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Abstract. In this paper, we propose a new method for underdetermined blind source separation of reverberant speech
mixtures by classifying each time-frequency (T-F) point of the mixtures according to a combined variational Bayesian
model of spatial cues, under sparse signal representation assumption. We model the T-F observations by a variational
mixture of circularly-symmetric complex-Gaussians. The spatial cues, e.g. interaural level difference (ILD), interaural
phase difference (IPD) and mixing vector cues, are modelled by a variational mixture of Gaussians. We then establish
appropriate conjugate prior distributions for the parameters of all the mixtures to create a variational Bayesian framework.
Using the Bayesian approach we then iteratively estimate the hyper-parameters for the prior distributions by optimizing the
variational posterior distribution. The main advantage of this approach is that no prior knowledge of the number of sources
is needed, and it will be automatically determined by the algorithm. The proposed approach does not suffer from overfitting
problem, as opposed to the Expectation-Maximization (EM) algorithm, therefore it is not sensitive to initializations.

1. Introduction

Separating unknown source signals from their speech mixtures
without the knowledge of the mixing channels is a problem
known as blind (speech) source separation (BSS). The separa-
tion process becomes increasingly challenging when the mix-
tures are presented with noise and room reverberation. Early
solutions for the BSS problem often assumed that the num-
ber of source signals is smaller than (overdetermined BSS) or
equal to (determined BSS) the number of mixtures. Indepen-
dent component analysis (ICA) [1] has been a popular choice
of solutions for this case. If the number of sources is greater
than the number of sensors, i.e. the so-called underdetermined
BSS, the problem becomes ill-posed, and the solution to this
problem will have to rely on extra constraints/assumptions
imposed on the separation process. One such idea is to assume
that speech signals are sparse in the time-frequency (T-F)
domain and only one source is dominant in each T-F point of
the mixture, under the asumption of W-disjoint orthogonality
[2]. As a result, the mixtures can be transformed to the T-F
domain using e.g. short-time Fourier transform (STFT) and
each time-frequency point of these mixtures are then clustered
into a specific source.

In this work we consider the separation of speech sources
from two mixtures under reverberant conditions, mimicking
the aspects of binaural hearing in human auditory perception.
Hence, it is natural to employ the spatial cues in the separa-
tion process, such as the interaural level difference (ILD), the
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interaural phase difference (IPD), and the mixing vectors as
examined in [3,4,5], where separation is achieved by modeling
the various observations as Gaussian mixtures and applying
the Expectation-Maximization (EM) algorithm to obtain the
model parameters. However, there are some limitations with
the EM algorithm. First, it needs the number of sources known
a priori. Second, if the algorithm is not properly initialized it
can lead to the overfitting problem and give poor separation
results.

In order to solve the above problems with the EM algorithm,
a variational Bayesian approach has been used in some previ-
ous work [6,7]. In this case the algorithm does not suffer from
poor overfitting and it will automatically detect the number of
sources. We examined a similar approach by integrating the
spatial cues in the separation process. In this paper we model
the T-F point as a mixture of complex-Gaussian distribution,
similar to [7] and we also model the IPD and ILD as a mixture
of Gaussians [4,5]. In this Bayesian framework, we establish
proper conjugate prior distributions on the parameters of the
model.

The remainder of the paper is organised as follows. In Sec-
tion 2, we describe the observation set and the pre-processing
performed in order to improve the separation process. Section
3 describes the model and the calculations for the updates of
the hyper-parameters, needed in the final algorithm described
in Section 4. We then test the proposed algorithm by show-
ing the performance in detection of the number of sources and
present a series of results along with our future work.

2. The observation set

Binaural recordings are composed of two signals correspond-
ing to the left and right ear, l(n) and r(n). Each channel is
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a mixture of the original source signal convolved with the
impulse response from the source to the senzor, filtered with
reverberant noise:

l(n) =
I

∑
i=1

si(n)∗hil(n)∗nl(n)

r(n) =
I

∑
i=1

si(n)∗hir(n)∗nr(n)

(1)

where I is the number of sources, which in our case is
unknown. We will assume a high number of sources and we
will see that the variational Bayesian algoritm will determine
automatically the number of sources, by subsequently drop-
ping the components that are not present in the mixture. hil(n)
and hir(n) are the impulse responses associated with the head
related transfer functions (HRTF) for the left and right ear, and
nl(n) and nr(n) are the convolutive noise associated with each
ear.

