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Abstract—Sparse coding and dictionary learning are popular
techniques for linear inverse problems such as denoising or
inpainting. However in many cases, the measurement process
is nonlinear, for example for clipped, quantized or 1-bit mea-
surements. These problems have often been addressed by solving
constrained sparse coding problems, which can be difficult to
solve, and assuming that the sparsifying dictionary is known and
fixed. Here we propose a simple and unified framework to deal
with nonlinear measurements. We propose a cost function that
minimizes the distance to a convex feasibility set, which models
our knowledge about the nonlinear measurement. This provides
an unconstrained, convex, and differentiable cost function that
is simple to optimize, and generalizes the linear least squares
cost commonly used in sparse coding. We then propose proximal
based sparse coding and dictionary learning algorithms, that are
able to learn directly from nonlinearly corrupted signals. We
show how the proposed framework and algorithms can be applied
to clipped, quantized and 1-bit data.

Index Terms—Sparse coding, dictionary learning, nonlinear
measurements, saturation, quantization, 1-bit sensing

I. INTRODUCTION

SPARSE decomposition and dictionary learning are popular
techniques for linear inverse problems in signal process-

ing, such as denoising [1], [2], inpainting [3], [4] or super-
resolution [5], [6]. Sparse coding aims at finding a sparse set
of coefficients α ∈ RM that accurately represents a signal
x ∈ RN from a fixed overcomplete dictionary D ∈ RN×M ,
and is often formulated as:

min
α
‖x−Dα ‖22 + λΨ(α), (1)

where Ψ(·) is a sparsity inducing regularizer, such as the `0
pseudo-norm or the `1-norm. Dictionary learning on the other
hand, jointly learns the dictionary D and sparse coefficients
αt from a set of training signals {xt}t=1,...,T :

min
D,αt

T∑
t=1

[
‖xt −Dαt ‖22 + λΨ(αt)

]
. (2)

However, the observed signals are often distorted or measured
in a nonlinear way:

y = f(x), (3)

where f is a nonlinear measurement function, and x is
the original (unknown) clean signal. Examples of nonlinear
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distortions include clipping (or saturation) and quantization.
Clipping is often due to dynamic range limitations in acqui-
sition systems, when a signal reaches a maximum allowed
amplitude, and the waveform is truncated above that threshold
[7]–[14]. Quantization is a common process in analog-to-
digital conversion that maps a signal from a continuous input
space to a (finite) discrete space [15]. More recently, 1-bit
compression has attracted a lot of interest, as an extreme
quantization scheme where samples are coded using only one
bit per sample [16], i.e. only measuring the signs of the signal.
Clipping and quantization are non-linear, non-smooth, and
compressive measurements, i.e. the measurement map is non-
invertible. For these reasons, the recovery of clipped/quantized
signals is a challenging problem.

Recovering a signal from clipped or quantized measure-
ments can be treated as linear inverse problems, by simply
ignoring the nonlinearities, i.e. treating clipped samples as
missing [8], [17] and quantization error as additive noise
[18]. Similarly, 1-bit signals can be tackled by using the sign
measurements directly as an input [16], [19]. However using
a formulation that is consistent with the measurement process,
i.e. that takes into account our knowledge about the nonlinear
measurement function, has been shown to greatly improve
the reconstruction [4], [7]–[14], [16], [19]–[25]. Specially
tailored cost functions, constraints, or regularizers have in-
dependently been proposed to deal with clipped [4], [7]–[14],
quantized [20]–[24] or 1-bit [16], [19], [25] measurements.
These formulations often involve solving constrained sparse
coding problems, which can be difficult and computationally
expensive to solve, since they involve computing expensive
non-orthogonal projections at each iteration [13], [24].

Reconstruction methods proposed in the literature assume
that the signal is sparse in some orthogonal basis [16], [19]–
[23], [23]–[26], or in a fixed dictionary [4], [9], [10], [13].
However it has been shown in a range of applications (when
the measurements are linear), that learning the dictionary
from the observed data greatly improves the reconstruction
compared to using a fixed dictionary [1], [2], [27], [28].

A. Contributions, and main results

Our contributions are as follows:
• We propose a unifying framework for signal recovery

from nonlinear measurements such as clipping, quantiza-
tion and 1-bit measurements, i.e. addressing these three
problems in a unified fashion rather than individually.
More specifically, we show how these problems can
be formulated as minimizing the distance to a convex
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feasibility set, which models our assumption about the
nonlinear measurement process. In particular, the pro-
posed cost generalizes the linear least squares commonly
used in sparse coding, as well as several cost functions
proposed independently for declipping and 1-bit recovery.

• Using properties of projection operators over convex sets,
we show that the proposed cost function is continuous,
convex and differentiable with Lipschitz gradient. Our
main result uses Danskin’s Min-Max theorem [29], that
allows us to derive a closed-form gradient for the pro-
posed cost.

• We propose proximal-based consistent sparse coding, and
dictionary learning algorithms, for nonlinear measure-
ments. We show that these algorithms can be applied to
clipped, quantized and 1-bit measurements.

B. Organization of paper

The paper is organised as follows: in Section II, we briefly
review sparse recovery and dictionary learning from linear
measurements, and some strategies proposed to deal with
clipped, quantized and 1-bit measurements. In Section III we
propose a unifying cost function for nonlinear measurements,
and show some of its properties. In Section IV we propose
consistent sparse coding and dictionary learning algorithms
using the proposed cost. Applications of the proposed frame-
work, and links to previous work are presented in Section V.
The performance of the proposed algorithm is presented in
Section VI, before the conclusion is drawn.

