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Abstract

One of the obstacles in developing speech emotion recognition (SER) systems is the data scarcity problem, i.e., the lack of
labeled data for training these systems. Data augmentation is an effective method for increasing the amount of training data.
In this paper, we propose a cycle-generative adversarial network (cycle-GAN) for data augmentation in the SER systems. For
each of the five emotions considered, an adversarial network is designed to generate data that have a similar distribution to the
main data in that class but have a different distribution to those of other classes. These networks are trained in an adversarial
way to produce feature vectors similar to those in the training set, which are then added to the original training sets. Instead
of using the common cross-entropy loss to train cycle-GANs, we use the Wasserstein divergence to mitigate the gradient
vanishing problem and to generate high-quality samples. The proposed network has been applied to SER using the EMO-DB
dataset. The quality of the generated data is evaluated using two classifiers based on support vector machine and deep neural
network. The results showed that the recognition accuracy in unweighted average recall was about 83.33%, which is better

than the baseline methods compared.

Keywords Speech processing - Data augmentation - Speech emotion recognition - Generative adversarial networks

1 Introduction

The data scarcity problem is one of the critical challenges in
developing speech emotion recognition (SER) systems. This
problem can be examined from three aspects. The first aspect
is related to the dramatized emotions (generated by actors),
used to avoid legal and moral issues [1]. The second aspect
is the mislabeling of the emotions of the speakers, and the
third issue is related to the lack of balance in the number of
samples available for each class. To train an emotion classi-
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fier, a balanced dataset (equal number of emotional samples
in each class) is often required.

Some standard data augmentation techniques used for
images such as transfer and rotation [2] may not be appli-
cable for text or speech. Synonymous substitution [3], which
is mainly used to process text, is not appropriate for emo-
tion classification and recognition from speech. Similarly,
traditional data augmentation methods for speech, such as
changes in voice and sound velocity [4], are also inappro-
priate for images or texts. In contrast, the data augmentation
method based on generative adversarial networks (GANs)
[5] is focused on learning and simulating real data distribu-
tion and is independent of the tasks. Therefore, GANs-based
data augmentation method is our focus in this paper.

Recently, end-to-end methods are used for speech emotion
recognition [6,7], where the input to the systems are feature
vectors and the output is class labels. In [8], the features
are extracted by convolution filters. With the development of
DNNsin SER, various data augmentation methods have been
proposed [9,10]. Transfer learning can be used to address the
data sparsity problem [11], e.g., inimage and speech process-
ing [12]. Deng et al. proposed a transfer learning method by
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transferring knowledge learned from source domain data to
the target domain data [9].

One of the effective methods to augment data is the
GANSs introduced by Goodfellow et al. [S], which was shown
to improve image recognition performance [13]. Zhang et
al. introduced GAN to produce high-dimensional data and
showed that data augmentation by GANs performs better
than the typical data augmentation techniques [14], such as
time warping, frequency masking, and time masking. Hybrid
methods include four different combinations: LibriSpeech
basic (LB), LibriSpeech doubles (LD), Switchboard mild
(SM), and Switchboard strong (SS) [15].

Cycle adversarial data augmentation networks use Jensen—
Shannon divergence as a divergence criterion. According to
[16], if two data distributions are less overlapped or not
overlapped, Jensen—Shannon divergence tends to be con-
stant, which can lead to a gradient vanishing problem. The
method proposed in this study can address this problem. In
training, source and target data distributions are significantly
overlapped, which makes it difficult for the discriminator to
distinguish between these two vector groups. As a result,
the discriminator network leads to increased cross-entropy
errors, and the generator network then receives a gradient
error. Moreover, with the adversarial data augmentation net-
works, other divergence methods such as the Wasserstein
divergence can be easily used for gradient descent. As com-
pared with the Jensen—Shannon divergence, the Wasserstein
divergence can measure the distance between two data dis-
tributions even if they are not overlapped. The hidden space
generated by adversarial data augmentation networks also
makes it easy to learn emotional information due to the low
dimensions of the vectors in the training data. In addition,
practical programs [17,18] have shown that models with the
Wasserstein divergence are better than those with other diver-
gences, such as Jensen—Shannon divergence and maximum
mean discrepancy. Therefore, the Wasserstein divergence-
based adversarial data augmentation may offer improved
performance in emotion recognition.

