Eye blinks can 
last between 200 and 400 ms. The eyeball  can be considered 
as a dipole rotating in a socket. This means that, as the eye 
rotates, the cornea remains at 0 . 4 - 1  mV positive with respect 
to the retina. Rotations of  the eyeball  in saccadic eye move- 
ments cause large, external field variations that can contami- 
nate EEG readings (GVERTON and SHAGASS, 1969). Owing 
to the magnitude of the blinking artifacts and the high 
resistance of  the scalp, GAs can contaminate the majori ty of  
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electrodes, even those in the occipital area. Some experiments 
have been attempted to estimate the propagation factors in the 
past (GRATTON, 1988). 

It is possible to ask patients to fix their eyes on a point, which 
will reduce the number of eye movements, but involuntary move- 
ments, such as eye blinks, axe just as troublesome. Asking the 
patients to suppress eye blinks will distract them from the clini- 
cian's instructions and proves to be impossible, for example, 
when examining children. Closing the eyes results in increased 
involuntary eye movements. Eye blinks may be in response to a 
cognitive task, and therefore simply rejecting the data segment 
will result in the loss of important information. 

The main reason why EGGs cannot be simply removed 
using conventional filtering techniques is because of  the spec- 
tral overlap between EGG and the underlying EEG. Numerous 
methods have been employed for removal  of GAs that exploit  
the use of  regression analysis, which is incorporated into 
popular EEG monitoring software, such as Neuroscan. Part 
of  the EGG is subtracted from the EEG such that C o r r e c t e d  
E E G  = R a w  E E G  - T E O G ,  where the EGG is measured at 
the mastoids, which removes the need for horizontal and verti- 
cal EGG measurements (ELBERT e t  al.,  1985). 

The parameter  y has been determined in numerous ways, 
such as being the ratio between EEG and EGG. In SCHLOGL 
and PFURTSHELLER (1999), y was determined by the covaxi- 
ance between EGG and EEG. However,  owing to volume 
conduction, GAs contain some EEG information that will 
inevitably be subtracted using the techniques mentioned. 

Adapt ive  filters have been implemented for the removal  of  
EGG artifacts (HE et  al. ,  2004). The vertical and horizontal 
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EOGs were measured and used as reference inputs to the 
adaptive algorithm. In another approach, CELKA et al. (2001) 
proposed a method that does not require a reference input 
for removing the EOG artifact. Their adaptive algorithm esti- 
mated the EOG by predictive filtering techniques. The men- 
tioned adaptive filtering techniques show promising results; 
however, they operate on one EEG channel at a time, which 
can be computationally expensive, especially when a large 
number of  electrodes axe used. Moreover, the adaptive filtering 
techniques do not consider all the information within the EEG 
signals, and hence, their use in artifact rejection is not efficient. 

Another method for removing blinking artifacts from EEG 
was proposed by BEWRG and SCHERG (1994) using principal 
component analysis (PCA). It finds the orthogonal directions 
of  greatest variance in the EEG signals. PCA is based on expli- 
cit spectral matrix factorisation of  the EEG signals, and there- 
fore the application of PCA is generally superior to the 
traditional, aforementioned regression technique. The main 
drawback of  PCA lies in the fact that neurobiological signals 
are not believed to be orthogonal, and, hence, OAs will not 
always be effectively removed (BELL and SEJNOWSKI, 1995). 

One area that has sparked interest in the biomedical field 
is the use of independent component analysis (ICA) in blind 
source separation (BSS). ICA is a method of estimating the 
sources given that only the mixtures axe available. This is achieved 
by making as few assumptions as possible about the original 
sources. One common assumption in most ICA algorithms is 
that the sources axe statistically independent. This is a stronger 
claim than uncorrelatedness, because it assumes that the joint 
probability density of the sources can be factorised into the 
product of marginal densities (HYVARINEN e t  al., 2001). 

With this assumption in mind, many algorithms axe designed 
so that the estimated sources meet, albeit approximately in 
practice, this criterion. One such algorithm is based on the 
information maximisation (Infomax) theorem (JUNG et al., 
2001). It uses a neural network to segregate individual com- 
ponents by maximising the joint entropy at the output which 
in turn minimises the mutual information between components. 

