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ABSTRACT

A constrained blind source separation (BSS) approach for
separation of intracranial spikes from scalp electroencephalo-
gram (EEG) has been proposed in this paper. This method is
based on creating a template from intracranial data, which is
then used in the form of a constraint in a BSS algorithm. To
generate a suitable template, the segments during which the
brain discharges are labelled are used to generate the neces-
sary templates. Approximate entropy followed by peak de-
tection and thresholding is used for this purpose. Constrained
BSS is then applied to scalp data to extract the desired source
and to evaluate its effect on scalp electrodes. The effective-
ness of such a constrained approach has been demonstrated
by comparing its outcome with that of the unconstrained
method.

Index Terms— EEG, intracranial recording, approximate
entropy, interictal discharges, and constrained BSS.

1. INTRODUCTION

Onset of tiny pre-ictal discharges originating from the brain
hippocampus can be the start of developing seizure in hu-
man. Early detection of such waveforms is indeed useful
in clinical assessment and treatment of the disease. Numer-
ous long-lasting neurological disorders are characterized by
seizure incidences. Occurrences of seizures have negative ef-
fects on the lives of patients such as decreasing awareness,
impairing physical abilities or causing abnormal behaviour.
In later stages of seizure, the patients need to regularly use
anticonvulsants and even go under surgical operation in order
to remove the affected parts of their brain [1]. Information re-
garding the place where seizures happen is necessary before
surgery. It has been shown that there are some spikes (dis-
charges) in the EEG long before the start of seizure, which
can be used in its prediction [2]. These discharges look much
more pronounced in the intracranial EEG than in scalp EEG.

Some research has been undertaken on extraction of in-
tracranial spikes from scalp EEG using different techniques
[3]. Extracting spikes from scalp EEG has been done by other
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methods such as the morphology-based method by Yadav et
al. [4] and the averaging method by Nayak et al. [5].

In the work proposed in [5], averaging has been applied
to scalp and intracranial signals recorded instantaneously.
These recordings have been synchronised with the discharges
recorded using foramen ovale (FO) electrodes from the hip-
pocampus. Signal to noise ratio has been improved due to
this averaging. In order to assess the patients before tempo-
ral lobe resection at the centre, they go under FO telemetry.
Topography, distribution, and amplitude of averaged scalp
signals of these patients have been studied and analysed.

In independent component analysis (ICA), the source sig-
nals are considered as random variables and the statistical
properties of these signals are used to obtain the unmixing
matrix. In fact, the joint probability density of sources is
considered as the multiplication of marginal probability of
sources. In other words, it considers the statistical depen-
dency between sources. Constrained source separation using
ICA (cICA) defined in [6], introduces the use of a constraint
in the separation algorithm, in order to extract a source, which
as well as being statistically independent from other sources,
is also the closest to a reference signal. This reference signal
should not be necessarily an exact match, but should be close
enough to be able to direct the algorithm to the desired out-
put. Therefore, a single independent component (IC) can be
extracted based on prior expectations of the required source
signal. Classic ICA has been modified by adding prior infor-
mation, as a constraint, previously in order to apply it to EEG
signals for separation and analysis.

In the approach proposed by Corsini et al. [7] ICA has
been used to separate the seizure signals for prediction. Their
aim was to indirectly apply the traditional nonlinear methods
to the scalp EEG. Therefore, only having scalp EEG, intracra-
nial signals have to be separated correctly. It was expected to
acquire signals similar to intracranial signal recordings after
noise and artefact removal. Then, traditional nonlinear meth-
ods would be applied to these signals. In their method, they
considered long recordings and analysed the data section by
section. For this reason, the continuity of the algorithm failed
in some cases where a section of scalp EEG was corrupted or
electrical activity was not recorded correctly. The number of



segments that had to be used would need to be more and more
for the longer recordings of data. Therefore, a new method-
ology to maintain the continuity of the estimated sources for
particular segments would have to be developed.

In the method proposed by Jing et al. [8], in order to
separate epileptic seizure signal sources from all the chan-
nels of scalp EEG, a constrained topographic ICA has been
used. Application of constraints has been exploited to im-
prove the performance of topographic ICA as an efficient
means to group the source signals coming from a particular
brain zone. Constraint is generally selected based on some
particular physiological or statistical properties of the desired
signal sources. In their method, the constraint is based on the
spatial-frequency information of the seizure signals. Their
method called constrained topographic ICA (cTICA) method
has proved to outperform the conventional ICA and TICA
algorithms in terms of signal to interference ratio and corre-
lation measurement. Constrained ICA has also been used for
artifact rejection in EEG [9].

In order to extract intracranial discharges from scalp
EEG, a new constrained ICA (cICA) is developed. Measur-
ing chaotic properties of intra channels, some sections are
selected which contain reasonable number of discharges. The
discharges are pre-emphasised and templates containing only
the discharges are constructed. These templates are used in
the constrained cost function. The constrained problem is
then turned into an unconstrained problem using a penalty
term such as Lagrange multiplier. The experimental results
show that the constraint significantly improves detection of
pre-ictal discharges from the EEG signals.