The recordings are transformed to the T-F domain using
STFT to obtain the spectrogram observations x(ω, t) =
[L(ω, t),R(ω, t)]T . Previous work [1,3,5,7] suggested that by
normalizing and pre-whitening the observation the results will
be improved. Therefore we will normalize the amplitude of
the observations as follows:

x(ω, t)← x(ω, t)√
|L(ω, t)|2 + |R(ω, t)|2

(2)

The pre-whitening is done by multiplying the normalized
observations with the whitening matrix x(ω, t)←Wx(ω, t),
where W =

√
AGH . The values of A and G are determined

from the eigenvalue decomposition of the correlation matrix
E
[
xxT
]
= GAGH . The normalizing procedure (2) is repeated

after whitening.
To determine the IPD and ILD values we calculate the ratio

between the STFT of the left and right channels, expressed in
terms of the phase and amplitude:

L(ω, t)
R(ω, t)

= 10α(ω,t)/20e jφ(ω,t) (3)

In equation (3), α(ω, t) are the ILD values, and φ(ω, t) are
the IPD values. Previous work has shown that the ILD can be
uniquely associated with a particular source, but the IPD pro-
duces abiguity due to phase wrapping. In this article we use
the method proposed by Mandel et. al. [4] to solve the phase
ambiguity problem.

3. Model description and parameter estimation

In the mixture model, as in [5], we combine three cues, the
T-F observations, the ILD values and the IPD values, denoted
by x(ω, t), α(ω, t) and φ(ω, t), respectively, where the total
number of time frames is T and the total number of frequency
channels is Ω. The total number of initial sources is denoted
by I.

We model the spectrogram observations by a mixture of
circularly-symmetric complex-Gaussians [7] with the mixing

coefficients γx = {γx,i}. We then consider a latent variable or
indication vector, z = {zi}, which is a 1-by-I binary vector and
has the value 1 if the observation belongs to component i and 0
otherwise. Since we consider the sparsity assumption, the vec-
tor will have only one value of 1 and the rest are 0s, for any
observation. In a particular frequency channel, all the observa-
tions are i.i.d., therefore we will omit the frequency index here-
after. Let X = {x1, . . . ,xT} denote the observation set in a par-
ticular frequency channel and Z = {z1, . . . ,zT} the latent vari-
ables associated with each observation. The conditional distri-
bution of Z given the mixing coefficients will be:

p(Z|γx) =
T

∏
t=1

I

∏
i=1

γ
zti
x,i (4)

We express the conditional distribution of X given the latent
variables Z, the mean µx =

{
µx,i
}

and the precision λ x =
{λx,i} of the complex Gaussians as follows:

p(X|Z,µx,λ x) =
T

∏
t=1

I

∏
i=1

Nc(xt |µx,i,λ
−1
x,i )

zti (5)

Nc(xt |µx,i,λ
−1
x,i ) =

1(
πλ
−1
x,i

)2 e−λx,i||xt−(µH
x,ixt )µx,i||2 (6)

We model the ILD observations by a mixture of Gaussians,
considering the set of observations α = {α1, . . . ,αT} in a par-
ticular frequency channel.

p(Z|γα) =
T

∏
t=1

I

∏
i=1

γ
zti
α,i (7)

p(α|Z,µα ,λ α) =
T

∏
t=1

I

∏
i=1

N (αt |µα,i,λ
−1
α,i )

zti (8)

N (αt |µα,i,λ
−1
α,i ) =

1√
2πλ

−1
α,i

e−
λα,i

2 (αt−µα,i)
2

(9)

