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In this article, a novel method is proposed to measure the separation qualities of
statistically instantaneous audio signals with mixed Gaussian probability distri-
butions. This study evaluates the impact of the Probability Distribution Function
(PDF) of the mixed signals on the outcomes of both sub- and super-Gaussian
distributions. Different Gaussian measures are evaluated by using various
spectral-distortion measures. It aims to compare the different audio mixtures
from both super-Gaussian and sub-Gaussian perspectives. Extensive computer
simulation confirms that the separated sources always have super-Gaussian
characteristics irrespective of the PDF of the signals or mixtures. The result based
on the objective measures demonstrates the effectiveness of source separation in
improving the quality of the separated audio sources.

Keywords: blind source separation; probability distribution function; indepen-
dent component analysis; kurtosis; signal to interference ratio; sub-Gaussian;
super-Gaussian

1. Introduction

Audio analysis and separation is the problem of automated separation of audio sources
present in a room, using a set of differently placed microphones, capturing the auditory
scene (Foote 1999; Benaroya, Bimbot, and Gribonval 2006; Dubnov, Tabrikian, and
Targan 2006; Wilson 2007). The whole problem resembles the task a human can solve in a
cocktail party situation, where using two sensors (ears), the brain can focus on a specific
source of interest, suppressing all other sources present (Hyvarinen, Karhunen, and Oja
2001; He, Clifford, and Tarassenko 2006; Morita and Nanri 2006). Recently, Blind Source
Separation (BSS) using Independent Component Analysis (ICA) has received a great deal
of attention for its potential in acoustics, telecommunication, medical and image signal
processing (Cristescu, Ristaniemi, Joutsensalo, and Karhunen 2000; Stone 2002; He et al.
2006; De Martino et al. 2007). BSS is an emerging technique, which enables the extraction
of target speech from observed mixed speeches without the need for source positioning,
spectral construction or a mixing system. To achieve this, attention is focused on a method
based on ICA. ICA is a method for finding underlying components that are statistically
independent from multivariate statistical data. ICA extracts independent components
from mixtures (Bell and Sejnowski 1997; Hyvarinen et al. 2001).
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ICA is being used routinely to separate signals from different independent and nearly
non-Gaussian sources. The applications of this include defence, surveillance, security,
communication and entertainment. In the recent fast many researchers have studied the
impact and quality of the sub- and super-Gaussian sources (Zarzoso and Nandi 2002;
Blaschke and Wiskott 2003; Eriksson and Koivunen 2004; Zarzoso, Murillo-Fuentes,
Boloix-Tortosa, and Nandi 2006). While the assumption of independence is important for
the success of ICA, the impact of Probability Distribution Function (PDF) of the sources
has not yet been considered in detail. The other issue is the impact of the mixing
environment on the quality of separation of the sources. To make the source separation
more effective for security and surveillance, there is a need to evaluate the reliability of the
use of ICA for obtaining the separated signals.

The precise evaluation of speech quality is a key research problem that has attracted
attention in the field of speech communication for several years. The two major techniques
utilised in the evaluation of speech quality are subjective and objective speech quality
procedures. Subjective quality measures are more accurate and robust since they are given
by professional personnel who have received special assessment training, but they are
essentially time consuming and expensive. In contrast, objective quality measures,
instigated by speech signal processing procedures, offer a proficient, economical
alternative to subjective procedures. Even though it is not advocated to use objective
quality measures to entirely restore subjective measures, objective quality measures do
illustrate the strong aptitude to forecast subjective quality measures and the results do
associate very well with those generated by subjective quality measures. In this article, a
novel work on audio analysis of statistically instantaneous signals with mixed Gaussian
probability distributions is reported. The Gaussian distortion introduced in the resulting
speech is measured by approximating objective measures of perceptual speech quality such
as log-likelihood ratio (LLR) measure, log-area-ratio (LAR) measure, Itakura–Saito
distortion (IS) Measure and weighted spectral slope (WSS) measure (Hansen and Pellom,
1998). The discrepancy of these estimated objective measures of the spectral distortion is
studied and analysed to see specific audio effects of the Gaussian PDF qualities.

2. Theory

2.1. Non-Gaussian and Gaussian measures

Non-Gaussianity is an important and essential principle in ICA estimation. To use non-
Gaussianity in ICA estimation, there needs to be quantitative measure of non-Gaussianity
of a signal. Before using any measures of non-Gaussianity, the signals should be
normalised (Lee 1998; Cichocki and Amari 2002).