C. Notation

Bold lowercase letters x denote vectors and bold uppercase
letters X denote matrices. The i-th element of a vector x
is noted xi. The identity matrix is noted I. The p-norm of
a vector x is ‖x‖p = (

∑
xpi )

1/p. The `0 pseudo-norm (i.e.
the number of non-zero elements) of x is noted ‖x‖0. For a
matrix X, ‖X‖2 denotes the matrix 2-norm, i.e. the largest
singular value of X. We denote (x)+ = max(0,x) (where
max is the element-wise maximum), and (x)− = −(−x)+.
The floor (i.e. closest lower integer) of a vector is noted bxc
(applied element-wise). The sign (positive or negative) of each
element of x is noted sign(x). The element-wise multiplication
is �. For a set C, cl(C) is the closure of C, and 1C(·) is the
indicator function of that set, i.e. 1C(x) = 0 when x ∈ C, +∞
otherwise. The notation � denotes vector-wise inequality.

II. BACKGROUND

In this paper, we denote observation vectors as y ∈ RL,
with y = f(x), where x ∈ RN is the original un-observed
clean signal, and f is a measurement or distortion function.
We further assume that the signal x can be decomposed as
x = Dα with D ∈ RN×M an overcomplete dictionary of
M atoms (N < M ), and α ∈ RM is a sparse activation
vector. In this section we review the different types of linear
and nonlinear measurement functions f , and the associated
problem formulations appearing in the literature.

A. Sparse coding from linear measurements

A widely studied case is when the measurement function is
linear, i.e. f(x) = Mx with M ∈ RL×N . The corresponding
sparse coding problem is often formulated as:

min
α
‖y −MDα ‖22 + λΨ(α). (4)

For example, M = I (the identity matrix) corresponds to clean
signals or signals subject to additive Gaussian noise [1], [2].
When M is a diagonal binary matrix, (4) corresponds to an
inpainting problem [3], [4].

B. Sparse coding from nonlinear measurements

Sparse coding from linear measurements have been exten-
sively studied in the literature. Signal acquisition systems how-
ever often measure signals in a nonlinear way, for examples in
saturated, quantized or 1-bit measurements. In the following,
we review reconstruction strategies proposed in the literature
for saturated, quantized and 1-bit measurements.
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Fig. 1: Visualization of different nonlinear measurement func-
tions f (output yi = f(xi) versus input xi).

1) Clipped measurements: We consider the case of hard
clipping, where each sample xi is measured as:

yi = f(xi) =


θ+ if xi ≥ θ+

θ− if xi ≤ θ−

xi otherwise,
(5)
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where θ+ > θ− are positive and negative clipping thresholds
respectively (Figure 1a). This can be written in vector form
as:

y = f(x) = Mr x + θ+ Mc+ 1 + θ−Mc- 1, (6)

where 1 is the all-ones vector in RN , and Mr,Mc+ and
Mc- are diagonal binary sensing matrices, that define the
reliable (i.e. unclipped), positive and negative clipped samples
respectively and such that Mr +Mc+ +Mc- = I. In practice,
the clipping thresholds can be estimated from the measurement
y as (e.g.) θ+ = maxi(yi), and the sensing matrices as
[Mc+]i,i = 1 if yi = θ+, 0 otherwise.

Declipping can be treated as a linear inverse problem by
discarding the clipped samples, treating declipping as a linear
inpainting problem, i.e. solving (4) with M = Mr [4], [8],
[17]. However, the reconstruction can be improved by adding
extra knowledge about the clipping process. Indeed, we know
that the clipped samples should have an amplitude that is
greater than the clipping threshold. This extra information can
be enforced by solving the following constrained problem [7],
[9], [11], [14], [30]:

min
α

Ψ(α) + 1C(y)(Dα), (7)

where:

C(y) , {x|Mry = Mr x,Mc+ x � θ+ Mc+ 1,

Mc- x � θ−Mc- 1}
(8)

is the clipping consistency set. Eqn. (7) is a constrained,
non-smooth and possibly non-convex sparse decomposition
problem, which can be difficult to solve. An alternating
direction method of multipliers (ADMM) [31] based algorithm
was proposed in [13] to solve (7). When the dictionary is a
tight frame, the algorithm can be computed efficiently [32].
However, for general dictionaries, the algorithm is computa-
tionally expensive, since it involves computing non-orthogonal
projections at each iteration [13]. A soft consistency metric
was used in [8], [10], [12]:

min
α

1

2

[
‖Mr(y −Dα)‖22 + ‖Mc+(θ+1−Dα)+‖22

+‖Mc-(θ−1−Dα)−‖22
]

+ λΨ(α),
(9)

The data-fidelity term in (9) is convex and smooth, so methods
based on iterative hard thresholding [10], [33] or proximal
algorithms [12], [34] can directly be applied.

2) Quantized measurements: Quantization maps a contin-
uous input space onto a finite discrete set of codewords
Y = {y1, ..., yp}. A quantization map f is defined by a
set of quantization levels Rq = [lq, uq) and the relation
x ∈ Rq ⇔ f(x) = yq , i.e. samples that fall into Rq are
quantized as yq . For example in the case of a uniform mid-
riser quantizer, Rq = [∆q,∆(q + 1)), and the quantization
function can be written as:

f(x) = ∆
⌊ x

∆

⌋
+

∆

2
, (10)

where ∆ > 0 is the quantization bin width (Figure 1b).
De-quantization can be treated as a simple linear inverse

problem by considering quantization error as additive noise,
and using a linear sparse model (4) [18]. However it has been

shown that using a more accurate model of the quantization
process improves the reconstruction. Bayesian approaches
[21], `p-based data-fidelity terms [22], or specially-tailored
cost functions [23] have been proposed in the literature to
enforce quantization consistency. Constrained formulations
were proposed in [20], [24] in order to enforce consistency:

min
α

Ψ(α) + 1R(Dα) (11)

where R = Rq1 × ... × RqN and Rqi is the quantization
region associated with the i-th sample yi. However similarly
to the constrained declipping scenario (7), solving (11) can be
computationally expensive.