In this paper, we present a cycle-GAN for data augmenta-
tion and then test it on SER with two classifier networks. The
cycle-GAN generates samples similar to actual data thereby
augmenting the dataset with additional samples for emotion
classification. In addition, we study the effectiveness of the
GANs and replace the standard cross-entropy error by the
Wasserstein divergence to train the GAN to improve the clas-
sification performance. We evaluate the method using the
EMO-DB database. The results show that the proposed data
augmentation technique improves the SER performance on
the EMO-DB dataset and the cycle-GAN with Wasserstein
divergence outperforms the cycle-GAN with the conven-
tional cross-entropy loss. We show that the synthetic samples
generated from an ordinary cycle-GAN cover part of the
actual data while the clusters created by the cycle-GAN using
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Wasserstein distance (artificial samples generated from our
method) completely cover the feature space for each five
emotion classes.

Section 2 reviews existing methods for the data scarcity
problem. Section 3 proposes the suggested network design
and provides theoretical analysis. Section 4 presents experi-
ment details, including dataset, features, experimental setup,
and evaluation protocols. Section 5 analyzes experimental
results. Finally, Sect. 6 concludes the paper.

2 Background
2.1 Related work

To address the data scarcity problem, we can use data aug-
mentation methods to expand the dataset by generating new
samples using techniques, such as adding noise to the data
[19], pitch shifting and time-stretching of the audio signal,
varying the loudness of the speech signal, applying random
frequency filters, and interpolating between samples in input
space. However, these methods usually change the data, and
may cause problems or introduce artefacts into the data, such
as rotation, adding noise, speech echoing, and signal clip-
ping [20]. Advanced data augmentation methods are based
on GANSs and their variants, such as conditional-GANs and
cycle-GANs. Hu et al. used a deep convolutional neural net-
work to produce extra features to train acoustic models and
showed that data augmentation can improve the performance
of speech recognition systems [21]. Sahu et al. synthesized
feature vectors with automatic adversarial encoders using
Gaussian mixed noise in the generator network [22]. Sahu
et al. also developed a model based on a Conditional-GANs
to generate artificial feature vectors [10]. Several methods
were used to train the conditional-GANSs, including genera-
tor initialization with detector weights, as well as using an
automatic adversarial encoder.

One fundamental issue in training GANSs is that the gen-
erator and the discriminator are trained in parallel. Dynamic
alternating training [14] can be used so that the number of
training epochs in the generator network and the discrim-
inator network do not have to match. This is because the
ultimate goal is not about the number of training epochs, but
the amount of training in each network.

2.2 Generative adversarial networks

As mentioned before, GANSs consist of two deep neural net-
works. The generator network produces synthetic data, and
the discriminator network distinguishes the real data from the
synthetic data. The loss function of GANs can be expressed
as follows [23]:
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Fig. 1 Diagram of the proposed SER system with cycle-GAN data
augmentation

minmax V (D,G)= E [log D(x)]
G D X~ Pdata (X) (1)
+ E [log(1 — DG(2))]
z~pz(2)

where D is a discriminator, G is a generator, Z is noise,
Ddata(x) is the original data distribution, and p,(z) is the
input noise distribution. In practice, according to [24], we
train G to maximize log D(x), instead of training G to min-
imize log(1 — DG(z)). This objective function can mitigate
the vanishing gradient problem without compromising the
equilibrium point of G and D.

JP(D,G)y=— E [logD(x)]
X~ Pdata (*)
~ E_[log(1 = DG())] @
z~pz(2)
J(G) ==_E llogD(G())] 3)

Figure 1 shows the network architecture designed. The
entire process of training a GAN is shown in Algorithm 1.