To model the IPD we use the approach presented in [4], by
mapping in a top-down fashion a set of discrete values of ITDs
to their corresponding IPDs, thereby solving the problem of
spatial aliasing for most frequencies. We determine the phase
residuals at each T-F point:

φ̂ (ω, t;τ) = arg
(

e jφ(ω,t)e− jωτ(ω)
)

(10)

For each T-F point we choose a fixed number of equally
spaced τ time delays between −15 and 15 samples. After
determining the residuals for these values, we choose I most
dominant τ delays from the PHAT histogram [8]. We model
the I selected phase residuals by a mixture of Gaussians with
the mixing coefficients γ

φ̂ ,i which represents the probability of
a phase residual comming from source i.

Considering the observation set for a frequency channel,
Φ̂ =

{
φ̂ti
}

, the mixing coefficients and the latent variables Z,
we can express the conditional probability distributions:
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p
(

Z|γ
φ̂

)
=

T

∏
t=1

I

∏
i=1

γ
zti
φ̂ ,i

(11)

p(Φ̂|Y,µ
φ̂
,λ

φ̂
) =

T

∏
t=1

I

∏
i=1

N
(

φ̂ti|µφ̂ ,i,λ
−1
φ̂ ,i

)zti
(12)

where N
(

φ̂ti|µφ̂ ,i,λ
−1
φ̂ ,i

)
is a Gaussian distribution, similar to

(9).
By combining the distributions of the three observations

given the latent variables and the paramaters, we obtain one
mixing coefficient for all the mixtures, denoted by γ = {γi}
where γi = γx,iγα,iγφ̂ ,i.

In the next step we establish proper conjugate priors for each
of the parameters of the distributions. The mixing coefficients
are modeled with a Dirichlet distribution:

p(γ) = Dir(γ|a0) = B(a0)
I

∏
i=1

γ
a0−1
iτ (13)

where a0 is a vector of I equal values a0 which represent the
concentration parameters. They are equal because we assume
that every component has the same probability. If the concen-
tration parameters are not equal and they form the vector a then

we define B(a) = ∏
I
i=1 Γ(ai)

Γ(∑
I
i=1 ai)

.

For the mean and precision of the Gaussian distributions we
choose Gauss-Gamma conjugate priors as follows:

p(µx,λ x) = p(µx|λ x)p(λ x) =

I

∏
i=1

Nc
(
µx,i|mx,0,(λx,iβx,0I)−1)G (λx,i|bx,0,cx,0)

(14)

p(µα ,λ α) = p(µα |λ α)p(λ α) =

I

∏
i=1

N
(
µα,i|mα,0,(λα,iβα,0)

−1)G (λα,i|bα,0,cα,0)
(15)

p(µ
φ̂
,λ

φ̂
) = p(µ

φ̂
|λ

φ̂
)p(λ

φ̂
) =

I

∏
i=1

N
(

µ
φ̂ ,i|mφ̂ ,0,(λφ̂ ,iβφ̂ ,0)

−1
)

G (λ
φ̂ ,i|bφ̂ ,0,cφ̂ ,0)

(16)

Here, Nc
(
µx,i|mx,0,(λx,iβx,0I)−1

)
is a complex Gaussian

distribution with mean mx,0 and precision λx,iβx,0I, of the
form:

Nc
(
µx,i|mx,0,(λx,iβx,0I)−1)=

1(
π (λx,iβx,0)

−1
)2 e−λx,i(µx,i−mx,0)

H βx,0I(µx,i−mx,0) (17)

The Gamma distributions with the shape parameter b0 and
rate parameter c0 are given by:

G (λi|b0,c0) =
1

Γ(b0)
cb0

0 λ
b0−1
i e−c0λi (18)

Now that we have all the observations and parameter dis-
tributions, we can express the joint distribution of the obser-
vations, considering all the latent variables Z and parameters
Θ =

{
γ,µx,λ x,µα ,λ α ,µ φ̂

,λ
φ̂

}
.

