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Abstract

Automated audio captioning is a cross-modal translation task that aims to generate natural language
descriptions for given audio clips. This task has received increasing attention with the release of freely available
datasets in recent years. The problem has been addressed predominantly with deep learning techniques.
Numerous approaches have been proposed, such as investigating different neural network architectures,
exploiting auxiliary information such as keywords or sentence information to guide caption generation, and
employing different training strategies, which have greatly facilitated the development of this field. In this
paper, we present a comprehensive review of the published contributions in automated audio captioning, from
a variety of existing approaches to evaluation metrics and datasets. We also discuss open challenges and
envisage possible future research directions.
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1 Introduction
Sound is ubiquitous in our daily lives. It carries a
wealth of information about the environment, from
sound scenes to individual events happening around
us. For most people, the ability to perceive and un-
derstand the everyday sounds around us is taken for
granted. However, mining helpful information from
sounds is a challenging task for machines. With the
development of machine learning, the field of machine
listening has attracted increasing attention, with sig-
nificant progress made in recent years, in areas such as
audio tagging (AT) [1–5], sound event detection (SED)
[6–8] and acoustic scene classification (ASC) [9, 10].
However, in these areas, the focus has been mostly on
identifying acoustic scenes or events in an audio clip,
rather than considering relationships between the au-
dio events and acoustic scenes.
Automated audio captioning (AAC) aims at describ-

ing the content of an audio clip using natural lan-
guage, which is a cross-modal translation task at the
intersection of audio signal processing and natural lan-
guage processing (NLP) [11]. Compared with auto-
matic speech recognition (ASR), audio captioning fo-
cuses only on the environmental sounds and ignores
the voice content that may be present in an audio clip.
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Compared with other popular audio-related tasks such
as AT, SED, and ASC, audio captioning requires not
only determining what audio events are present in the
audio clip, but also describing these audio events us-
ing natural language, which allows the relationships
between the audio events and the content of the au-
dio clip to be summarized. An example caption may
be “a person was walking on a sidewalk adjacent to
a school where children were playing on the play-
ground”[1] which describes the scenes and sound events
given an audio clip. Generally speaking, audio captions
are one-sentence descriptions of the predominant audio
events and audio scenes occurring in the audio clips,
where the detailed information may be included, such
as the spatial-temporal relationships between the au-
dio events and scenes, and the physical properties of
sound objects and the acoustic environment.
Audio captioning has practical potential for vari-

ous applications such as helping the hearing-impaired
to understand environmental sounds, and analyzing
sounds for video-based security surveillance systems.
In addition, audio captioning can be used for multi-
media retrieval [12, 13] in areas including education,
film production, and web searching.
Unlike image and video captioning, which have been

widely studied for almost a decade, audio captioning
is a relatively new task that has been studied since

[1]This caption is from the Clotho dataset.
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Figure 1 Overview of an encoder-decoder-based AAC system, where the input is the waveform of an audio clip and the output is a
natural language sentence describing the content of the input audio clip.

2017 [11]. In the past three years, this field has re-
ceived increasing attention due to the release of freely
available datasets and the organisation of a task in
DCASE[2] Challenges from 2020 to 2022. A number of
papers about audio captioning have been published,
with deep learning being a popular method. Specif-
ically, the encoder-decoder framework [14] has been
adopted as a standard recipe for solving this cross-
modal translation task. In this method, the encoder
extracts audio features from the input audio clips, and
the decoder generates captions based on the extracted
audio features. Analyzing audio largely depends on ob-
taining robust audio features. Different kinds of neural
networks, such as Recurrent Neural Networks (RNNs)
[15], Convolutional Neural Networks (CNNs) [16], and
Transformers [17], have been used as the encoders to
learn feature representations. For the decoder, RNNs
and Transformers are usually employed, inspired by
works in NLP. In addition to the encoder-decoder
framework, auxiliary information such as keywords
or sentence information [18, 19], attention-based ap-
proaches [11, 20] and different training strategies [21–
23] have been proposed to improve the performance of
captioning systems. However, there is still a large gap
between achieved results and human level performance
[20].
To the best of our knowledge, no survey papers on

audio captioning have been published so far. In this
paper, we aim to provide a comprehensive overview of
audio captioning with the hope of stimulating novel
research ideas. Articles published up to April 2022
in the literature are considered in our survey. The
encoder-decoder framework has been a standard recipe