3) 1-bit measurements: 1-bit measurement can be seen as
an extreme quantization using only one bit per sample, or
similarly an extreme saturation where the clipping level tends
to zero:

f(x) = sign(x). (12)

1-bit measurement consistency has also been proposed in [16],
[19]:

min
α

1

2
‖
(
y � (Dα)

)
−‖

2
2 + λΨ(α) (13)

C. Dictionary learning

Dictionary learning from linear measurements can be for-
mulated as [28]:

min
D∈D,αt

T∑
t=1

[
‖xt −Dαt ‖22 + λΨ(αt)

]
(14)

where {xt}1...T is a collection of T signals in RN , and αt
are the corresponding sparse activation vectors. The dictionary
D is often constrained to be in the convex set D = {D ∈
RN×M |∀i, ‖di‖2 ≤ 1} in order to avoid scaling ambiguity
[28]. Many algorithms have been proposed in the literature to
solve (14), such as MOD [35], K-SVD [1] stochastic gradient
descent [36], [37], or SimCO [38].

Dictionary learning for 1-bit data have recently been ad-
dressed in [39], [40]. To our knowledge, dictionary learning
from saturated and quantized measurements, however, has not
been addressed in the literature1. In the next sections, we
propose a unifying and computationally tractable framework
for sparse coding and dictionary learning from nonlinear
measurements.

III. A UNIFYING FRAMEWORK FOR NONLINEAR SIGNAL
RECONSTRUCTION

Let f : X 7→ f(X ) = Y be an arbitrary - and possibly
nonlinear - measurement function from a clean input space X
to a measurement space Y . For a measured signal y ∈ Y , we
propose a cost function (or data-fidelity term) defined for all
x ∈ X as:

Lf (x,y) = d(x, f−1{y}) (15)

where f−1{y} is the pre-image of {y} under the measurement
map f :

f−1{y} , {x ∈ X |f(x) = y}, (16)

1We presented some preliminary results on dictionary learning for declip-
ping in [41]
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and d(x, C) is the distance between x and the set C, defined
for a (pointwise) distance metric d(·, ·) as:

d(x, C) , inf
z∈C

d(x, z). (17)

The set f−1{y} can be seen as a feasibility set, i.e. the set of
all possible input signals x ∈ X that could have generated y
when measured through f . The cost (15) thus measures how
“close” a signal x is to the feasibility set associated with the
measurement y. Minimizing (15) thus promotes consistency
since it minimizes the distance between an estimate x and its
feasibility set f−1{y}. However unlike constrained formula-
tions (7) or (11), here measurement-consistency is enforced in
a simple unconstrained way.

A. Assumptions on f , and choice of distance

Without any assumptions on the feasibility sets f−1{y} and
the metric d(·, ·), x 7→ Lf (x,y) is in general non-convex and
non-smooth, and therefore difficult to optimize. However we
show here that under certain conditions, the proposed cost
(15) exhibits convenient properties such as convexity, and
differentiability with Lipschitz gradient.

The first assumption is that for all y ∈ Y , the pre-image
set f−1{y} is convex. This assumption is verified by many
measurement functions f found in practice, such as linear
measurements, and nonlinear measurements such as clipping,
quantization and 1-bit (see Section V). For separable functions
f(x) = [f1(x1), . . . , fN (xN )], a simple sufficient condition
such that f−1{y} is convex for all y is that each fi(·) is
monotonic (but not necessarily strictly monotonic). This con-
dition is however not necessary, and the set of functions with
convex pre-images includes a wider range of measurement
functions. Convexity of the pre-image sets ensures that the
proposed cost (15) is convex and differentiable, as will be
shown in this section.

Various metrics can be chosen for the pointwise distance
in (17). A popular metric to measure point-wise distances is
the squared Euclidean distance ‖ · ‖22. The squared Euclidean
distance, or least squares, is popular in sparse coding and
dictionary learning, in part due to its convexity and Lipschitz
differentiability. Other pointwise distances are available, such
as p-norms ‖·‖pp with 0 < p ≤ 1, which might be more appro-
priate depending on the data at hand. However these come at a
cost of non-differentiability and/or non-convexity, which often
lead to more difficult optimization problems. In this paper,
for simplicity, and in order to favour computationally efficient
methods, we focus on the least-squares distance. In fact, we
show in this section that the proposed cost (15) benefits from
the same properties as – and naturally extends – the linear
least-squares cost commonly used in sparse coding.

In the remainder of this paper, we assume X = RN ,
d(x,y) = 1

2‖x − y‖22, and f−1{y} convex for all y ∈ Y .
Note that for a set C, d(x, C) = d(x, cl(C)), so we can assume
without loss of generality that f−1{y} is closed. Note also that
since Y = f(X ), f−1{y} is non-empty for all y ∈ Y .

B. Properties of the proposed cost function

We consider a fixed y ∈ Y , and review the properties of
x 7→ Lf (x,y). Since f−1{y} is non-empty, closed and con-
vex, the Projection Theorem (Appendix A) ensures existence
and uniqueness of a minimizer z∗ of ‖x−z‖22 in f−1{y}. This
minimizer is defined as the orthogonal projection Πf−1{y}(x)
of x on the set f−1{y}. In particular, the infinimum in (17)
is attained, and Lf (x,y) can be redefined as:

Lf (x,y) =
1

2
‖x−Πf−1{y}(x)‖22. (18)

In addition, the continuity property of the projection operator
on a convex set ensures that Lf (·,y) is a continuous function
(as a composition of continuous functions). We now present
some properties of Lf (·,y), which make it suitable for a range
of optimization algorithms:

Proposition 1. Lf (·,y) is a convex cost function.

Proposition 2. Lf (·,y) is differentiable, with gradient:

∇xLf (x,y) = x−Πf−1{y}(x). (19)

Proposition 3. The gradient ∇xLf (x,y) is Lipschitz contin-
uous with constant L = 1, i.e. for all x1,x2:

‖∇xLf (x1,y)−∇xLf (x2,y)‖22 ≤ ‖x1 − x2‖22 (20)

Proposition 1 is due to the convexity of the set f−1{y} and
of the least-squares cost. Proposition 2 is a direct consequence
of Danskin’s Min-Max theorem (Appendix B) and of the
uniqueness of the projection operator. Proposition 3 is a
consequence of the contraction property of projection onto
convex sets. See Appendix C for more detailed proofs.