p(X,α,Φ̂,Z,Θ) =p(X|Z,µx,λ x)p(µx|λ x)p(λ x)

p(α|Z,µα ,λ α)p(µα |λ α)p(λ α)

p(Φ̂|Z,µ
φ̂
,λ

φ̂
)p(µ

φ̂
|λ

φ̂
)p(λ

φ̂
)

p(Z|γ)p(γ)

(19)

The variational posterior distribution of the latent variables
and component parameters can be expressed as:

q(Z,Θ) = q(Z)q(Θ) (20)

In order to optimize the variational posterior distribution
q(Z,Θ) we have to optimize the posterior distribution of the
latent variables q(Z) and parameter distributions q(Θ). We can
aproximate the log of the optimized distribution q∗(Z) by [9]:

lnq∗(Z) = EΘ

[
ln p(X,α,Φ̂,Z,Θ)

]
+ const (21)

Also we can express this for the optimum parameter distri-
butions:

lnq∗(Θ) = EZ
[
ln p(X,α,Φ̂,Z,Θ)

]
+ const (22)

Considering equation (21) we can determine that the poste-
rior distribution has the form:

lnq∗(Z) =
T

∑
t=1

I

∑
i=1

zti lnρti + const (23)

where lnρti is a notation for:

lnρti = Eγi [lnγi]−2lnπ− ln2π +2Eλx,i [lnλx,i]

+
1
2

Eλα,i [lnλα,i]+
1
2

Eλ
φ̂ ,i

[
lnλ

φ̂ ,i

]
−Eµx,i,λx,i

[
λx,i‖xt −

(
µ

H
x,ixt
)

µx,i‖2]
− 1

2
Eµα,i,λα,i

[
λα,i (αt −µα,i)

2
]

− 1
2

Eµ
φ̂ ,i,λφ̂ ,i

[
λ

φ̂ ,i

(
φ̂ti−µ

φ̂ ,i

)2
]

(24)

We observe that equation (23) is proportional to a multi-
nomial distribution which is a consequence of choosing the
proper conjugate priors on our distributions.

q∗(Z) ∝

T

∏
t=1

I

∏
i=1

ρ
zti
ti (25)

In order to obtain a proper distribution we normalize the
parameters for each time frame and determine the distribution
of the latent variables:
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rti =
ρti

∑
I
i=1 ρti

(26)

q∗(Z) =
T

∏
t=1

I

∏
i=1

rzti
ti (27)

Since rti sum to 1 over all i at every time frame t, these
represent the probability of the observation set belonging to
the ith component of our model, and we can determine them
by using the current model parameters as presented in equation
(24).

This is an expectation step, where we use the current param-
eter distributions to determine the responsibilities, very similar
to the EM algorithm. To determine the expectations from equa-
tion (24) we use the following:

Eγi [lnγi] = ψ (ai)−ψ

(
I

∑
i=1

ai

)
Eλx,i [lnλx,i] = ψ (bx,i)− lncx,i

Eλα,i [lnλα,i] = ψ (bα,i)− lncα,i

Eλ
φ̂ ,i

[
lnλ

φ̂ ,i

]
= ψ

(
b

φ̂ ,i

)
− lnc

φ̂ ,i

Eµx,i,λx,i

[
λx,i‖xt −

(
µ

H
x,ixt
)

µx,i‖2]=
xH

t

[
bx,i

cx,i

(
I−mx,imx,i

H)−β
−1
x,i

]
xt

Eµα,i,λα,i

[
λα,i (αt −µα,i)

2
]
=

bα,i

cα,i
(αt −mα,i)

2 +β
−1
α,i

Eµ
φ̂ ,i,λφ̂ ,i

[
λ

φ̂ ,i

(
φ̂ti−µ

φ̂ ,i

)2
]
=

b
φ̂ ,i

c
φ̂ ,i

(
φ̂ti−m

φ̂ ,i

)2
+β

−1
φ̂ ,i

(28)

where ψ (·) is the digamma function.
The next step is to determine the updates for the hyper-

parameters using (22). This is done by extracting the depen-
dencies of the different hyper-parameters and by taking into
account that E [zti] = rti from (27). Therefore we determine the
update for the prior on the mixing coefficients:

ai =
T

∑
t=1

rti +a0 (29)