Algorithm 1 Training a GAN in the vanishing gradient

method
Repeat for the number of training epoches:
While the stopping criterion is not met do:
for each « do:
Sample m data points with distribution p_(z).
2={¢0,2®,7®), .. )
Sample m data points with initial distribution p.
x={x® x@ & 0
Calculate the loss of the discriminator network:
Vi b 5 [log D (+) +1og (1 - D (G (:)))]
end for
for each « do:
Sample m data points from the initial noise space pg(z).
2={¢0,z®,z®), .. )
Update the generator weights with the gradient descent method:
Vi, 1 3 [log (1 - D (G ()]
end for
end while

2.3 Cycle-generative adversarial networks

Cycle-GANs have been used for image generation for non-
paired data [25]. Figure 2 shows the architecture of cycle-
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Fig.2 The structure of cycle-GANs

GAN for data augmentation [26]. This network includes two
transfer functions: F and G, where G learns how to trans-
fer samples from the source domain § to target domain T
and F is the inverse of G. Both F and G may be consid-
ered as generators to produce the target and source data,
respectively. Moreover, there are two adversarial discrimi-
nator networks, DT and DS, where DT discriminates real
targets from the synthetic targets, while DS discriminates
real sources from synthetic sources. This network sets its
target so that F(G(S)) ~ S and G(F(T)) ~ T. Therefore,
it is called cycle-GAN [27].

The loss used in cycle-GANSs includes the adversarial loss
and the cycle consistency loss. Removing adversity may be
transformed into a part of target data generation and a part
of source data generation. The loss function for target data
generation is as follows: [27]:

GAN T _ T
L (G,D .S, T)_INEpt [logD (t)] o
+ E [log(1=D" (G ()]

Losses are expressed as value functions. In the generation

process, the objective is Irgn max LOGAN (G, DT, S, T), and
DT

toreproduce real data, the objective is min masx LGAN (F, DS,
F D

T, S).Zou et al. have defined the cycle loss as follows [27]:

LY (G, P=E LG (F (1)) —1) [l1]

(&)
+ SEDS[II(F(G(S)) =)l

where the L norm may be substituted with other criteria in
these losses. The total losses for cycle-GANS are as follows:

L (G, F,DT,DS)zLGAN (G,DT, s, T)
4+ 1,0AN (F,DS, T, S) (6)

+ALY(G, F)
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Fig.3 Detailed architecture of the proposed SER system

where A controls the relative importance of both losses [27].
We conducted an ablation study to analyze the impact of the
proposed regularization term LY by varying the correspond-
ing weight A using the EMO-DB dataset and observed that
increasing A improves both the quality and diversity of the
generated samples. Nevertheless, as the weighting parameter
A becomes larger than a threshold value, e.g., 1.0, the training
becomes unstable, which results in low quality, and even low
diversity of synthesized samples. As a result, we empirically
set the weighting parameter A = 1.0 for all the experiments.

3 Methodology
3.1 The proposed method

For a labeled dataset X with N emotional classes, artificial
samples for each emotion are generated using a sepa-
rate cycle-GAN. According to Fig. 3, cycle-GAN transfers
between source domain S and target domain 7;, where S
is a dataset without labels and 7; is emotional sample i
in the labeled dataset X. Discriminator networks Dl.T and
Dl.S are used to identify the artificial target which cannot be
distinguished from real samples. The generator loss and dis-
criminator loss are introduced by LSAN (G;, D], S,T;) and
LSAN (F;,D$, S,T;), respectively. We have

LOAN (Gi,Fi,Df,Df, S,n)=L?AN (Gi,Df,S,Ti)

+ LM (F,D} 5.
@)

The cycle loss function can have an impact on the number
training epochs in the cycle-GANSs. Therefore, we translate
the synthetic target G;(S) back to the source domain and
compute the mean squared error (MSE) between the real
source S and reconstructed data F; G;(S). This is similarly
done for 7; and reconstructed target data G; (S). As a result,
the total loss function in each cycle will be as follows:

@ Springer

L (GiFi S.T) = E [I(Fi(Gi(s) = 5) [13]

. ®
+ twb;t[ll (Gi(Fi(t) =) 3]

3.2 Overcoming gradient vanishing problem in
training cycle-GANs

To overcome the gradient vanishing problem in cycle-GANS,
we suggest using the Wasserstein distance. In extreme case,
the gradient descent may be stopped during the process of
weight modification and the training of generators and dis-
criminators. Considering two probability distributions P, and
Pg, the Wasserstein distance is defined as follows:

Wi(Po B = sup | E ()= E (@) ©)

where || f]|L < | shows that f satisfies the 1-Lipschitz lim-
itation [28]. It is worth mentioning that Wj is invariant up to
a positive scalar K if the Lipschitz constraint is modified to
be K. W is believed to be more suitable for data distributed
on low-dimensional manifolds. If the weights are greater or
smaller than the expected limit, they will be changed into
minimum or maximum predefined. In the gradient penalty
method, the gradient penalty is based on Lipschitz, which
is derived from the fact that if gradients are at most 1
everywhere, they are 1-Lipschitz functions. Their squared
difference from one is used as a gradient penalty. According
to [29], weight clipping may lead to a non-optimal solution.
Gradient penalty was also applied to overcome weight clip-
ping limitations [17]. However, if there is a data sparsity
problem, satisfying the K-Lipschitz condition is difficult for
the whole data set. Accordingly, Wu et al. [29] suggested a
new Wasserstein divergence, where the Wasserstein distance
is calculated without applying Lipschitz condition:

Lp= E {f@)=_E (f @)+ E V@]
(10)

where A controls the effect of gradient modification on the
target functionand A > 0. P, is a Radon distribution, and p is
related to L, space for function f and p > 1, [29]. Finally,
the loss function in the generator and the discriminator is
written as follows:

LY —E 0 D (G (2, )
K
I_aZyéln?o log C((G (Z,Y))k)} 1D
k=1
LW AN — E i (D(E(x) — D(G(z, y)))

{+2vx )1 12)
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Lcls

Fig.4 The difference between two mapping samples without the clas-
sification loss and with classification loss

where (), denotes the kth element of a vector, C stands for the
auxiliary classifier, X is a reconstructed sample of the source,
Yemo 18 the output of emotion classifier, and a determines the
contributions of the classification error to the loss in the gen-
erator. The structure of the cycle-GAN with the Wasserstein
distance is shown in Fig. 2.

3.3 Recognizing samples generated by cycle-GAN
augmentation network

Figure 4 shows that transferring data by cycle-GAN results
in similarity between real and artificial data distribution. A
classification loss function is used to ensure that the synthetic
data can be correctly allocated to their target emotion class,
which is defined here as the cross-entropy error:

L == yilog(C(Gi (5)) (13)

where y; is the label of the target emotions. The total loss is
defined as follows:

GAN 1s 1
LZZLi +}»CYCZL?YC+XC9LCQ (14)
1 i

1

where A% and A" are the weights corresponding to the
cycle-GAN loss and the classification loss.

4 Experiments
4.1 Dataset

We performed experiments on the EMO-DB dataset [30],
which is a small dataset of 535 training clips with seven
emotional classes. All speech signals were recorded by ten
professional actors in German. This database includes seven
emotions. We used five emotions to perform the experiments:

anger (127 samples), fear (69 samples), happiness (71 sam-
ples), sadness (62 samples), and neutral (79 samples). We
did not use disgust (81 samples) and surprise (46 samples).
The data were recorded at a 48 kHz sampling rate and then
down-sampled to 16 kHz. The average length of each audio
clip is 2.8 seconds.

The other datasets that are often used in speech emotion
recognition include the Danish Emotional Speech Database
(DES) with 200 samples, the Ryerson Audio-Visual Database
of Emotional Speech and Song (RAVDESS) with 2496
samples, the Interactive Emotional Dyadic Motion Capture
Database IEMOCAP) with 1150 samples, and the Vera am
Mittag Database (VAM) with 1018 samples. There are also
audio-visual datasets such as SEWA [31] and MuSe-CAR
[32] that are not discussed in this article because we only
focus on emotion recognition from speech data. As it turns
out, all of these databases suffer from data shortages due to
the lack of data samples and are not suitable for deep neural
network training. As a suitable solution, we suggest creating
a synthetic dataset using GANs trained by available datasets.
We chose EMO-DB for the reason that this dataset contains
less training samples as compared to the remaining datasets.
Another reason for our choice was to compare the results
of our proposed data augmentation method with other data
augmentation methods.

4.2 Experimental setup

Itis challenging to train the generators with high-dimensional
feature vectors. To address this issue, we pre-trained both G;
and F; generators based on the reconstruction error between
S and F;G;(S) and also the reconstruction error between 7;
and G; (F; (Tp)).

We used the OpenSMILE software to extract the features,
and then used the proposed method to generate new feature
vectors to increase the number of training samples and to
balance the number of samples in the dataset. The dimension
of the feature vector is 2185 for each training sample.