There are actually two types of non-Gaussian signals. The two non-Gaussian signals
are known by various terms, such as super-Gaussian and sub-Gaussian or equivalently
known as ‘platy kurtotic’ and ‘lepto kurtotic’ respectively.

. Super-Gaussian sources

A signal with super-Gaussian PDF has most of its values clustered around zero.
A speech signal is a typical example for a super-Gaussian source. Figure 1(a)
shows a typical super-Gaussian source (speech signals). From the figure it is also
evident that the super-Gaussian signals have PDFs that have more peaks than
those of Gaussian signals.
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. Sub-Gaussian sources

The signals with sub-Gaussian PDF have a wide distributed function, which is

illustrated in Figure 1(b). A saw-tooth signal, polyphonic music signal and white

noise signals are typical sub-Gaussian sources (Cristescu et al. 2000).

The sub-Gaussian signals have PDFs that have less peaks than those of a

Gaussian signals.

Some of the commonly used measures are kurtosis and entropy measures. Kurtosis is

used as one of the measures in this article, which is explained next.

2.2. Kurtosis

Kurtosis is the classical method of measuring non-Gaussianity. When data is preprocessed

to have unit variance, kurtosis is equal to the fourth moment of the data. The kurtosis of

signal (s), denoted by kurt(s), is defined by

kurtðsÞ ¼ Eðs4Þ � 3ðEfs2gÞ2 ð1Þ

This is a basic definition of kurtosis using higher order (fourth order) cumulant, this

simplification is based on the assumption that the signal has zero mean. To simplify things,

we can further assume that (s) has been normalised, so that its variance is equal to one:

E{s2}¼ 1. Hence Equation (1) can be further simplified to

kurtðsÞ ¼ Efs4g � 3 ð2Þ
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Figure 1. PDF of super- and sub-Gaussian sources. (a) super-Gaussian signal and (b) sub-Gaussian
signal.
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Equation (2) illustrates that kurtosis is a normalised form of the fourth moment E{s4}¼ 1.
For Gaussian signal, E(s4)¼ 3{(E{s2})2} and hence its kurtosis is zero. For most
non-Gaussian signals, the kurtosis is nonzero. Kurtosis can be both positive or negative.
Random variables that have positive kurtosis are called super-Gaussian, and those with
negative kurtosis are called sub-Gaussian. Non-Gaussianity is measured using the absolute
value of kurtosis or the square of kurtosis.

Kurtosis has been widely used as a measure of non-Gaussianity in ICA and related
fields because of its computational simplicity. Theoretically, it has a linearity property
such that

kurtðs1 � s2Þ ¼ kurtðs1Þ � kurtðs2Þ ð3Þ

and

kurtð�s1Þ ¼ �
4 kurtðs1Þ ð4Þ

where � is a constant. Computationally, kurtosis can be calculated using the fourth
moment of the sample data, by keeping the variance of the signal constant (Lee, Lewicki,
and Sejnowski 1999). Kurtosis is extremely simple to calculate, however, it is very sensitive
to outliers in the dataset (Pham, Garrat, and Jutten 1992).

2.3. Independent component analysis

ICA is a new statistical technique that aims at transforming an input vector into a signal
space in which the signals are statistically independent (Lee, Girolami, Bell, and Sejnowski
2000; Hyvarinen et al. 2001; Jang and Lee 2003).

ICA assumes the mixing process as linear, so it can be expressed as:

xðtÞ ¼ AsðtÞ ð5Þ

where x¼ [x1(t), x2(t), . . . , xn(t)] are the recordings, s¼ [s1(t), s2(t), . . . , sn(t)]
T are the

original signals and A is the n� n mixing matrix. This mixing matrix and each of the
original signals are unknown. To separate the recordings to the original signals, an ICA
algorithm performs a search of the un-mixing matrix W by which observations can be
linearly translated to form independent output components so that:

sðtÞ ¼WxðtÞ ¼WAsðtÞ ð6Þ

For this purpose, ICA relies strongly on the statistical independence of the sources, s.
The block diagram approach of ICA for source separation is shown in Figure 2. The ICA
technique iteratively estimates the un-mixing matrix using the maximisation of indepen-
dence of the un-mixed signals as the cost function. Signals are statistically independent if
the joint probability density of those components can be expressed as a product of their
marginal probability density. It is important to observe the distinction between
independence and uncorrelatedness, since decorrelation can always be performed by
transforming the signals with a whitening matrix to get the identity covariance matrix.
Independent signals are always uncorrelated, but uncorrelated, signals are not always
independent. However, in the case of Gaussian signals, uncorrelatedness implies
independence. Transformation of a Gaussian signal with any orthogonal un-mixing
matrix or transform results in another Gaussian signal, and thus the original signals
cannot be separated. Hence Gaussian signals are forbidden for ICA. Thus, the key to
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independent component estimation is measuring the non-Gaussianity of the signals
(Cardoso 1998). In most applications such as the cocktail party problem, these are not
serious problems. The supervisor is able to identify the different sources and determine the
quality of the separation by listening to the sounds. To summarise from the above, the
signals that can be separated need to be non-Gaussian and independent. For the purpose
of applying ICA to audio recordings, there is a need to determine the conditions under
which these signals can be considered as independent and non-Gaussian.

2.4. Objective methods of speech quality measure

Computational methods for objective evaluation of speech and audio quality are usually
designed for measuring quality loss due to just a few specific types of signal degradation.
Seeking an effective, yet general, objective method for speech and audio seems to be a
pertinent and challenging R&D goal. How to measure the distortion between original
source and the estimated one has no completely trivial solution. It depends on the mixing
system and the separation process as well as the field of application. It is still hard to
evaluate the separation algorithm because of the lack of appropriate performance
measures even in the very simple case of linear instantaneous mixtures (Vincent,
Gribonval, and Fevotte 2006; Campbell, Jones, and Glavin 2009).

In most cases, speech enhancement or noise reduction is measured in terms of
improvement in signal-to-noise ratio (SNR), but in reality, this may not be the most
suitable performance criteria for enhancement of perceptual speech quality. Humans do
have a perceptive understanding of spoken language quality, nevertheless this may not be
easy to quantify. From numerous studies, it has been shown that impact of noise on
degradation of speech quality is non uniform. An objective speech quality gauge shows,
the level of distortion for each frame, across time. Objective methods depend on
mathematically based measure between reference signal and the signal under concern.

Figure 2. ICA block diagram. s(t) are the sources. x(t) are the recordings, ŝðtÞ are the estimated
sources, A is mixing matrix and W is un-mixing matrix.
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The objective measures are based on different parametric illustration of the speech, and be
different due to inclusion or non-inclusion of several constraints and the different
weightage given to them, in order to emulate auditory model and insight as closely as
possible. The particulars of each one is specified below.

. SNR

. IS distortion measure,

. LAR measure

. LLR measure and

. WSS measure

In audio applications, SNR is a popular tool to measure the quality separation (Cichocki
and Amari 2002). The SNR is explained next.

2.4.1. Signal-to-noise ratio

SNR is the ratio of the strength of the desired signal to the amplitude of noise signals at a
given point in time, and can be measured in terms of the amplitude or power. It is an
important measure to determine the quality of the signal. SNR is often expressed in
decibels which is 20 times the logarithm of the amplitude ratio, or 10 times the logarithm
of the power ratio. In this work, SNR ratio is computed as defined below:

SNRdB ¼ 10 log10
Ps

Pn
ð7Þ

2.4.2. IS distortion measure

If for an original clean frame of speech with linear prediction (LP) coefficient vector, ~a�,
correlation matrix is R�. And for processed LP coefficient vector is ~ad, correlation matrix
is Rd, then the IS distortion measure is given by

dISð~ad, ~a�Þ ¼
�2�
�2d

" #
~adR� ~a

T
d

~a�R� ~aT�

" #
þ log

�2d
�2�

" #
� 1 ð8Þ

where �2� and �2d represents all pole gain for the processed and clean speech, respectively.

2.4.3. LAR measure

The LAR measure is also based on dissimilarity of LP coefficients between original and
processed speech signals. The LAR parameters are attained from the pth order LP
reflection coefficients for the original r�(j) and processed rd(j) signals from frame j. The
LAR objective measure is shown as below:

dLAR ¼
1

M

XM
i¼1

log
1þ r�ð j Þ

1� r�ð j Þ
� log

1þ r̂dð j Þ

1� r̂dð j Þ

� ������
����� ð9Þ
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2.4.4. LLR measure

The LLR measure is also referred to as the Itakura distance (note that the ISD measure
emphasises differences in general spectral shape versus an overall gain offset). The LLR
measure is found as follows:

dLLR ¼ ð~ad, ~a�Þ ¼ log
~adR� ~a

T
d

~a�R� ~aT�

 !
ð10Þ

where ~a� is the LP coefficient vector, ~ad is a processed speech coefficient vector and R� is
the auto correlation matrix of the estimated signal.