To determine the updates for the prior on the mixing vec-
tors, we observe that a Gauss-Gamma distribution has been
obtained from (22), as a consequence of choosing proper con-
jugate prior distributions. We determine the updates of the
hyper-parameters for the mixing vectors as follows:

β x,i = βx0I−
T

∑
t=1

rti
(
xtxt

H)
mx,i = β x,i

−1
βx0Imx,0

bx,i = bx,0 +2
T

∑
t=1

rti

cx,i = cx,0 +
T

∑
t=1

rti
(
xt

Hxt
)
+mx,0

H
βx,0Imx,0

−mx,i
H

β x,imx,i

(30)

The updates of the hyper-parameters for the binaural cues
can be determined by using the same approach as for the mix-
ing vectors. Therefore the updates for the ILD parameters are:

βα,i = βα0 +
T

∑
t=1

rti

mα,i = βα,i
−1

(
T

∑
t=1

rtiαt +mα,0βα,0

)

bα,i = bα,0 +
1
2

T

∑
t=1

rti

cα,i = cα,0 +
1
2

T

∑
t=1

rtiαt
2 +

1
2

mα,0
2
βα,0−

1
2

mα,i
2
βα,i

(31)

The prior updates for the IPD model can be derived from
(27) and we obtain the following:

β
φ̂ ,i = β

φ̂0
+

T

∑
t=1

rti

m
φ̂ ,i = β

φ̂ ,i
−1

(
T

∑
t=1

rtiφ̂ti +m
φ̂ ,0β

φ̂ ,0

)

b
φ̂ ,i = b

φ̂ ,0 +
1
2

T

∑
t=1

rti

c
φ̂ ,i = c

φ̂ ,0 +
1
2

T

∑
t=1

rtiφ̂
2
ti +

1
2

m
φ̂ ,0

2
β

φ̂ ,0−
1
2

m
φ̂ ,i

2
β

φ̂ ,i

(32)

One important observation is that all the calculations of
the hyper-parameters must be done in order, since one hyper-
parameter depends on the determination of the previous one.
This step is similar to the maximization step of the EM algo-
ritm, and it optimizes the values of the hyper-parameters at
each iteration.

4. Algorithm description

The algoritm begins by transforming the time-domain sam-
ples of the observations into the T-F domain via STFT, using a
Hann window. The T-F points xt will be normalized and pre-
whitened so that we eliminate the influence of speaker ampli-
tude. Using the T-F points we determine the ILD, αt . For the
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IPDs we first use the top-down approach [4] to determine the
IPD residuals, and we select the first I most probable time dif-
ferences from the PHAT histogram [8], and we will only select
the residuals that correspond to these time differences, φ̂ti.

Once the observation are ready for processing we select a
frequency channel and we begin the algoritm. First we initial-
ize the hyper-parameters of our models. Initialization is not
an issue since the framework does not suffer from overfitting,
therefore we will set the initial values of the hyper-parameters
to a low value so that the posterior will be influenced mainly
by the observations [9].

We then initialize the responsibilities of every T-F point
according to the PHAT histogram. By doing this and because
of the fact that the IPD residuals are selected only for some
fixed time differences, there will be no permutation misalign-
ment between the frequency channels.

After the initialization we start the main loop consisting of
two phases. In the first phase we determine the new hyper-
parameter values considering the current responsibilites using
equations (29), (30), (31) and (32). In the second phase we
use the previously determined hyper-parameter values to deter-
mine the new responsibilities, by determining the expectations
(28), needed to determine the responsibilities using (24) and
(26). These two steps are cycled for a number of iterations.

To separate the sources we determine the binary masks for
each source, by associating 1 to the source that has the largest
responsibility. Therefore the mask for a particular source i
will be Mi(ω, t) = 1 if rti ≥ rtk,∀k 6= i and Mi(ω, t) = 0 if
rti < rtk,∀k 6= i. The reconstructed time-frequency signal can
be determined by ŝi(ω, t) = Mi(ω, t)x(ω, t). We then apply the
inverse short-time Fourier transform to obtain the time domain
signal.