They later designed a system where EEG signals were seg- 
regated, and then the eye blinking effect was removed. The 
separated signals were then recombined to reconstruct the 
artifact-free EEG. A similar system used second-order blind 
identification (SOBI) techniques (JOYCE et al., 2003) and 
thereby relied on exploiting the temporal structure in the 
signals. 

EEGs axe said to be instantaneous mixtures, as potentials axe 
due to emissions of electromagnetic dipoles, and the bandwidth 
of the signal (and accordingly the required sampling frequency) 
is very low (bandwidth < 5 0  Hz). This in mm means that the 
signals measured at the electrodes axe received with a negligible 
delay (linearly mixed), and, hence, an instantaneous type of ICA 
is used for separation of EEG signals. Although the number of 
signal sources within the brain is yet unknown, an initial assump- 
tion is that the number of sources N is less than the number of elec- 
trodes M, i.e. an over-determined system has been considered. 

The challenge is to separate the signals into their independent 
constituent sources while automatically removing the axtifact 
and retaining any diagnostic information about the brain disorder. 
In this paper, a pre-determined reference is incorporated into the 
minimisation algorithm, hence yielding an automated axtifact 
rejection system. The significance of the algorithm is also due to 
its performance in the case of  an undetermined number of sources. 

2 Joint diagonalisation of correlation matrices 

ICA relies on the fundamental assumption that the source 
signals within s(t) = [sl (t), s2(t) . . . . .  sN(t)] r are statistically 
independent and zero mean, where t denotes the discrete time 

Medical & Biological Engineering & Computing 2005, Vol. 43 

sample, and ( .)r  is the vector transpose. This means that the 
joint distribution of  the source signals can be factorised into 
the product of  their marginal densities, i.e. p(s)  = l ~ i P i ( S i ) .  
The mixtures can be modelled by 

x(t)  = As( t )  + v(t) (1) 

where A is the M x N full column rank mixing matrix, N 
is the number of  sources, M is the number of  mixtures, 
and M > N; x(t)  = [xfft),x2(t) . . . . .  xM(t)] r contains the 
linear mixtures observed at the electrodes; and v ( t ) =  
[vff t) ,v2(t)  . . . . .  vM(t)] r is the additive zero mean sensor 
noise. We assume that the sensor noise is temporally uncorre- 
lated, i.e. E{v( t )vr ( t  - k)} = 0 '¢ k v a 0, and uncorrelated with 
the sensor data E{v( t ) (As( t ) )  r} = 0. The output of  the ICA 
system (i.e. the estimated original sources) is given by 

y(t)  = Wx(t)  (2) 

where y(t)  = [yl(t), y2(t) . . . . .  yN(t)] r is the vector of  the esti- 
mated sources, and W is the N × M separation matrix. The sep- 
axation matrix can be found by finding the minimum of a cost 
function J (W) ,  which provides a measure of  independence of  
the estimated sources. Therefore the goal of  the diagonalisation 
algorithm is to find a W that will make a set output covaxiance 
matrix Ry(k) diagonal, k ~ { 1, 2 . . . . .  K}, where K is the 
maximum time lag. Hence, minimising J ( W )  will ensure that 
the estimated sources axe as independent as possible. The 
covaxiance matrix Ry(k) to be diagonalised is given by 

Rr(k) = W [ R x ( k )  - R v ( k ) ] W  r (3)  

where, in practice, Rx(k )  is the estimate of  the time-lagged 
covaxiance matrix of  the signal mixtures, and Rv(k )  is the esti- 
mate of the covariance matrix of  the sensor noise. As we 
assume that the noise is spatially uncorrelated, Rv(k )  will be 
a diagonal matrix for k = 0 and R v ( k )  = 0 for k v a 0 (PARRA 
and SPENCE, 2000). 