Continuity, convexity and Lipschitz differentiability makes
the proposed cost function suitable for a range of optimization
algorithm as will be seen in the next section. Moreover, when
f is the identity map (f(x) = x), we have f−1{y} = y and
Lf (x,y) = 1

2‖x − y‖22. The proposed cost thus generalizes
the least squares cost commonly used in sparse coding and
dictionary learning. We will show in Section V how the
proposed cost also generalizes several cost functions proposed
in the literature for inpainting, declipping and 1-bit signals,
and how it can be applied to quantized measurements. The
proposed cost thus provides a unifying framework to tackle
all these problems. In the next section we propose simple
proximal-based algorithms for sparse coding and dictionary
learning using the proposed cost.

IV. PROPOSED CONSISTENT SPARSE CODING AND
DICTIONARY LEARNING ALGORITHMS

A. Sparse coding algorithms

For a nonlinear observation y and a fixed dictionary D, we
propose to formulate consistent sparse coding as:

min
α
Lf (Dα,y) + λΨ(α). (21)

Solving (21) is thus a problem of minimizing the sum of a
convex, smooth cost function and a non-smooth regularizer.
When the regularizer Ψ(·) is convex, such as the `1-norm,
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this can be classically optimized using proximal descent algo-
rithms [34], [42]. The proposed proximal-based sparse coding
algorithm is presented in Algorithm 1.

Algorithm 1 Proposed consistent sparse coding algorithm
(fixed parameter λ)

Require: f,y,D,α0, λ, µ1

initialize: α← α0

while stopping criterion not reached do
Gradient descent step:
α← α+µ1D

T (Πf−1{y}(Dα)−Dα)
Proximal thresholding:
α← proxλΨ(α) , argminu ‖u−α ‖22 + λΨ(α)

return α̂

Note that Algorithm 1 is presented here in its simplest form,
however it can easily be accelerated using the same strategy
as in [43].

1) Convergence: The convergence properties of Algorithm
1 can be summarized as follows:

Proposition 4. For a convex penalty Ψ(·) and a step size
0 < µ1 ≤ 1

‖D‖22
(where ‖D‖2 is the highest singular value of

D), Algorithm 1 converges.

Proof. This is a direct consequence of Propositions 1 - 3
and classical results on proximals algorithms with convex
and Lipschitz differentiable functions (see, [34], [42] or [43,
Theorem 3.1.] for a proof). Here ‖D‖22 is the Lipschitz
constant of α 7→ Lf (Dα,y), as a consequence of Proposition
3.

2) Measurement consistency: The regularization parameter
λ > 0 in (21) controls a tradeoff between sparsity and
consistency. There is however no analytical formula for the
relationship between the parameter λ, and how “consistent”
the resulting signal is (i.e., how close it is from its consistency
set). In particular the resulting signal is not guaranteed to
be exactly consistent, i.e. exactly within its consistency set.
One way to circumvent this is to solve (21) iteratively for
different values of the parameter λ, starting from a large
value, and progressively lowering λ until a desired consistency
is achieved. This can be done efficiently using a warm-start
strategy, i.e. initializing each iteration by the estimate of the
previous iteration. Algorithm 2 is a simple modification of
Algorithm 1 that implements this strategy ({λk}k≥0 is a series
of non-increasing and strictly positive values).

Algorithm 2 Proposed consistent sparse coding algorithm
(adaptive parameter λ)

Require: f,y,D,α0, {λk}k≥0, µ1, ε
initialize: α← α0, k ← 0, λ← λ0

while Lf (Dαk,y) > ε do
Iterate until convergence:
α← proxλΨ(α+µ1D

T (Πf−1{y}(Dα)−Dα))
Update λ:
λ← λk+1, k ← k + 1

return α̂

Algorithm 2 is similar to homotopy methods proposed for
sparse coding [44], [45]. By progressively decreasing λ, the
algorithm essentially adds more coefficients to the support
set, making the signal less sparse but more consistent. We
furthermore have the following:

Proposition 5. Let F (λ,α) , Lf (Dα,y) + λΨ(α), λ0 >
· · · > λk > · · · > 0 and αk , argminα F (λk,α). We have:
∀k, Ψ(αk+1) ≥ Ψ(αk) and Lf (Dαk+1,y) ≤
Lf (Dαk,y).

Moreover, if {λk} → 0, then the sequence {F (λk,αk)}k≥0

converges to an optimum of the constrained problem:

min
α

Ψ(α) s.t. Dα ∈ f−1{y}. (22)

Proposition 5 and its proof (in Appendix C) are inspired
by results on penalty methods for constrained optimization
problems [46]. Algorithm 2 can in fact be seen as an uncon-
strained penalty method to solve the constrained problem (22).
Proposition 5 shows that Algorithm 2 leads to asymptotically
consistent solutions.

3) Influence of noise: In the case when additive noise is
present, the signal is measured as:

y = f(Dα∗+n), (23)

i.e. Dα∗+n ∈ f−1(y), and the original signal Dα∗ is no
longer necessarily in the pre-image set of the observation y.
For this reason, finding a solution that is both sparse and
consistent with the measurement y might be infeasible. We
can however show that if the noise level is small, the cost
function does not deviate far from zero, since:

Lf (Dα∗,y) = min
z∈f−1{y}

‖Dα∗−z‖22

≤ min
z∈f−1{y}

‖Dα∗+n− z‖22 + ‖n‖22

= ‖n‖22.

(24)

In other words, if the noise level ‖n‖22 is small, then the
original signal Dα∗ is approximately consistent with the mea-
surement y, i.e. Lf (Dα∗,y) is small. A good reconstruction
strategy is then to solve:

argmin
α

Ψ(α) s.t. Lf (Dα,y) ≤ ‖n‖22, (25)

which in its Lagrangian form is equivalent to 21.