The algorithm does not know the actual number of sources
and it starts with a high and assumed one. The true number of
sources can be determined by the fact that the components that
do not belong to the mixture will have low responsibilities and
therefore the masks will be null. This is also reflected in the
values of the hyper-parameters, which will be the same as the
initial ones.

5. Experimental results

For the experiments, we chose the TIMIT dataset which is
composed of 6300 speech utterances spoken by 630 native
American English speakers, similar to [4]. We selected 15
utterances spoken by both male and female speakers at ran-
dom of the same length (about 3s) and then shortened to 2.5 s
as in [5].

For the mixing process we used the binaural room impulse
responses (BRIR) measured by Hummersone [10] at the
University of Surrey. The measurements were made using a
dummy head and torso in four different types of rooms, named
A, B, C and D with the acoustical properties presented in Table
1. We selected 100 unique sets of 3 sources from the 15 utter-
ances. The sources were placed at -60°, 0° and 60° azimuth,
where zero azimuth is in front of the dummy head. The mix-
tures were obtained by convolving each utterance with the
respective BRIR and then summing the results. We also mixed

the sources under anechoic conditions, with the room number
being denoted by N.

Table 1. Room acoustical properties in ini-
tial time delay gap (ITDG), direct-to-reverberant
ratio (DRR) and reverberation time T60 [10].

Room ITDG [ms] DRR [dB] T60 [s]

A 8.72 6.09 0.32

B 9.66 5.31 0.47

C 11.9 8.82 0.68

D 21.6 6.12 0.89

Using the generated mixtures for each room we then apply
the proposed variational Bayesian algorithm starting with 5 ini-
tial sources. We use a Hann window of 1024 samples with 75%
overlapping when performing the STFT.

We apply the algorithm to the mixtures and we first deter-
mine the accuracy of the number of sources estimated for each
type of room. The results are presented in Table 2.

Table 2. The accuracy of the number of sources
estimated by the proposed algorithm.

Room N A B C D

Accuracy [%] 100 81 75 92 72

The number of sources is not correctly determined in some
cases because at some frequency channels we do have some
ambiguity in determining the IPD because of the overlapping
due to phase aliasing [4] and therefore if the reverberation is
high the frequency band in which this occurs will be larger.

To establish the performance of the algorithm we used the
signal-to-distortion ratio (SDR), described in [11]. The deter-
mined SDRs for the experiments can be seen in Table 3. The
values shown represent the mean of the SDR in each room
after separation, considering the target source as the one at zero
azimuth. We also determined the mean over all rooms.

Table 3. Separation results of the proposed variational Bayesian
algorithm..

Room N A B C D Mean

SDR [dB] 8.25 7.71 4.95 7.48 3.90 6.77

The separation process yields acceptable performance, but it
has the advantage that the initialization is not that strict, since
we used general values to initialize the priors. The main advan-
tage is that it can achieve this level of separation without any
prior knowledge of the number of sources. As a comparison,
in Figure 1, 2 and 3 we show the T-F plots of the initial source
signals, the mixtures and the separated signals.
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Figure 1. Spectrograms of the original sources.

Figure 2. Spectrograms of the mixtures.

Figure 3. Spectrograms of the separated signals.

6. Conclusions and future work

A variational Bayesian framework based reverberant speech
separation method has been presented. The proposed algorithm
benefits from the fact that the Bayesian approach is less sensi-
tive to improper initializations, and it also automatically deter-
mines the number of sources, which can be an advantage in
real life recordings. The preliminary results suggest that the

proposed method offers an acceptable performance. In future
work a performance comparison will be conducted between the
Bayesian approach and the EM algorithm. Further improve-
ments will be made to the estimation of the number of sources
and to the separation performance of the proposed algorithm.
In addition, the convergence could be studied by determining
the variational lower bound. Some studies will also be per-
formed for assessing the influence of the angle between the
source signals.
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