Rx(k )  - R v  = A R s ( k ) A  r - R v  (4) 

where Rs(k)  is a diagonal covariance matrix of the independent 
source signals. Following PARRA and SPENCE, 2000, the least 
squares (LS) estimate of W is 

T~ 

Wopt = axE m~n ~ liE(0112F 
t = l  

(5)  

where II - II 2 is the squared Frobenius norm, E(t) is the error to 
be minimised between the covariance of  the source signals 
Rs(k)  and the estimated sources Ry(k), and T8 is the data 
block length. Therefore a suitable cost function is defined 
based upon minimising the off-diagonal elements for multiple 
lagged covaxiance matrices, as 

K 

Wopt = arE m~n Z JM(W, k) 
k = l  

K 

= arE rn~n ~ IIRy(/c) - diag(Ry(k))ll~ (6) 
k = l  

where diag( .  ) is an operator that zeros the off-diagonal 
elements of  a matrix. 
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3 Constrained learning 

Minimising the cost function in (6) alone is not enough to 
remove the EOG from the underlying EEG, as there is no con- 
straint to minimise the effect of  the EOG. This is very important 
in places when there is an undetermined number of  sources such 
that the output independent components (ICs) may not represent 
the actual sources. In this case, minimisation of  the cost function 
should be subject to a constraint. To impose the constraint, 
a second cost function term is introduced a s  JG = 
F(E{g(t)y(t)r}), where the non-lineax function F ( - )  is chosen 
based on the probability density function (PDF) of  the data (Lu 
and R A J A P A K S E ,  2001). The non-lineax function is chosen to have 

F(g) = C(g) ~ [ g~ Pg(~)d~ (7) 

where Pg(~) is the PDF of the artifact, and C(g) is the cumulative 
density function (CDF) of  the artifact. We choose a function that 
is as close as possible to the CDF of the artifact so that its deriva- 
tive will approximate its PDF, as shown in Fig. 1. Then a new 
function Jr(W) is defined, so that 

K 

Wopt = arg mwm Z Jr(W) 
k = l  

K 

= arg mwm Z (JM(W, k) ÷ AJG(W)) (8) 
k = l  

where A = { A i i }  (i = 1 . . . . .  N) is the weighted factor that is 
governed by the correlation between the EOG and EEG signals 
(RGr), defined by 

A ~_ Pdiag(RGy) (9) 

where P ~ N+ is an adjustable constant. Therefore the cost func- 
tion to be minimised is the sum of Jr(W). We use the natural 
gradient algorithm (NGA) (HAYKIN, 2002) to find the W that 
minimises Jr(W). The general NGA update equation is 

W(t + 1) = W(t) + AW(t) (10) 

where AW(t) is the incremental update of  W(t) given by 
CICHOCKI and AMARI (2002) 

" t" OJT(W) W W  T AW(t) = - /x t  )------0-~ (11) 

The adaptive learning rate/~(t), as used in WANG et al. (2003), is 
dependent on the spread of  the data and the gradient of  the total 
cost function. It is given by 

( 1 2 )  
/~(t) = / ~ 0  • g ( +  I I ± ) - r ( W ) f  (12) ~ = a  IIex(k) l l~ 

where/% is a positive constant typically < 1, and ( is a regulax- 
isation parameter that prevents the learning rate from being too 
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(a) Probability density function of the eye blinking artifact is 
seen to be super-Gaussian. (b) Cumulative density function of 
the eye blinking artifact closely matches (c) tanh @)function 

large when the gradient becomes small. The typical value of 
the parameter ~" is 0.05, and AJ r = Jr(W(t  - 1) ) -  Jr(W(t)). 
Finding the gradient of (8) yields 

K OJ(W) 
4 Z [Ry(k) - diag(Ry(k))] W[Rx(k) - Rv] 

- 5 - f f  - -  
k = l  

0 
+ ~ (AF(RGy)) (13) 

When the noise of  the system is unknown, its covaxiance can be 
estimated in the stone fashion: 

Rv(t  + 1) = ~Rv(t) + (1 - ~)Akv(t)  (14) 

where A R v ( t ) =  R x ( k ) -  W lk r (k) (Wr)  lkx(k)  and Rr(k) 
are, respectively, moving window estimates of  the observation 
and output covaxiance matrices, and ~ ~ (0, 1). The adaptation 
stops when the error falls below an acceptable level, i.e. 
when IlW(t - 1) - W(t)ll 2 _~ 0. In the following Section, we 
examine the method on a set of simulated signals, a set of EEG 
contaminated by eye blinking axtifact and a set of EEG contami- 
nated by electrocardiogram (ECG). 

4 Experiments 

In this Section, we apply the CBSS algorithm to simulated 
signals and real EEG data and analyse the results. The performance 
of  the proposed algorithm is evaluated in terms of  the conver- 
gence speed and the ability to remove the artifact from each of  
the components. 