2.4.5. WSS measure

The WSS measure by Klatt (1982) is based on an auditory model, in which 36 overlapping

filters of progressively larger bandwidth are used to estimate the smoothed short-time
speech spectrum. The measure finds a weighted difference between the spectral slopes in

each band. The magnitude of each weight reflects whether the band is near a spectral peak
or valley, and whether the peak is the largest in the spectrum. A per-frame measure in
decibel is found as

dWSSð j Þ ¼ KsplðK� K̂Þ þ
X36
k¼1

waðkÞðSðkÞ � ŜðkÞÞ2 ð11Þ

where K and K̂ are related to overall sound pressure level of the original and
enhanced utterances and Kspl is a parameter which can be varied to increase the overall
performance.

3. Methods

The performance of the proposed method is tested using various datasets under following
conditions:

. The first step is mixing the various audio sources with sub-Gaussian and super-
Gaussian mixing matrices and to separate them using ICA method.

. The second step is using these separated signals to measure the quality of
separation using different speech quality measures.

. The third step is to estimate the Gaussianity and PDF of the sources using the

Kurtosis values.
. The last step is to test the quality of the real audio mixtures using the above test

conditions.

The methodology along with the results is as follows: as a first step, computer

simulations are conducted to perform the source separation in sub-Gaussian and super-
Gaussian mixing conditions. To test this condition, four different sub-Gaussian

(polyphonic music) signals and super-Gaussian (speech signals) signals are chosen.
They are shown in Figure 3. These signals are mixed using different combinations of
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sub-Gaussian and super-Gaussian mixing matrices. One of the examples of mixing

matrices are shown below.

Sub-Gaussian matrix ¼

�1:0000 �1:0000 1:0000 �1:0000

�0:5250 �3:4057 0:1582 �2:6094

�1:0000 �1:0000 1:0000 1:0000

2:2949 �1:1210 0:8096 �3:9043

0
BBB@

1
CCCA

Super-Gaussian matrix ¼

0:0790 0:0309 0:0049 0:0012

0:0111 0:0444 0:1000 0:1778

0:0309 0:2086 0:0000 0:0790

0:3568 0:2420 0:1494 0:0790

0
BBB@

1
CCCA

Each time the PDF of the signals and mixing matrices were plotted to ensure the

validity of the sub- and super-Gaussian sources. The PDF distribution of the sub- and

super-Gaussian mixing matrices are shown in Figure 4.
Four independent audio recordings s1, s2, s3 and s4 were considered. The sub- and

super-Gaussian sources were mixed in the following way:

. sub-Gaussian sourceþ sub-Gaussian mixing matrix

. sub-Gaussian sourceþ super-Gaussian mixing matrix

. super-Gaussian sourceþ sub-Gaussian mixing matrix

. super-Gaussian sourceþ super-Gaussian mixing matrix

−5 0 5
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0.2

0.4

0.6

0.8

u

p(
u)

PDF of sub-Gaussian signals
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s3
s4
Gaussian

−5 0 5
0
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u

p(
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PDF of super-Gaussian signals

s1
s2
s3
s4
Gaussian

Figure 3. PDF of sub- and super-Gaussian sources.
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The entire mixing process can be expressed in the vector and matrix form as:

x1 ¼ a11s1 þ a12s2 þ a13s3 þ a14s4

x2 ¼ a21s1 þ a22s2 þ a23s3 þ a24s4

x3 ¼ a31s1 þ a32s2 þ a33s3 þ a34s4

x4 ¼ a41s1 þ a42s2 þ a43s3 þ a44s4

ð12Þ

x1

x2

x3

x4

0
BBB@

1
CCCA ¼

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

0
BBB@

1
CCCA

s1

s2

s3

s4

0
BBB@

1
CCCA

An example of the mixed signal in sub- and super-Gaussian environment are shown in
Figure 5. Similar experiments were repeated for all the four above-mentioned mixing

processes.

