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Abstract

An improved multiple target tracking algorithm is proposed for tracking the heads
of people in a room environment. The proposed algorithm focuses on mitigating the
inter-target occlusion problem during complex interactions. This is achieved with the
help of a particle filter, multiple video cues and a new interaction model. A Markov
chain Monte Carlo particle filter (MCMC-PF) is used to track multiple targets while a
colour and gradient histograms based framework is used for likelihood modeling. A
new interaction model is also proposed to model the interactions of multiple targets,
which is incorporated into the MCMC-PF to protect the tracker from failure when targets
occlude each other. Performance of the proposed tracker is evaluated with natural video
sequences including the AV16.3 corpus. Experimental results show that the proposed
technique efficiently tracks the heads of multiple people and the tracker does not fail
when such targets approach or cross each other, where the state of the art Markov random
field (MRF) approach fails.

1 Introduction
Target tracking has a number of applications such as human computer interface, security,
surveillance and video conferencing [16, 20]. Human tracking is generally a nonlinear and
non-Gaussian tracking problem and Kalman and even Extended Kalman filters are com-
monly found to be unsuitable whereas particle filters [10] are well suited to the task. The
general tracking problem has been intensively studied in recent years and different methods
have been proposed in the literature to solve it. This includes "detect before track" technique
[6] but we have used "track before detect" technique in this paper which is computationally
less expensive. Most of the proposed methods are concerned with tracking a single target
[5, 12, 22]. Tracking multiple targets and modeling the interactions between them is a com-
plex tracking problem. Particle filter (PF) based solutions are presented in [8, 13] which
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include MRF and reversible jump Markov chain Monte Carlo (RJMCMC) for tracking mul-
tiple targets. However the main focus in [13] is on handling a variable number of targets and
close interactions but not the occlusions. Their work is based on the idea of penalizing the
particles with the help of a penalty function. This solution works well for tracking sequences
where two or more targets do not occupy the same space, but it does not address the track-
ing failures caused by inter-target occlusions during target crossovers. In [19] a relatively
complicated technique is proposed for tracking a large number of targets which move in a
group, which is not a suitable technique for tracking a small number of targets in a room
environment because of its high computational cost.

The main objective of this paper is to present a solution for handling occlusions while
tracking multiple heads of people in a room environment. The importance sampling in-
volved in generic particle filters [1] makes them inefficient for multiple target tracking [7].
The MCMC-PF [21] performs more efficiently in the multiple target tracking scenario. In
our proposed tracking algorithm the MCMC-PF is used to simultaneously track heads of
multiple people. Most tracking algorithms normally depend on a single video cue e.g. in
[18] only a colour cue is used. A problem occurs however when there is an object around the
target with a similar colour which may cause a tracking failure. Therefore to overcome this
tracking failure two video cues are used i.e. colour and gradient. The advantage of colour
cues is that they are object independent [5], while gradient information helps to differenti-
ate between multiple targets especially when we are tracking multiple heads. Most of the
proposed particle filter algorithms in the literature fail when two or more targets approach
each other or cross. To overcome this problem a novel interaction model is proposed which
protects the tracker from failure when targets cross each other. One of the main advantages
of the proposed interaction model is that it is simple and computationally efficient.

Changes in the lighting conditions can affect the tracking results as discussed in detail
by [17] and [11]. However the main focus of this research paper is on addressing the occlu-
sion problems with the help of MCMC-PF, multiple video cues and interaction model under
constant lighting conditions.

The paper is organized as follows. Section 2 explains the problem formulation. The
sequential MCMC-PF and the proposed tracker are discussed in Section 3. The proposed
interaction model is described in Section 4. Experimental results are shown in Section 50
and finally conclusions are drawn in Section 6.

2 Problem Formulation
We assume that it is required to track M targets. The state of each target n at discrete time k
is represented as xn

k = [xn
k , ẋ

n
k ,y

n
k , ẏ

n
k ], where xn

k and yn
k are respectively the x and y coordinates

of the state, while ẋi
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2
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M
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k ,y

2
k , . . . ,y

M
k ].