It has to be mentioned that although in this work a valu-
able intracranial dataset jointly/simultaneously recorded with
scalp EEG is used, the objective of this research is to derive a
useful model, which can be directly applied to the EEG sig-
nals for extraction of such spikes. This will be the agenda of
our next research step.

2. METHODOLOGY

The overall algorithm here follows the block diagram in Fig.
1. Various blocks are explained in the following subsections.

2.1. Approximate Entropy

Approximate entropy (ApEn) [10], [11], is a technique for
determining the amount of regularity and unpredictability
of time series. Several experiments have shown that it can
classify complex systems very well in both deterministic and
stochastic data. It has two parameters; window length m and
a tolerance r. ApEn procedure for calculating the complexity
of time series X is as follows:

1. Form a sequence of m-vectors by following procedure:

y(i) = [x(i),x(i + 1), ..., x(i+m—1) (1)
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Figure 1. Block diagram of the proposed method.

2. Compute the following value for each constructed vec-
tor:

Ci"(r) = num(d(y(i), y(j) < r))/(N=m+1) (2)

where d(.,.) indicates the maximum absolute distance
between the vector elements.

3. Then, compute:

N—m+1

"(r) = Z Cr(r)/(N-m+1) (3

4. Finally, the ApEn is determined as follows:
log(®™(r)) — log(®"+(r)) 4

In ApEn, m as suggested by Pincus [10] can have the value
2, and r is better to have a value between 0.1 and 0.25 of the
standard deviation (SD) of the original data sequence.

2.2. Singular Spectrum Analysis

Singular spectrum analysis (SSA) is a powerful method for
analysis of real valued time series [12]. It is based on the sin-
gular value decomposition (SVD) of time series. Moreover,
it is functioning without any parametric model. In addition,
SSA does not require the stationarity condition. Therefore, it
is not model based and has a wide range of applications. SSA
consists of two main stages: decomposition and reconstruc-
tion. In the first stage, the time series is decomposed into a



number of components. In order to achieve this, the embed-
ding procedure, followed by SVD, is applied to the signal.
The embedding procedure maps a 1D vector x of length n to
an/ x [; matrix Y:

Y= [517527"'7Sl]7 (5)
T ) e x;
T2 T3 Ti+1
=1 . : ) : (6)
xll xll+1 xl+llfl

where Vectors s, = [T, Tri1, s That,—1)- € RL 1 =n —
1+ 1, I is the window length and (.)7 stands for transpose.
To keep the information regarding variation of data, window
length should be large enough. Next, the SVD of trajectory
matrix Y, is computed and rewritten as:

d
Y= Yi=) y/Auvl 7

where )\; is the ith eigenvalue of YY”’s covariance matrix, u;
shows the eigenvector corresponding to J;, d is the number of
eigenvalues, and v; = Y7 u; //\;.

At last, in order to reconstruct the time series, the time se-
ries is rebuilt using groups of desired eigenvalues. Therefore,
the matrices obtained in the previous stage are grouped into
several sub matrices:

Q A
Y=>Y, ®)

q9=q1

where index g shows the gth subgroup of eigenvalues, f{q the
sum of Y; within group ¢, and Q refers to the total number
of groups. The calculated matrix is further transformed into
a Hankel matrix, which in turn is converted to a time series.
The hankelization operator, H for an i X j matrix X is defined
as [11]:

X1 o e 'ffl
Ty I3 Ti41
HX = . )
Ty, T4 Tity -1
= Z /num(Dy,) (10)
i,jE€ Dy,

Dp=(ij):1<i<i,1<j<ji+j=k+1 (11

2.3. Proposed Method

The procedure of the proposed method is illustrated as a block
diagram in Fig. 1. Approximate entropy is applied to the pre-
seizure part of intracranial data, which contains discharges,

as a measure of chaosity. Seizure starts when the chaosity
of signal decreases to its global minimum and then increases.
Discharges happen when the chaosity of the signal reaches its
local minimums and then increases. The approximate entropy
algorithm applied here segments the data with an overlap.
Segments that follow exactly where the local minimums hap-
pen are chosen as data segments, which include discharges.

SSA has been applied to these segments to remove the sig-
nal baseline and noise, therefore keep mostly the discharges.
The result is zero meaned and normalized.

In the next stage, a modified peak detection algorithm is
applied to these processed segments, considering the time dis-
tance of actual discharges and their amplitude. In addition,
the threshold of peak detection is adjusted. The result of the
final peak detection stage is a generated template based on the
location and amplitude of actual discharges in the intra signal
segments. The scalp data is also processed in order to remove
the noise and baseline.