4. Data analysis

At a first step, to investigate the potential of the proposed ICA-based method for

testing the quality of the source separation in sub- and super-Gaussian mixing

conditions, a few examples of mixture streams of four audio signals are used. The
mixed signals in sub- and super-Gaussian environment are separated using Fast ICA

algorithm (Hyvärinen 1999). The ICA separated sources are initially evaluated using the

Kurtosis parameters.
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Figure 4. PDF of sub- and super-Gaussian mixing matrices.
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The second step is to measure the quality of the separation using objective quality
assessment. Objective methods rely on a mathematically based measure between the
original and coded/degraded speech signal. The success of these measures rests with their
correlation with subjective quality. Objective quality measure results are presented in four
areas. It may be noted that there are several ways to obtain overall quality scores. The real
audio recordings are analysed using four objective audio measures such as IS, LLR, LAR
and WSS at different SNRs. For most measures, finding a mean across a large test set is
reasonable. If users want a general measure of performance the mean of the resulting
frame-level scores is more useful. Hence, mean estimates of LLR, LAR, IS and WSS are
computed for SNR range from 30 to �20 dB for real audio recordings. The real audio
mixtures are tested for four categories (super-Gaussian sourceþ super-Gaussian mixing
matrix, super-Gaussian sourceþ sub-Gaussian mixing matrix, sub-Gaussian sourceþ
super-Gaussian mixing matrix and sub-Gaussian sourceþ sub-Gaussian mixing matrix)
using both noisy and clear speech.

5. Results and observations

In this section, the separation performance of the statistically instantaneous signals mixed
in sub-Gaussian and super-Gaussian audio conditions using various audio quality
measures are examined.

The ICA estimated Gaussian mixtures are plotted in Figures 6 and 7, respectively.
The overall kurtosis results for four different categories have been tabulated in Table 1.
From the results, it is evident that kurtosis value is always positive. The positive kurtosis
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Figure 5. Examples of PDF of sub- and super-Gaussian mixed signals.
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value demonstrates that after separating different sub- and super-Gaussian audio
mixtures, all separated sources remain as super-Gaussian. This explains the conditions
where, irrespective of the mixing conditions, all the mixed sources remain as super-
Gaussian in nature.
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Figure 6. Examples of PDF of ICA separated sub- and super-Gaussian signals.
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Figure 7. PDF of ICA separated sub- and super-Gaussian signals together.
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Table 2 and Figure 8 summarises the objective measures for pure super-Gaussian
mixtures across different SNRs ranging from �20 to 30 dB. It can be seen that WSS values
are lowest for 30 dB SNR and highest for �20 dB. However there is decreasing value in
other three (IS, LAR and LLR) enhancement routines, which provide quality improve-
ment. From the results (Table 2) it is clear that, WSS has proved to be the most useful
measure used due to its wider dynamic range as compared to other parameters.

Similarly Tables 3–5 show the result for super-Gaussian source and sub-Gaussian
mixing matrix, sub-Gaussian source and super-Gaussian mixing matrix and sub-Gaussian
source and sub-Gaussian mixing matrix, respectively. The same results are also plotted in
Figures 9–11, respectively. From these results, it is clear that WSS values are showing
decreasing trend over the mixtures. As expected, the WSS shows highest values for the
pure super-Gaussian mixtures (Table 2 and Figure 8) and the lowest for the pure sub-
Gaussian mixtures (Table 5 and Figure 11). The similar trend continues for other
parameters (IS, LAR and LLR). However, as compared to WSS, the other three
parameters (IS, LAR and LAR) show a small range of changes across different Gaussian
mixtures, making the WSS as the most suitable candidate for Gaussian mixture estimation.

The mean and median values of WSS estimates of noisy speech, at different SNR are
shown in Figure 12. From the results, it is observed that superþ super-Gaussian is having
lowest WSS estimate followed by superþ sub-Gaussian, subþ super-Gaussian and then
highest for subþ sub-Gaussian. This trend is more prominent particularly for low SNRs.
The reason could be attributed to the presence of weaker speech units in relatively higher
concentration, in the Gaussian mixture with higher WSS estimates compared to others;

Table 2. Super-Gaussian signalþ super-Gaussian mixing matrix LAR, LLR, WSS and IS.

WSS estimates LLR LAR IS

SNR in dB Median Mean Mean Mean Mean

30 38.09 43.12 0.267 3.45 0.56
25 43.12 49.12 0.398 4.31 1.45
20 51.23 57.81 0.482 5.52 1.71
15 60.12 68.12 0.652 6.56 2.63
10 70.12 79.21 0.786 7.74 3.21
0 93.12 99.67 1.342 8.83 4.32
�5 101.23 105.21 1.867 10.34 6.08
�10 106.23 109.67 2.124 11.82 7.32
�20 110.12 113.08 2.423 13.21 8.56

Table 1. Overall kurtosis results for sub-Gaussian and super-Gaussian mixtures.