4.1 Simulated source signals 

In the first experiment, we provided a synthetic set of  signals 
affected by a simulated artifact. The synthetic signals, were two 
speech signals, of  5000 samples long and sampled at 12 kHz. 
The artifact was generated using a sampled sinc function, as 
shown in Fig. 2. Here, we assumed that the artifact signal 
could be easily extracted from the mixtures. The source 
signals and artifact were artificially mixed using an M x N 
matrix. W was initialised to I, and the other parameters were 
set as follows: P = 0.01,/% = 0.1 and/x v = 0.1. As the orig- 
inal sources were available, the mean square error (MSE) 

1 U 
e 2 = EllY - s II 2 = ~ ~ E{ lyi(t) - si(t)12 } (15) 

was used to evaluate the resemblance between the estimated 
and the original sources. 

i I  ........ i .... 
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Fig. 2 Original speech source signals. Third signal represents artifact 
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Fig. 3 Artificially mixed signals 

The performance of the algorithm was measured by finding 
the waveform similarity, in decibels, defined by e~8 = 
1 0 l o g 1 0 ( 1 - e 2 ) .  We  assumed that the signals were zero 
mean and unit variance. The mixed signals and the estimated 
sources are shown, respectively, in Figs 3 and 4. By inspection 
of  the estimated sources, it is possible to see that the artifact has 
been removed from the signals of  interest. 

The algorithm was tested using ten data sets of  synthetic 
signals mixed with the same mixing matrix. We  compared 
the waveform similarity for Paxra's algorithm (A = 0) and 
the proposed algorithm (A _~ Pdiag(RGy)) for each data set. 
The waveform similarities for the proposed algorithm and 
Parra 's  algorithm were e~8 = - 0 . 2 7 d B  (SD = 0.02 dB) and 
- 0 . 5 3  dB (SD = 0.01 dB), respectively. The performance 
of  the algorithm was further examined by comparing the 
cross-correlation between the estimated sources and the arti- 
fact. Table 1 shows the performance improvement  over 
Parra 's  algorithm. The goal of  the algorithm was to minimise 
the effect of the artifact by minimising the cross-correlation 
between the estimated sources and the artifact. The artifact 
component  may not be completely eliminated, as the 
number of iterations in 11 is finite, which means that W 
approaches Wopt as t---> ~ .  The convergence performance, 
shown in Fig. 5, was comparable with that of  PARRA and 
SPENCE (2000). 

4.2 Removing the effect o f  eye blinking f rom real EEG data 

The CBSS algorithm was further examined using real EEG 
data. The signals were obtained from the biomedical  laboratory 
in King ' s  College, London, using an EEG amplifier*, and are 
available from the author. EEG was collected from 16 electro- 
des placed on the scalp at locations defined by the conventional 
1 0 - 2 0  electrode system. The earlobe was used as a common 
reference for all the channels. The ocular artifact reference 
signal was obtained from electrodes placed above and below 
the left or right eye. The data were sampled at 200 Hz and 
were digital ly low-pass filtered with a cutoff frequency of  
40 Hz. 

We presented ten data sets of  10 s in length containing eye 
blinking artifacts. We  used ten datasets because we found 
that this was the minimum number to provide reliable results 
while keeping the experimental  work involved within a realis- 
tic boundary. Each of the data sets was standardised to have 
unit variance and zero mean. A threshold was applied to the 
artifact so that any details concerning other brain signals 

* C a d w e l l  Easy  II 
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Fig. 4 Estimated sources with artifact minimized 

Table 1 Performance of CBSS algorithm is based on measurement of 
cross-correlation: average cross-correlation between artifact and 
mixtures is compared with cross-correlation between artifact and esti- 
mated sources. In this experiment, artifact is sampled sinc signal. 
Results are also compared with Parra ' s algorithm 

Average correlation between synthetic artifact and estimated sources by 

Mixtures Parra CB S S 

0.82 (SD = 0.3) 0.19 (SD = 0.01) 0.09 (SD = 0.01) 

presented in the EOG would not contribute to the penalty 
term A. The artifact signal then became 