B. Dictionary learning algorithm

For a collection {yt}1,...,T of T signals measured through
the same measurement function f , consistent dictionary learn-
ing can be formulated using the proposed cost as:

min
D∈D,αt

T∑
t=1

(
Lf (Dαt,yt) + λΨ(αt)

)
(26)

Jointly minimizing D and {αt}t=1,...,T in (26) is a non-convex
problem. Dictionary learning algorithms typically alternate
between a sparse coding, and a dictionary update step [28].
The sparse coding step (with a fixed dictionary) can be
solved using the proposed consistent sparse coding algorithm
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(Algorithm 1). Once the sparse codes {αt}1,...,T have been
updated, the dictionary update step can be formulated as:

min
D∈D

T∑
t=1

Lf (Dαt,yt), (27)

which can be solved using projected gradient descent [46], i.e.
alternating between a gradient descent step, and a projection
step ΠD which here simply re-normalizes each column di
of D as di ← di/max(‖di‖2, 1). The proposed dictionary
update step is thus similar to classical projected gradient
descent approaches already proposed for dictionary learning
[36], [47]–[49]. The proposed dictionary learning algorithm
is presented in Algorithm 3. The parameter µ2 is a step
size which can be set as µ2 = 1/L2 where L2 = ‖A‖22
(A , [α1, ...,αT ]) is the Lipschitz constant of the cost in
(27).

Algorithm 3 Proposed consistent dictionary learning algo-
rithm
Require: f, {yt}1...T , D0, {α0

t}1,...,T , λ
initialize: D(0) ← D0, α(0)

t ← α0
t , i← 0

while stopping criterion not reached do
i← i+ 1
Sparse coding step:
for t = 1...T do

Initialize αt ← α
(i−1)
t .

Update α
(i)
t using Algorithm 1 with D = D(i−1).

Dictionary update step:
Initialize D← D(i−1)

while not converged do
D← D+µ2

∑
t(Πf−1{yt}(Dα

(i)
t )−Dα

(i)
t )α

(i)T
t

D← ΠD(D)

D(i) ← D
return D̂, {α̂t}1...T

C. Discussions: extensions to non-convex sets and other dis-
tance metrics

When the pre-image set f−1{y} is non-convex, the pro-
posed cost is no longer convex. Furthermore, the projection
in (44) is no longer necessarily unique, and as a consequence
(following Theorem 2), the proposed cost in no longer dif-
ferentiable. The algorithms proposed in this section could be
extended to non-convex sets, however convergence to a global
optimum would not be guaranteed, even for `1-based sparse
coding algorithms. For this reason, we focus in this paper on
measurement functions with convex pre-image sets (which is
the case for many measurement functions).

The proposed optimization problem (21) can be seen as a
penalty method to solve the constrained problem (22). Here,
the proposed cost used with an `2-distance in (17) penalizes
the samples outside of their consistency set with a quadratic
penalty, while the samples inside the set have a cost of zero.
However other types of distances have been used for penalty
methods. An `1-norm enforces a softer penalty on larger
values, and can be used when large outliers are present. This
has been proposed in the context of quantized measurements

in [25] and [50]. However, an `1-norm leads to a non-
differentiable data-fidelity term. Subgradient methods can be
derived, however they are known to have a slow convergence
rate [51], and require careful tuning of the gradient descent
parameter at every iteration. Other penalty functions include
the Huber loss, which is differentiable and robust to outliers,
but requires tuning of an additional parameter beforehand.
Log-barrier functions can also be used to solve constrained
problems in an unconstrained way, by forcing the estimates
to remain interior to the set and away from the boundary
[46]. Log-barriers function however tend to favour solutions
that are far away from the boundary, which is not desirable
in the context of consistent signal recovery. Finally, other
approaches in the literature propose a cost based a maximum-
likelihood estimation of the signal, assuming Gaussian additive
noise [21], [52], [53]. However, they often involve computing
cumulative distribution functions, and therefore lead to more
complex formulations than the simple Euclidean distance
proposed here. We focus here on the `2-based data fidelity
cost, since it leads to a simpler formulation and algorithms,
and naturally extends the linear least-squares used in sparse
coding and dictionary learning.

V. APPLICATIONS AND LINK WITH PREVIOUS WORK

In this section we show how the proposed framework can
be applied to linear inverse problems such as denoising and
inpainting, and nonlinear inverse problems such as declipping,
de-quantization and 1-bit recovery. We give explicit formula-
tions for the proposed cost and show links with costs proposed
in the literature.

A. Linear measurements:

In the linear case y = Mx, the projection operator can be
written as:

Πf−1{y}(x) = argmin
z
‖x− z‖22 s.t. Mz = y, (28)

which (when MMT is invertible) can be computed as:

Πf−1{y}(x) = x−MT (MMT )−1(Mx− y). (29)

This shows that our proposed cost can be computed as:

Lf (x,y) =
1

2
‖MT (MMT )−1(Mx− y)‖22, (30)

where we recognise the right pseudo-inverse MT (MMT )−1

of M. The cost (30) can thus be seen as “inverting” the linear
measurements and computing the error in the input space.
In practice however computing the pseudo-inverse might be
expensive or not feasible. In simple cases however, we retrieve
classical costs used in the literature. When the measurements
are clean or subject to additive Gaussian noise, M = I and
we have:

Lf (x,y) =
1

2
‖x− y‖22, (31)

which is the classical linear least squares commonly used in
sparse coding and dictionary learning. When M is a diagonal
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binary matrix (in the inpainting case), the projection (28) can
be computed as:

Πf−1{y}(x) = y + (I−M)x, (32)

and:
Lf (x,y) =

1

2
‖y −Mx‖22, (33)

which is the masked least squares commonly used for signal
inpainting [4]. This shows in particular that the algorithms pro-
posed in Section IV extend classical algorithms such as ISTA,
IHT or gradient-descent based dictionary learning algorithms.