DNN with two hidden layers and 800 hidden neurons
was used in the proposed cycle-GANs. We used ResNet
for the generator network and PatchGAN for the discrimi-
nator network. In addition, DNN and SVM networks were
used as classifiers, and leaky ReLU was applied to all the
layers. The linear kernel is used in the SVM classifier. We
also used the Xavier Algorithm [33] and the Adam opti-
mizer [34] with a learning rate of 0.0002 which was reduced
every 50 epochs. DNNs were implemented using Tensor-
Flow (V2.1) in Python, while SVMs were implemented using
Scikit-Learn Package.

To balance the training of G and D, the generator weights
were updated two times per epoch, and the discriminator
weights were updated one time per epoch. Moreover, unilat-
eral label smoothing [35] was used to reduce the vulnerability
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Fig.6 Classification results with data augmented by Gaussian noise

of neural networks to adversarial examples, i.e., by replac-
ing the binary output values O and 1 of the classifier with
smoothed values, e.g., 0.1 and 0.9.

5 Results

The augmented data were gradually and randomly added to
the original data, and two DNN and SVM classifiers were
used for SER. The L, regulation was used to train deep neural
networks, and each experiment was repeated three times, and
the mean absolute accuracy was reported as the performance
measure. Figure 5 shows the UAR results of the SVM and
DNN on the EMO-DB dataset.

We compared the performance of the proposed method
with those of the standard data augmentation techniques,
such as sample reproduction, adding random noise to feature
vectors and artificial sampling (SMOTE) [36]. The perfor-
mance of data augmentation via adding noise depends on the
amount of noise, and the results may not be stable, as shown
in Fig. 6.

Generating synthetic data similar to the primary samples
helps deep neural networks learn data distribution better;
however, repetitive samples will not lead to better network
training. The SMOTE method is designed to augment sam-
ples in one class and cannot be used to augment samples in
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all classes, but it has a relatively stable performance [36].
Figure 7 shows the results of this method.

The cycle-GAN-based data augmentation method could
also lead to the improvement of SVM performance. Figure 8
shows the performance of two classifiers by combing real and
augmented data based on a cycle-GAN. The results show that
augmenting data helps SVM recognize metadata in feature
space and classify them with better performance.

According to Fig. 9, it is possible to improve the per-
formance of the data augmentation approach based on the
Wasserstein distance introduced in Sect. 3. The unweighted
average recall is gradually augmented by adding artificial
samples to the training set. These results show that data
augmentation based on cycle-GANs may generate new and
meaningful emotional vectors which help improve the per-
formance of the emotion classifier.

Figure 10 shows the clusters created by the cycle-GAN
using the Wasserstein distance for the five emotional classes.
In Fig. 10b, artificial samples generated from the proposed
method completely cover the feature space for each emotion
class, while the samples generated from an ordinary cycle-
GAN in Fig. 10a cover only part of feature space of the actual
data.

We compared our method with the methods in [19,36,37]
in Table 1. This table shows that with the proposed method,
the classifier can be better trained and our method outper-
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GAN, b samples generated by cycle-GAN with the Wasserstein distance

Table 1 Different data augmentation and SER techniques

Method Classifier WA% UAR%
Add noise [19] DNN 82.06 82.73
Add noise [19] SVM 81.12 80.25
SMOTE [36] DNN 82.43 81.51
SMOTE [36] SVM 80.93 79.51
Cycle-GAN DNN 83.55 82.50
Cycle-GAN SVM 81.50 80.30
Cycle-GAN + Wasserstein DNN 84.49 83.33
Cycle-GAN + Wasserstein SVM 81.07 80.08
2D-ACRNN [37] DNN - 79.38
3D-ACRNN [37] DNN - 82.82

forms [38] with the handcrafted features. Our method also
outperforms Chen et al. [37], who used 3D-ACRNNs to
extract features.

6 Conclusion
We have presented a method for generating synthetic samples

based on cycle-GAN to mitigate data scarcity and to improve
speech emotion classification. We generated artificial data in

the space of each emotional class that completely covers the
leading data space. We showed that using the Wasserstein
divergence can overcome the vanishing gradient problem
during the training process. The results show that includ-
ing synthetic samples in the real samples can improve the
emotion recognition performance to as high as 83.33% in
terms of UAR on the EMO-DB dataset. As explained, we
only dealt with the case where the features were extracted by
OpenSMILE software and this can be extended by providing
raw data to the network.
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