{ g ;  t) i f g ( t ) > ~ r V t  (16) 
if g(t) < ~rV t 

The parameter  r was empirical ly found to be 0.2 for normal- 
ised signals. The performance was evaluated by finding the 
cross-correlation between the artifact and each of  the mixtures 
and comparing it with the cross-correlation between the artifact 
and the estimated sources. Datasets of  EEG sensor data and the 
artifact reference axe shown in Figs 6 and 7, respectively. The 
resulting separated sources axe shown in Fig. 8. 
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Fig. 5 Convergence performance of (--) proposed algorithm with 
that of  ( . . .)  Parra ' s algorithm 
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Fig. 6 Selection of.five EEG channels from a 16 channel EEG 
recording. EEGs on these channels are corrupted by 
ocular artifact between samples 600 and 900 

From Table 2, it is possible to see that, through application 
of the constrained algorithm, the cross-correlation between 
the estimated sources and the artifact has been considerably 
reduced. The penalty term A is adjusted in proportion to 
the cross-correlation between the artifact and the estimated 
sources, i.e. E{g( t )y( t ) f } .  Therefore the higher the cross- 
correlation between the estimated source and artifact, the 
harsher the penalty on that component. 

4.3 Removing the effect o f  ECG from real EEG data 

The system was also tested on EEG signals contaminated 
with ECG, and the performance was reported. The ECG was 

> eye blinking artifact 

E 0 

Fig. 7 

200 400 600 800 1000 1200 1400 1600 1800 2000 
samples 

Vertical EOG signal measured from right eye 

Table 2 Pelformance of CBSS algorithm is based on measurement of  
cross-correlation between EEG and EOG artifact 

Average correlation between artifact and 

sources estimated sources estimated 
mixtures by Parra by CBSS 

0.75 (SD = 0.02) 0.23 (SD = 0.02) 0.16 (SD = 0.01) 

Table 3 Pelformance of system based on cross-correlation between 
EEG and ECG 

Average correlation between the artifact and 

sources estimated sources estimated 
mixtures by Parra by CBSS 

0.76 (SD = 0.23) 0.21 (SD = 0.01) 0.17 (SD = 0.02) 

measured using Eindhoven's  triangle for the electrode con- 
figuration (WAGNER and MARRIOTT, 2001). The ECG data 
were acquired by the amplifier and sampled at 200 Hz. In 
this experiment, appropriate values for /x 0 = 0.01, /x v = 0.1 
and P = 0.01 were found empirically. The performance of 
the system in terms of the cross-correlation between the artifact 
and the estimated output is illustrated in Table 3. An 8 s 
segment of contaminated EEG is shown in Fig. 9. The EEG 
after removal of the artifact is shown in Fig. 10, and the 
reference signal is shown in Fig. 11. 

Based on our trials for 20 sets of EEGs, we found that the 
average correlation for our proposed CBSS algorithm was 
0.16, with standard deviation 0.01. As we do not know the dis- 
tribution of the estimator but we do know the variance (0.012), 
we appeal to Chebychev's inequality Prob{ 10.16 - RI < e} > 
1 - 0.012/e 2, where R is the true value of the correlation. We 
can be 90% sure that we axe within e of the true value R. 

From Table 3, it is possible to see that the CBSS algorithm 
has successfully separated the mixtures, and its decorrelation 
performance in the undetermined case of EEG is, on average, 
better than that of Paxra's algorithm (PARRA and SPENCE 
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Fig. 9 Selection of five channels from EEG recording. There is 
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Fig. 11 Measured ECG reference signal 

2000). The extent to which the artifact has been removed can 
also be verified by visual inspection of the output (Fig. 10). 

5 Conclusions 

A constrained BSS system for removing the eye blinking 
artifact has been developed by the introduction of  non-lineax 
penalty functions. The penalty terms incorporate the con- 
straints into the main objective function, thereby converting 
the constrained problem into an unconstrained problem. The 
effect of the undesired (interfering) signal is highly reduced, 
and the desired components axe extracted. The quality of the 
separated signals has been improved. The convergence per- 
formance is comparable with that of  PARRA and SPENCE 
(2000). 

The result of the algorithm can be extended to the removal  of  
other interferences, such as electrocardiograms (ECGs) and 
electroglottograms (EGGs) from LEGs. As for the case of  
on-line LEG processing, the permutation ambiguities must be 
resolved using algorithms such as in SMARAGDIS et al. (1997). 
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