B. Saturated/clipped measurements

In the case of saturated signals, using the notations of
Section II, the feasibility set can be defined in closed form
as:

f−1{y} = {x|Mry = Mr x,Mc+ x �Mc+ y,

Mc- x �Mc- y}
(34)

which is a convex set. The projection can be computed as:

Πf−1{y}(Dα) = Mr y+Mc+ max(y,Dα)

+ Mc- min(y,Dα).
(35)

This shows that the proposed cost can be written in closed
form as:

Lf (Dα,y) =
1

2

[
‖Mr(y −Dα)‖22

+ ‖Mc+(y −Dα)+‖22 + ‖Mc-(y −Dα)−‖22
]
.

(36)

The proposed cost thus generalizes the soft consistency metric
proposed in [8], [10], [12] for declipping. When Ψ(α) =
‖α ‖0, Algorithm 1 is thus equivalent to the consistent IHT
declipping algorithm proposed in [10]. When Ψ(α) = ‖α ‖1,
Algorithm 1 is similar to the ISTA-type declipping algorithms
proposed in [12].

C. Quantized measurements

We consider a general quantizer defined by quantization
levels yi and quantization sets f−1{yi} = [li, ui) for each
sample i. As commented earlier and discussed in [20], [21],
one can assume f−1{yi} = [li, ui] (the closure of [li, ui))
without affecting the cost function. The projection operator
for each sample xi can be computed as:

Πf−1{y}(xi) =


ui if xi ≥ ui
li if xi ≤ li
xi otherwise.

(37)

When concatenating the quantization boundaries l =
[l1, ..., lN ] and u = [u1, ..., uN ], the proposed cost can be
written as:

Lf (Dα,y) =
1

2

[
‖(l−Dα)−‖22 + ‖(u−Dα)+‖22

]
. (38)

For example in the case of uniform mid-riser quantizer:

Lf (Dα,y) =
1

2

[
‖(y−∆

2
−Dα)−‖22+‖(y+

∆

2
−Dα)+‖22

]
.

(39)

This cost is somewhat similar to the optimization problem
in [54] solved at every iteration. However in [54], both the
signal and its projection are optimized, solving a quadratic
programming problem at every iteration. Here, only the sparse
coefficients need to be optimized using simple gradient de-
scent. Interestingly, the authors in [54] also assume convexity
of the quantization sets, in order to ensure the solutions to be
well-defined and unique. The idea of projecting onto convex
sets for image decoding was also used in [55].

D. 1-bit sensing

In the case of 1-bit measurements, the projection operator
can easily be computed for each sample xi as:

Πf−1{y}(xi) =

{
xi if sign(xi) = yi

0 otherwise,
(40)

and it can be easily verified that:

Lf (Dα,y) =
1

2
‖
(
y � (Dα)

)
−‖

2
2, (41)

which shows that the proposed cost is equivalent to the cost
(13) proposed for 1-bit signals [16], [19]. We can verify that
this indeed corresponds to the clipping consistency cost, since
when θ = 0+ we have in (36):

Lf (Dα,y) =
1

2

[
‖Mc+(0+ −Dα)+‖22
+ ‖Mc-(0− −Dα)−‖22

]
=

1

2
‖
(

sign(y)� (Dα)
)
−‖

2
2

(42)

Similarly for quantization, taking li = 0, ui → +∞ if yi > 0,
li → −∞, ui = 0 if yi < 0 in (38), gives the same result.

E. Summary

The proposed framework unifies cost functions used for
denoising, inpainting, declipping and 1-bit recovery. It can
also be used for quantization with any quantization map. In
particular, performing sparse coding or dictionary learning
on clipped, quantized or 1-bit measurements can be done as
simply and computationally efficiently as with clean, linear
measurement. Experimental results are shown in the next
section.

VI. EVALUATION

We evaluate the performance of the proposed framework
on declipping, de-quantization and 1-bit recovery tasks. Each
algorithm is evaluated in terms of Signal-to-Noise Ratio (SNR)
signal: SNR(x̂,x) = 20 log ‖x‖2

‖x−x̂‖2 where x̂ = D̂α̂ is the
estimated signal, and x is the reference clean signal. However
in the case of 1-bit measurements, since the signal can only
be recovered up to an amplitude factor, we use the angular
SNR [23]:

SNRangular(x̂,x) , 20 log
‖x‖2

‖x− ‖x‖2‖x̂‖2 x̂‖2
. (43)
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A. Consistent sparse coding

We first evaluate the performance of the proposed con-
sistent sparse coding algorithms. We generate a dictionary
D ∈ R32×64, with i.i.d. normally distributed entries, and
unit `2-norm columns. We then generate T = 2000 K-sparse
coefficients αt ∈ R64 with i.i.d normal distribution for the
coefficients. We normalize the resulting signals xt = Dαt to
unit `∞ norm, and artificially clip or quantize the signals as
yt = f(xt). We consider clipping with different levels θ. For
quantization, we consider a uniform mid-rise quantizer that
quantizes the input space [−1, 1] using Nb bits, i.e. using 2Nb

quantization levels of size ∆ = 2/2Nb .
Figure 2 shows the performance of the proposed algorithms,

implemented with Ψ(α) = ‖α ‖1, λ = 10−2 (for Algorithm
1), and the adaptive parameter strategy (Algorithm 2). For the
adaptive strategy, we used λ0 = ‖∇Lf (Dα,y)

∣∣
α=0
‖∞ =

‖DTΠf−1{y}(0)‖∞, and λk+1 = λk/2. The algorithm is
stopped when a consistency level Lf (Dα,y) ≤ ε with
ε = 10−3 is reached. We also compare with the ADMM-
based algorithm that solves the exact constraint problem (22),
as representative of the state-of-the-art. This was recently used
for de-quantization in [24], and declipping in [13], although
here we use the `1-norm unlike the `0-norm used in [13]2.
The ADMM algorithm is limited to 400 iterations due its
computational complexity. Other algorithms are run for a
maximum of 400 iterations for a fair comparison. Figure 2
shows that the proposed algorithm with a carefully chosen
fixed parameter λ can outperform the exact constrained-based
algorithm. This suggests that solutions that are slightly less
consistent but sparser, might lead to better reconstruction.
However fixing the parameter λ might not be optimal, since in
practice the best parameter might depend on the sparsity level,
distortion level and/or signal energy. We can see in Figure 2
that using Algorithm 2 and the above described sequence of λk

performs better than using a fixed parameter λ. In particular
the solution reached by the proposed adaptive algorithm per-
forms better than the constrained approach. Another important
consideration is the computational time. The ADMM-based
algorithm involves computing non-orthogonal projections at
each iteration, which have to be computed iteratively, resulting
in a high overall computational cost. The proposed algorithms
1 and 2 on the other hand only require gradient computations
and element-wise operations, and are thus computationally
efficient. The average computational time of each algorithm
is shown in Table I.