In the case of Bayesian tracking the main objective is to calculate the posterior proba-
bility distribution p(xk|y1:k) of the state xk at discrete time index k, given the observations
y1:k from time 1 up to k. A generic particle filter [1] makes use of the importance sampling
technique in which independent weighted particles are taken from a known proposal distri-
bution to build the required posterior distribution. Such importance sampling has limitations
in high dimensions therefore we use an MCMC-PF to obtain better performance in a mul-
tiple target tracking scenario [15]. Multiple targets can be tracked with a single MCMC-PF
while multiple generic particle filters are required to track multiple targets. In the MCMC-PF
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technique unweighted particles are taken from a known proposal distribution and each par-
ticle depends on the previously predicted particle. Monte Carlo estimation of the posterior
distribution p(xk|y1:k) can be represented as

p(xk|y1:k)≈
1
Ns

p(yk|xk)
Ns

∑
i=1

p(xk|xi
k−1) (1)

where p(yk|xk) is the likelihood which expresses the measurement model while p(xk|xk−1) is
the prior which expresses the state model and Ns is the number of particles. The Metropolis-

Algorithm 1 MCMC-Based Particle Filter Algorithm
Input: 2-D positions of the center of the heads and reference patch for each head in the
initial frame
Output: 2-D position of the heads in each frame

1: Initialize Ns particles for M number of heads {Xi
k}

Ns
i=1

2: for k = 2, ...,T do
3: Randomly select a particle u from the posterior distribution of the state Xk−1 and use

this particle and the motion model q(·) to predict the initial state of all the targets at
time step k
X1

k ∼ q(Xk|Xu
k−1)

4: for i = 2, ...,Ns +B (where B is the number of burn in particles) do
5: Randomly select another particle X′

k−1 from the posterior distribution at time k−1
p(Xk−1|Yk−1)

6: Propose a new particle using the proposal distribution Q(·) and the randomly se-
lected particle X′

k−1

X′
k ∼ Q(Xi

k|X
′
k−1)

7: Compute the measurement likelihoods p(Yk|X
′
k) and p(Yk|Xi−1

k ) with respect to
the proposed particle X′

k and the previous particle Xi−1
k respectively

8: Compute the acceptance ratio

α = min
(

1, p(Yk|X
′
k)

p(Yk|Xi−1
k )

)
9: Draw a point j from a uniform distribution

10: if j < α then
11: Xi

k = X′
k

12: else
13: Xi

k = Xi−1
k

14: end if
15: end for
16: Discard the first B particles and keep the remaining of Ns particles.
17: end for

Hastings (MH) algorithm [9] is the most basic MCMC algorithm and all the other algorithms
including the Gibbs sampling algorithm are special cases of the MH algorithm. The basic
MH algorithm is used in the proposed tracker to track the heads of multiple people.
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3 Sequential MCMC Filtering
MCMC-PF filtering is a two step process, in the first step we predict a particle to estimate
the posterior distribution of the next state and the second step is a refinement step in which
we decide whether to accept or reject the predicted particle. The prediction step involves a
state transition model and a suitable proposal distribution, while the refinement step requires
a likelihood model. The MCMC-PF used in our work is summarized in Algorithm 1.

3.1 State Models
To estimate the translation motion of the moving targets, a constant velocity model [2] is
used. The same model is used as a proposal distribution. A rectangular region (patch) which
contains the head is manually selected in the initial frame. The pixel in the center of the
patch is considered as a center of the head. Horizontal and vertical locations of this pixel are
tracked in each frame. A two dimensional motion of a moving speaker can be described by
the constant velocity model [5]

xn
k+1 = Axn

k +uk (2)

where uk is the measurement noise and the matrix A is defined as

A =

[1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

]
and T is the frame sampling interval.

3.2 Likelihood Models
In MCMC-PF it is very important to have a strong likelihood model. Predicted particles are
accepted or rejected on the basis of acceptance ratio α . The likelihood model used in our
work is based on the combination of colour and gradient histograms.

Colour histograms are widely used in the literature [5, 8, 22] to exploit the uniqueness of
the skin colour to track the heads. Scaled versions of red (R), green (G) and blue (B) colours
are used in our work. R-G and G-R are used to represent the chrominance information while
R+G+B is used to represent the luminance information [4].

Reference histograms Hre f are created for all the target heads with the help of the patches
selected in the initial frame. For the predicted particles, target histograms Htarget are created
by selecting a patch with the predicted state as its center. The Bhattacharyya coefficient ρ
between the reference and the target colour histograms is calculated by their binwise multi-
plication

ρ(Hre f ,Htarget) =
E

∑
j=1

√
H j

re f ×H j
target (3)

where E represents the number of histograms bins. Bhattacharyya distance [3] between two
histograms is defined as

d(Hre f ,Htarget) =
√

1−ρ(Hre f ,Htarget) (4)

The likelihood with respect to the colour cues, as in [5] is calculated as

Lc(yk|xk) ∝ exp
(
−

d(Hc
re f ,H

c
target)

2σ2

)
(5)

where σ2 is the measurement noise variance.
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Using only the colour histograms is insufficient for the tracking purposes because the
colour based tracker fails when there is something else with a similar colour around the
target. Integration of the gradient histograms helps to overcome such problems. Gradient
histograms are created for reference and target patches for the purpose of edge detection.
The likelihood with respect to these histograms is calculated by using the Bhattacharyya
distance with the help of the following equation

Lg(yk|xk) ∝ exp
(
−

d(Hg
re f ,H

g
target)

2σ2

)
(6)

where the overall likelihood is then calculated as

p(yk|xk) = νLc(yk|xk)+(1−ν)Lg(yk|xk) (7)

and ν is the weighting coefficient, which is used to weight the two video cues.