Sub-Gaussian
sources

Super-Gaussian
sources

Sub-Gaussian
mixing matrix

Super-Gaussian
mixing matrix Kurtosis

X X 2.0067
X X 5.0845

X X 8.5845
X X 12.4867
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as the speech parameters under consideration for them, would undergo higher distortion

under the influence of noise.

6. Conclusion

It is concluded that both the super- and sub-Gaussian signals, after separation using ICA

are always super-Gaussian in nature. While sub-Gaussian sources can also be separated,
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Figure 8. LLR, LAR, IS and WSS estimates versus SNR plots in super-Gaussian sourceþ super-
Gaussian mixing matrix.

Table 3. Super-Gaussian signalþ sub-Gaussian mixing matrix LAR, LLR, WSS and IS.

WSS estimates LLR LAR IS

SNR in dB Median Mean Mean Mean Mean

30 35.09 42.12 0.397 4.34 0.89
25 43.12 48.12 0.519 5.13 1.95
20 49.31 54.18 0.614 6.45 2.37
15 55.11 61.32 0.721 7.25 3.46
10 62.12 68.21 0.846 8.37 4.21
0 83.42 89.67 1.542 9.45 5.23
�5 90.23 94.21 2.187 11.43 6.98
�10 95.23 100.67 2.424 12.92 8.23
�20 101.12 105.08 2.823 14.56 9.65
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the quality of separation is poorer, and the outcome is always a super-Gaussian
approximation of the original signal. Hence, a signal such as polyphonic music would be
separated into non-polyphonic music and there would be greater emphasis on aspects of
the audio such as voice or other super-Gaussian sources. There is a strong impact of the
mixing matrix distribution on the quality of source separation. If the mixing matrix is
super-Gaussian in nature, the quality of separation is better than when the mixing matrix
is sub-Gaussian.

In this research, evaluation of super- and sub-Gaussian signals are done using LLR,
LAR, IS and WSS as objective measures of speech quality. This is performed by
computing estimates of these objective measures for noisy speech with white noise for the
above Gaussian measures at SNRs �20 to 30 dB. First, these measures are computed for
noisy speech with reference to corresponding clear speech and then for the enhanced
speech with reference to the corresponding noisy speech. WSS has proved to be the most
useful measure used due to its wider dynamic range. The two estimates of WSS do provide
a clue to the type of Gaussian measure in use due to differences in its phonetic content.
The discrimination provided is highest at lower SNRs. The estimates being lowest for

Table 4. Sub-Gaussian signalþ super-Gaussian mixing matrix LAR, LLR, WSS and IS.

WSS estimates LLR LAR IS

SNR in dB Median Mean Mean Mean Mean

30 32.09 38.12 0.423 5.34 1.23
25 39.12 45.12 0.621 6.13 2.34
20 46.23 51.81 0.734 7.23 3.21
15 52.12 58.12 0.841 8.23 4.32
10 59.12 66.21 0.986 9.21 5.32
0 83.12 88.67 1.782 10.51 7.84
�5 89.23 94.21 2.418 12.45 8.65
�10 92.23 99.27 2.744 13.83 9.78
�20 100.32 103.48 3.182 15.67 10.97

Table 5. Sub-Gaussian signalþ sub-Gaussian mixing matrix LAR, LLR, WSS and IS.

WSS estimates LLR LAR IS

SNR in dB Median Mean Mean Mean Mean

30 32.09 38.12 0.423 5.34 1.23
25 39.12 45.12 0.621 6.13 2.34
20 46.23 51.81 0.734 7.23 3.21
15 52.12 58.12 0.841 8.23 4.32
10 59.12 66.21 0.986 9.21 5.32
0 83.12 88.67 1.782 10.51 7.84
�5 89.23 94.21 2.418 12.45 8.65
�10 92.23 99.27 2.744 13.83 9.78
�20 100.32 103.48 3.182 15.67 10.97
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Figure 10. LLR, LAR, IS and WSS estimates versus SNR plots in sub-Gaussian sourceþ
super-Gaussian mixing matrix.
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Figure 9. LLR, LAR, IS and WSS estimates versus SNR plots in super-Gaussian sourceþ
sub-Gaussian mixing matrix.
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Figure 11. LLR, LAR, IS and WSS estimates versus SNR plots in sub-Gaussian sourceþ sub-
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sub-Gaussian mixtures and highest for super-Gaussian mixtures. The reason could be
attributed to the existence of weaker speech units in comparatively higher concentration,
in the language with higher WSS estimates compared to others; as the speech parameters
under consideration for them, would undergo higher distortion under the influence of
noise.
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