The final template is incorporated into the constraint part
of ICA cost function to be able to extract the most similar
source from the scalp mixtures.

Consider the following linear mixing model for EEG data:

X=AS+V (12)

where X is an n X T matrix of mixture signals, Sisanm x T
matrix of source signals, A is the mixing matrix of n x m,
and V is noise. n is the number of scalp electrodes, T is the
number of samples and m is the number of sources. Then,
the objective is to find the desired sources using the unmixing
vector w:

y =wX (13)

wisal xnvectorandyisal x T vector which indicates the
estimated source.

Here, the Hyvarinen’s fixed-point algorithm namely, fas-
tICA, in deflation mode [13] is used to obtain the ICA cost
function, J(w), since it has been shown to be effective for
EEG source separation.

The main problem with most blind source separation tech-
niques such as ICA is that they do not produce unique outputs
without using some prior knowledge. Therefore, in order to
extract a precise source, which helps in seizure prediction,
constraints can be added to original cost function. Lagrange
multipliers are used to incorporate the constraint function,
J.(w), into the original cost function, which in turn changes
the problem into an unconstrained one:

minJ(w) subject to maxJ.(w) (14)
w w

In this paper, the inner product between the estimated signal
(y) and the reference template is used. This cost function in-
dicates that the objective is to find the source, which has the
maximum correlation to this template. Hence, the constraint
cost function used in this method is:

Jo(w) = w'Xy, (15)



where y,. is the reference template. Therefore, using iterative
methods, the following update function can be used:

Wi — w(VyJ — AVyJe)
Wi — :U‘(VWJ - AXYT)

Wk+t1 (16)

Wk+1

where p indicates the step size and A is a fixed Lagrange mul-
tiplier.

In order to test the extracted component, one source is se-
lected and the effect of its corresponding component on the
scalp electrodes is depicted using topoplot and is analyzed.
The effect of deep intracranial discharges should be empha-
sized. Therefore, the topoplot should contain the highest en-
ergy near the temporal area. However, the effect of this com-
ponent is not very local as it is related to a deep source.

3. EXPERIMENTAL RESULTS

3.1. Data

Data is recorded using both scalp and FO electrodes to mea-
sure scalp mixtures and interracial sources respectively. The
recording has been done simultaneously with patients under
anesthesia. The sampling rate is 200 samples per second [5].

3.2. Results

Approximate entropy is applied to the pre-seizure part of
intracranial data (3000 samples, sampling-rate: 200 sam-
ples/second), which contains discharges, as a measure of
chaosity. The algorithm applied here segments the data into
200 sample segments with an overlap of 100 samples. The
results can be seen in Fig. 2.
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Figure 2. The result of applying the approximate entropy to a
relevant channel of intracranial data including 39 segments.

As illustrated in Fig. 2, one possible solution for the cho-
sen segment is the data part corresponding to the segment af-
ter segment 3.
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Figure 3. A channel of EEG with a segment including pre-
ictal discharges

This segment is shown in Fig. 3. After choosing the de-
sired segment, SSA is applied for noise removal and the loca-
tions of spikes are determined by the procedure explained in
the previous section, which is peak detection and threshold-
ing. The results are shown in Fig. 4.
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Figure 4. The location of discharges in an intracranial data
segment, which is shown by squared boxes; (a) intracranial
data (b) output of SSA, and (c) location of spikes.

As depicted, using this method all of the discharges within
the chosen segment are located in addition to a false peak as
indicated in Fig. 4(c). Finally, the constrained ICA is applied
to the data. The convergence graph is shown in Fig. 5. The
effect of the extracted source with conventional ICA and con-
strained ICA on the scalp electrodes is shown in Fig 6. It is
illustrated in Fig. 6(a) that the maximum power is in the loca-
tion of interest, as shown with orange colour. In Fig. 6(b), the
power is scattered on the brain. Therefore, it can be concluded
that this procedure can be used to emphasize the intracranial
discharges in the scalp signals.



Error

| e B I I
E] 100 a0 20 0

Iterations

Figure 5. Convergence graph of cICA. Error is the difference
between wy, and w4 ;.

Figure 6. Topoplot of extracted source using (a) constrained
ICA and (b) conventional ICA.

4. CONCLUSION AND DISCUSSION

In this paper, a constrained approach for extraction of pre-ictal
discharges from scalp EEG has been proposed. In order to
achieve this, first a template based on intracranial recordings,
is generated to be used in the constraint cost function, which
is incorporated into the ICA formula. Constrained ICA is then
applied to the scalp EEG to extract the corresponding desired
source.

In conventional ICA, independency of sources is consid-
ered in order to separate them, which is not necessarily useful
when a particular source is required. By adding extra infor-
mation as a constraint, the closeness of the extracted source
to the reference signal (template) is also considered as well as
independency of the sources.

The results show that the proposed method works well
with real data and outperforms unconstrained ICA.
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