4 Proposed Interaction Model
In the case of multiple target tracking the simple MCMC-PF fails when a target is occluded
by another. This is because the filter is unable to locate the target. When the target comes
out of the occlusion the filter can not generally recover because the particle filter is unable to
predict the particle on the target which was occluded and therefore the tracker starts tracking
the target which is at the front because of the similarity between the face colours. An intel-
ligent particle filter is required to predict particles in the desired region i.e. on either side of
the visible target.

Therefore an improved interaction model is proposed here which overcomes tracking
failures. The proposed interaction model includes automatic occlusion detection and reini-
tialization of target positions. In the automatic reinitialization step the algorithm calculates
the probability of occlusion given position of targets i.e. p(θ |x). Probability of occlusion
is based on the proximity of the targets. Pairwise probability of occlusion is calculated for
every target with respect to its closest neighbor. It is assumed that only two of the targets
can undergo occlusion at one time step. Hence the algorithm checks the maximum probabil-
ity if it is higher than a predefined threshold level ω1 then it means two of the targets have
been occluded to a level which may cause a failure of the tracker. A Gaussian model is used
to define the pairwise occlusion probability. The probability that the target xn encounters
occlusion at time k is defined as

p(θ |x) =N (xn
k ,σ

2
s ) (8)

The estimated position of the target xn
k is taken as a mean and σ2

s is the Gaussian measure-
ment noise. This model results in a higher probability of occlusion when targets approach
each other.

Occurrence of an occlusion automatically switches the tracker from the normal mode to
the interaction mode. The goal of the interaction model is to search for the new location of
the occluded target and to reinitialize the tracker with the new searched location when the
occluded target comes out of occlusion. This search is conducted on either side of the visible
target. The overall probability of the measurements taken from different sides of the visible
target are modeled as a mixture of Gaussian, which is defined as

p(y|µ ,Σ)≈
R

∑
r=1

wrN (y|µr,σr) (9)
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where elements r of the mixture model are actually sets of measurements taken on different
sides of the visible target and wr is the mixing coefficient. Total size R of elements of the
mixture model is predefined depending on the size of the search. The actual goal of the
model is to search for the location of the occluded target which corresponds to estimating
the mean µ of mixture elements, this is achieved by maximizing the data log likelihood.

logp(y|µ,Σ)≈
P

∑
p=1

log
R

∑
r=1

wrN (yp|µr,σr) (10)

If we consider a case where one of the targets is occluded by another target then the occluded
target can appear only at one side of the visible target. With this assumption, all but one of
the mixing coefficient will be equal to zero which results in the following simplified form.

logp(y|µ ,Σ)≈
P

∑
p=1

logN (yp|µr,σr) (11)

Number of measurements P is defined as a fixed sized square patch centered at the esti-
mated location of the target. The same estimated location is used as mean µr of the respective
mixture component with a predefined size σr. These patches are selected on either side of
the visible target. Equation (11) holds only when the head of the occluded target comes out
of occlusion and is visible on one of the sides of the visible target. To ensure this condition
holds, the Bhattacharyya distance is calculated between the colour histograms of selected
patches in the current frame and the reference patches selected in the first frame. If the
distance drops below a threshold value ω2 it means the tracker has found the head in one
of these patches. The element of the Gaussian mixture which corresponds to the maximum
likelihood is also based on the same Bhattacharyya distance. The mixing coefficient is 1
for the patch with the minimum Bhattacharyya distance and 0 for all other patches. The
MCMC-PF is re-initialized with these new locations and it starts working again.

This technique helps to model different possible actions of targets. A few of them are
shown in the next section i.e. when 1) targets cross over and follow their initial direction
of motion 2) they go back after occlusion and follow the opposite direction 3) they cross
and then change their direction. Another advantage of this technique is that it is simple to
implement and computational efficient because we are searching for heads in a few small
patches instead of searching for them in a whole frame.

5 Experimental Results
The algorithm is compared with the state of the art MRF interaction model [13]. To model
the interactions between targets, the algorithm introduces a potential function Ψ(xn,xm) to
define the interactions between targets n and m which is defined as

Ψ(xn,xm) ∝ exp(−g(xn,xm)) (12)

where g(xn,xm) is a penalty function. To compare the proposed algorithm with [13], the
penalty function depends on the distance between two targets.