cpu time (s) Alg. 2 Alg. 1 ADMM
declipping 1.08 2.75 281.7

dequantization 1.19 2.91 320.3

TABLE I: Average computational time of each algorithm

B. Consistent dictionary learning

We evaluate the proposed consistent dictionary learning
algorithm on real speech signals. The dataset consists of 10

2An analysis sparsity formulation was also proposed in [13], but we refer
here to the synthesis version.
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Fig. 2: Comparison of the proposed consistent sparse coding
algorithms using the `1-norm, versus solving the constrained
problem with ADMM.

male and female speech signals, taken from the SISEC dataset
[56]. Each signal is 10s long, sampled at 16kHz, with 16
bits per sample. Each signal is normalized to unit `∞ norm,
and then processed using overlapping time frames of size
N = 256, with rectangular windows and 75% overlap, for
a total of approximately T = 2500 frames per signal. All
sparse coding experiments are run using an overcomplete
DCT dictionary of size M = 512. All dictionary learning
algorithms are initialized using the same DCT dictionary. To
speed up convergence, the sparse coefficients and dictionaries
are initialized at every iteration using the estimates from the
previous iteration. Similarly, the step size parameters µ1 and
µ2 can be re-estimated at every iteration as µ1 = 1/‖D‖22 and
µ2 = 1/‖A‖22 using the current estimates of D and A.

Figure 3 shows the performance of the proposed framework
for consistent sparse coding and dictionary learning, compared
to classical linear sparse coding and dictionary learning. In
the case of declipping, the classical approach is to discard the
clipped samples and treat declipping as an inpainting problem
[4]. In the quantization case, the classical approach is to treat
the quantized signals as noisy signals with variance ∆2

12 [19],
which is enforced by stopping the algorithm when an error
ε = ∆2

12 is reached. For 1-bit signals, we simply use the sign
measurements directly as the input [19]. All algorithms are run
with an `0-constraint with fixed K = 32. In all three cases
classical sparse coding is run using IHT [33], and classical
dictionary learning alternates between IHT to update the sparse
coefficients and gradient descent to update the dictionary. We
perform 50 iterations for the sparse coding algorithms, and 50
iterations (with 20 iterations at each inner step) for dictionary
learning.

Figure 3a shows the declipping performance, for different
clipping levels ranging from θ = 0.1 (highly clipped) to
θ = 1 (unclipped). Figure 3a demonstrates several things:
First, using measurement consistency greatly improves the
reconstruction. Consistent sparse coding shows an improve-
ment of up to 8dB compared to classical sparse coding.
Consistent dictionary learning shows up to 10dB improvement
compared to classical dictionary learning. This improvement
is greater when the signals are highly distorted (θ ≤ 0.5). As
expected, the two frameworks give equivalent results when
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TABLE II: Performance of consistent dictionary learning on 1-bit recovery

Angular SNR (dB) Classical Classical Consistent sparse coding (DCT) Consistent dictionary learning
sparse coding (DCT) dictionary learning (Algorithm 1) (Algorithm 3)

Female speech 5.69 5.50 5.91 6.12
Male speech 4.67 4.47 4.50 4.70

θ = 1, which shows how the proposed consistent framework
naturally extends classical sparse coding. Second, we can
see that consistent dictionary learning greatly improves the
reconstruction performance compared to using a fixed DCT
dictionary, since it adapts the dictionary to the signals of
interest. This shows that the learned dictionary, although
it has been learned using only the low-energy unclipped
samples, along with consistency penalties, generalizes well to
the unobserved clipped samples. In particular, the proposed
consistent dictionary learning algorithm outperforms all the
other methods. Finally, it is interesting to point out that when
the signals are highly clipped (θ = 0.1), classical dictionary
learning does not improve compared to classical sparse coding
with DCT. This is probably due to a lack of data to learn
from, since most of the data is clipped and discarded. Our
consistent dictionary learning algorithm on the other hand,
makes use of the clipped data, and is able to learn and improve
the performance by 1.7dB.

Figure 3b shows the results for quantization, from highly
quantized (Nb = 2 bits) to lightly quantized (Nb = 8). Simi-
larly, we can see that using measurement consistency improves
the performance when the signals are heavily quantized Nb ≤
5. As expected, the performance of the consistent framework
and of the classical one are comparable when the signals are
lightly distorted (Nb = 8). Dictionary learning improves the
performance (compared to using a fixed dictionary), and the
proposed consistent dictionary learning algorithm outperforms
the other methods.

The results for 1-bit data are shown in Table II. The results
for sparse coding and consistent sparse coding are comparable
(note that here for simplicity we don’t enforce the signal to
be on the unit circle, unlike in [16], [19]). Classical dictionary
learning here performs worse than classical sparse coding with
a fixed dictionary, presumably because the reconstructed signal
overfits the ±1 sign measurements. This shows that classical
dictionary learning does not perform well with 1-bit data. The
proposed consistent dictionary learning however, outperforms
consistent sparse coding and classical dictionary learning.