[2]http://dcase.community/

for AAC systems, therefore, we develop a taxonomy of
acoustic encoding and text decoding approaches.
This paper is organized as follows. Section 2 intro-

duces the preliminaries of audio captioning. In Sec-
tion 3 and Section 4, we discuss acoustic encoding and
text decoding approaches respectively. Auxiliary infor-
mation is discussed in Section 5. We discuss training
strategies adopted in the literature in Section 6. Fur-
thermore, we review popular evaluation metrics and
main datasets in Section 7 and Section 8, respectively.
Finally, we discuss some open challenges and future
research directions in Section 9 and briefly conclude
this paper in Section 10.

2 Preliminaries of audio captioning
Existing methods for audio captioning are built pre-
dominantly on an encoder-decoder architecture where
the captions are generated in an auto-regressive man-
ner using deep learning techniques. We, therefore, take
the popular encoder-decoder architecture as an exam-
ple to introduce the preliminaries of an audio caption-
ing system. Figure 1 shows the pipeline of an AAC
system based on the encoder-decoder architecture.
Suppose we have a raw waveform of an input audio

clip. Human-engineered features are usually extracted
from the waveform as input representations for the au-
dio encoder. Assume here that mel-spectrogram is used
as the input representation, denoted by x, with a shape
of RT×F , where T is the number of time frames and
F is the number of mel bins. The audio encoder takes
the mel-spectrogram x as input and produces the en-
coded audio features h, which could be a single vec-
tor of shape RC , or a vector sequence of shape RT ′×C

where C is the dimension of the audio feature and T ′ is
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the number of feature vectors, depending on the type
of the encoder and the pooling method used for learn-
ing the encoded audio features. This process can be
formulated as follows:

h = Encθe(x) (1)

where θe are the model parameters of the encoder
(Enc). More discussions about how the features are
learned are given in Section 3.
After getting the encoded audio feature h, the de-

coder generates a sentence S = {w1, ..., wN}, where
wn is a word and N is the number of words in the
sentence. The decoding process can be formulated as
follows:

S = Decθd(h) (2)

where θd are the model parameters of the decoder
(Dec). Typically, the sentence is generated from the
left (i.e. the first word) to the right (i.e. the final word)
in an auto-regressive manner. That is, at time step t,
the decoder predicts a posterior probability over the
vocabulary, given the encoded audio feature h, a start
token w0, and previously generated words w1 to wt−1.
Mathematically,

p(wt|h,w0, ..., wt−1) = Decθd(h,w0, ..., wt−1), (3)

where w0 is a starting word of the sentence. After ob-
taining the word probability p(wt|h,w0, ..., wt−1), the
word wt can be sampled by different decoding meth-
ods, such as greedy decoding or beam decoding [24].
The generation process is terminated when a stop to-
ken is generated or a maximum number of generation
steps is reached.

3 Acoustic encoding
Analyzing the content of an audio clip largely depends
on obtaining an effective feature representation for it,
which is the aim of the encoder in an AAC system.
The time domain waveforms are lengthy 1-D signals
and it is challenging for machines to directly identify
sound events or sound scenes from raw waveforms [25].
Current popular approaches for acoustic encoding con-
sist of two steps, first extracting input representations,
which are often hand-crafted features, such as spec-
trograms from the audio clip, and then passing them
into a neural network to learn encoded compact audio
features. In this section, we first discuss popular hand-
crafted features used in literature, then audio encod-
ing approaches, focusing on those based on deep neural
networks.

3.1 Hand-crafted features
It is challenging for machines to directly understand
an audio clip from its time domain representation.
Hand-crafted features, inspired by the human audi-
tory system have been widely used as sound repre-
sentations for years [25]. In deep learning methods,
these hand-crafted features are used as input repre-
sentations to the neural networks to obtain encoded
audio features. Time-frequency representations, such
as spectrograms, are probably the most popular ones.
To obtain a spectrogram, an audio signal is first split
into short frames of length at around 20-60 ms, as
these short time segments can be regarded as quasi-
stationary [25]. Each time frame is shifted with a fixed
time step. Then a window function is applied at each
frame to enforce continuity and avoid spectral leakage
at the frame boundaries [26]. The short time Fourier
transform (STFT) is calculated for each time frame
to get the spectrogram, a 2-D representation whose
horizontal axis is time and vertical axis is frequency,
the value at each point of the spectrogram represents
the magnitude at a specific time and frequency. In-
spired by the selectivity of human auditory system to
different frequencies, the frequency axis of a spectro-
gram may be converted to different scales, resulting in
representations such as mel-spectrogram and log mel-
spectrogram [25]. The log mel-spectrogram generally
leads to better performance when compared with other
input representations in deep learning based methods
for audio-related tasks [27–29], therefore, it is mainly
used as the input representation in the literature. In
addition, mel-frequency cepstral coefficients (MFCCs)
were used in some early works [20, 30]. MFCCs are
calculated by applying a discrete cosine transform
(DCT) on log mel-spectrograms. Compared with time-
frequency representations, MFCCs contain less infor-
mation and are only able to estimate the global spec-
tral shape of an audio clip [25], thus MFCCs are rarely
used in recent works.