The proposed algorithm is specifically for indoor tracking problems, hence both algo-
rithms are tested to track the heads of two people in a room with the help of a single camera.
All the parameters have been chosen empirically to yield best results. The total number of
particles used is 400 with a burn in period of 100. From the experimental results it is ob-
served that in most of the cases the colour cues perform better than the gradient cues, so we
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(a) Frame 1 (b) Frame 60

(c) Frame 90 (d) Frame 180
Figure 1: Tracking the heads of moving targets with the MCMC-PF, multiple colour cues
and a MRF interaction model [13]. The tracker performs well when targets are apart (a) and
(b), and even when one of them is occluded (c) but the tracker fails when one of the targets
goes back after occlusion (d).

(a) Frame 1 (b) Frame 70

(c) Frame 90 (d) Frame 120
Figure 2: Tracking the heads of moving targets with the MCMC-PF, multiple colour cues
and the proposed interaction model. The tracker performs well when targets are apart (a),
when they are very close to each other (b) and even when they cross each other (c) and (d).
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(a) Frame 1 (b) Frame 85

(c) Frame 135 (d) Frame 190
Figure 3: Tracking the heads of moving targets with the MCMC-PF, multiple colour cues
and the proposed interaction model. The tracker performs well when targets are apart (a),
when they are very close to each other (b), when one of them is occluded (b) and even when
one of them reverses its motion after occlusion (d).

(a) Frame 1 (b) Frame 105

(c) Frame 170 (d) Frame 210
Figure 4: Tracking the heads of moving targets using sequence from AV16.3 corupus [14]
with the MCMC-PF, multiple colour cues and the proposed interaction model. The tracker
performs well when targets are apart (a), when they are very close to each other (b) and when
they cross each other and change their direction (c) and (d).
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(c) (d)
Figure 5: Euclidean Error: Euclidean error is calculated against manually annotated posi-
tions of the heads of the targets (a) with a MRF interaction model when targets interact and
return back (b), (c) and (d) with the proposed interaction model.

give more weight to the colour cues by setting ν equal to 0.7 and 16× 16× 16 histogram
bins are used for likelihood modeling. Size of the elements of the mixture model R is set
to 4. It is assumed that the number of targets does not change and they are visible in the
initial frame. Location of the center of the heads and patches defining the head are selected
manually in the initial frame.

5.1 Tracking with an MRF Interaction Model
Fig.1 shows the tracking results of the MCMC-PF with multiple video cues and MRF in-
teraction model. It is clear in Fig.1 that the tracker works very well for close interactions
but fails when one of the targets reappears after occlusion. This is because the MRF inter-
action model proposed in [13] does not describe how to reinitialize the tracker when targets
come out of occlusion and rather works on the basis of the assumption that two targets don’t
occupy the same space. As compared to this algorithm our proposed algorithm provides a
specific solution for tackling the occlusion problems.

5.2 Tracking with the Proposed Interaction Model

Fig.2 shows that the proposed tracker successfully overcomes the tracking failure when the
two targets cross over. The result in Fig.2-d shows that the tracker re-initializes itself very
quickly when the target starts appearing again. Fig.3 shows that the tracker keeps tracking
the targets even when one target is occluded behind the other and reverses its motion instead
of crossing over. Finally, the tracker is tested for a sequence from the AV16.3 corpus and the
results are shown in Fig.4. It is shown that the proposed tracker performs well even when
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the targets cross over and change their direction.
Fig.5-a through 5-d shows the Euclidean error for the sequences shown in Fig.1 through

Fig.4 respectively. Error is calculated against the manually annotated positions of the heads
of the targets. Fig.5-a shows that the error of the tracker with MRF interaction model [13] is
very high and it linearly increases with time after the occlusion. It is clear from the results
that the tracker with the proposed interaction model successfully tracks the targets which
results in a small error before and after occlusion. During occlusion there is a small increase
in error for a very short period of time but the tracker recovers back very quickly.

6 Conclusion
An improved head tracking algorithm using a MCMC-PF, multiple video cues and a new
interaction model was implemented to track multiple people in a room environment. The
new interaction model helped to overcome the tracking failures. The tracking results of
the MCMC-PF with the proposed interaction model were compared with an MCMC-PF
with MRF interaction model. It is shown that the MCMC-PF with the proposed interaction
model provided a good solution to multiple target tracking when targets occlude and cross
each other. In future the work will be extended by including audio localization to make the
algorithm more robust.
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