VII. CONCLUSION

We have presented a unified framework for signal recon-
struction from certain types of nonlinear measurements such as
clipping, quantization and 1-bit measurements. We proposed a
cost function that takes into account prior knowledge about the
measurement process, by minimizing the distance to the pre-
image of the received signal. When the pre-image is convex,
we have shown that the proposed cost is a convex, smooth and
Lipschitz differentiable, which makes it ideal for proximal-
based algorithms. The proposed cost generalizes the linear
least-squares commonly used in sparse coding and dictionary
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Fig. 3: Comparison of the proposed consistent sparse coding
and dictionary learning algorithms, compared to classical
sparse coding and dictionary learning.

learning, as well as cost functions proposed for declipping and
1-bit recovery. We proposed proximal based sparse coding
and dictionary learning algorithms, which naturally extend
classical algorithms and can deal with clipped, quantized and
1-bit measurements.

APPENDIX A
PROJECTION THEOREM

We recall the following theorem [46, Prop. B.11]:

Theorem 1 (Projection Theorem [46, Prop. B.11]). Let C be
a closed convex set in RN . Then, the following hold:

a) For every x ∈ RN , there exists a unique z∗ ∈ C such
that z∗ minimizes ‖x − z‖2 over all z ∈ C. z∗ is called the
projection of x onto C and is noted ΠC(x). In other words:

ΠC(x) , argmin
z∈C

‖x− z‖2. (44)

b) For x ∈ RN , z∗ = ΠC(x) if and only if:

(z− z∗)T (x− z∗) ≤ 0 ∀z ∈ C. (45)

c) x 7→ ΠC(x) is continuous and non-expansive, i.e:

‖ΠC(x1)−ΠC(x2)‖2 ≤ ‖x1 − x2‖2 ∀x1,x2 ∈ RN . (46)
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APPENDIX B
DANSKIN’S MIN-MAX THEOREM

Theorem 2 (Danskin’s Min-Max Theorem [57, Section 4.1],
[29]). Let C be a compact3 set, and g(x) = minz∈C φ(x, z).
Suppose that for each z ∈ RN , φ(·, z) is differentiable
with gradient ∇xφ(x, z), and φ(x, z) and ∇xφ(x, z) are
continuous on RN ×RN . Define Z(x) = argminz∈C φ(x, z).
Then g is directionally differentiable, with derivative in the
direction h:

∇g(x;h) = min
z∈Z(x)

∇xφ(x, z)Th ∀h, (47)

In particular, when the minimum is attained at a unique point
(Z(x) = {z∗}), g is differentiable with gradient:

∇g(x) = ∇xφ(x, z∗). (48)

In other words, Danskin’s Min-Max theorem says that if
the minimum over a family of continuous and continuously
differentiable functions is attained at a unique point z∗, then
the gradient of the minimum over this family of functions can
be computed by simply evaluating that gradient at the optimum
z∗.

APPENDIX C
PROOFS OF PROPOSITION 1-3 AND 5

Proof of Proposition 1:. Lf (·,y) is a minimum of a family
of convex functions (x, z) 7→ 1

2‖x − z‖22 over a non-empty
convex set, so by [58, Section 3.2.5], Lf (·,y) is convex.

Proof of Proposition 2:. Lf (x,y) = minz∈f−1{y} d(x, z)
with d(x, z) = 1

2‖x − z‖22. For all z ∈ RN ,d(·, z) is
differentiable with gradient ∇x d(x, z) = x − z. Further-
more, d(x, z) and ∇x d(x, z) are continuous in (x, z), and
Z(x) = argminz∈f−1{y} d(x, z) is uniquely defined as
Z(x) = {Πf−1{y}(x)} by the Projection Theorem. Using
Danskin’s Min-Max theorem, we can then conclude that:

∇xLf (x,y) =∇x d(x,Πf−1{y}(x))

=x−Πf−1{y}(x).
(49)

Proof of Proposition 3:. Let x1,x2 ∈ RN . By the projection
theorem, we have:

(Πf−1{y}(x2)−Πf−1{y}(x1))T (x1 −Πf−1{y}(x1)) ≤ 0

(Πf−1{y}(x1)−Πf−1{y}(x2))T (x2 −Πf−1{y}(x2)) ≤ 0.
(50)

Adding and rearranging these two equations gives:

‖Πf−1{y}(x1)−Πf−1{y}(x2)‖22
≤(Πf−1{y}(x1)−Πf−1{y}(x2))T (x1 − x2).

(51)

3Note that compactness is only required to ensure existence of a minimum,
according to Weierstrass’ theorem.

We can then show that:
‖∇xLf (x1,y)−∇xLf (x2,y)‖22

= ‖x1 −Πf−1{y}(x1)− (x2 −Πf−1{y}(x2))‖22
= ‖x1 − x2‖22 + ‖Πf−1{y}(x1)−Πf−1{y}(x2)‖22
− 2(x1 − x2)T (Πf−1{y}(x1)−Πf−1{y}(x2))

≤ ‖x1 − x2‖22 − ‖Πf−1{y}(x1)−Πf−1{y}(x2)‖22
≤ ‖x1 − x2‖22

(52)

where we have used (51) in the third line.

Proof of Proposition 5. The proof is given assuming exact
estimation of the αk coefficients, however similar results for
approximate estimates are also available [46]. We have by
definition of αk and αk+1:{

F (λk+1,αk+1) ≤ F (λk+1,αk)

F (λk,αk) ≤ F (λk,αk+1)
(53)

Summing and rearranging these two equations gives:

(λk+1 − λk)(Ψ(αk+1)−Ψ(αk)) ≤ 0, (54)

Since λk+1 < λk, we have Ψ(αk+1) ≥ Ψ(αk), from
which follows (by combining with e.g., the first line of (53))
Lf (Dαk+1,y) ≤ Lf (Dαk,y).

We have furthermore that:

min
α
F (λk,α) ≤ min

Dα∈f−1{y}
F (λk,α) = λkΨ∗ (55)

Where Ψ∗ is the optimum value of (22). In other words:

0 ≤ Lf (Dαk,y) + λkΨ(αk) ≤ λkΨ∗ (56)

When {λk} → 0, taking the limit in (56) shows that
limk Lf (Dαk,y) = 0 and limk Ψ(αk) ≤ Ψ∗. In particular,
F (λk,αk) converges to the optimum value Ψ∗ of the con-
strained problem (22).
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