3.2 Neural networks

3.2.1 RNNs
RNNs are designed to process sequential data with
variable lengths [15]. Audio is time series signal, there-
fore RNNs are naturally adopted as encoders in initial
works [11, 30]. In a simple recipe, an RNN is used
to model temporal relationships between the inputs,
and the hidden states of the last layer of the RNN
are regarded as the audio feature sequences, which are
then fed into the text decoder for caption generation.
Figure 2 shows the diagram of an RNN audio encoder.
Drossos et al. [11] utilized a three-layered bi-directional
gated recurrent unit (GRU) network [31] as the en-
coder. Further, unlike using multi-layer RNNs, Xu et
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Figure 2 Diagram of an RNN audio encoder for acoustic
encoding. The RNN encoder aims at modelling temporal
relationships within the input representation. The encoded
audio features usually have the same number of time frames
as the input representation and interact with the decoder
through a pooling or attention mechanism.

al. [19] and Wu et al. [29] used a single-layered uni-
directional GRU network while Ikawa et al. [30] used
a single-layered bi-directional long-short term mem-
ory (LSTM) network [32]. The encoded audio features
output by RNNs usually have thousands of time steps,
Nguyen et al. [33] argued that the length of the cap-
tions is significantly less than the length of the encoded
audio features, making the captioning models difficult
to learn the correspondence between words and au-
dio features. They proposed a temporal sub-sampling
method to sub-sample the learned features between
the RNN layers, and showed that the temporal sub-
sampling of audio features could be beneficial for audio
captioning methods.
The main advantages of employing RNNs as en-

coders are their simplicity and their ability to process
sequential data. However, using RNNs alone as the
encoder is not found to give strong performance [20].
The reason might be that inputs are usually long se-
quences, RNNs may not be able to effectively model
long-range time dependencies. In addition, getting an
global audio feature from long hidden states also leads
to excessive compression of information, making it dif-
ficult for the language decoder to generate fine-grained
descriptions.

3.2.2 CNNs
CNNs have been applied with great success to the field
of computer vision (CV) [16]. In recent years, CNNs
have been adapted to audio-related tasks and show
powerful ability in extracting robust audio patterns
[27, 28]. Figure 3 shows the diagram of a 10-layer CNN
audio encoder that is popularly used in the literature
[34, 35].
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Figure 3 Diagram of a 10-layer CNN audio encoder. The
input representation is first processed via four convolutional
blocks and pooling layers, where each block consists of two
convolutional layers. The feature maps output by the last
convolutional block are then averaged along the frequency axis
and fed into a two-layer multi-layer perceptron (MLP) to
obtain encoded audio features.

Many CNN models pre-trained on large audio
datasets have been published. Most works directly em-
ploy pre-trained CNN models as the audio encoder.
VGG-like CNNs [34, 35] and ResNets [36–38] are pop-
ular choices as these networks perform well on audio-
related tasks such as audio tagging and sound event
detection [27]. In these works, CNNs treat the input
spectrograms as 1-channel images, and model local
dependencies within the spectrograms. Moreover, 1-D
CNN is also incorporated to exploit temporal patterns.
For example, Eren et al. [39] and Han et al. [37] used
Wavegram-Logmel-CNN adapted from pre-trained au-
dio neural networks (PANNs) [27]. The Wavegram-
Logmel-CNN takes both raw waveform and spectro-
gram as inputs, which are processed using 1-D convo-
lution and 2-D convolution, respectively. The outputs
of 1-D convolutional layers and those of 2-D convolu-
tional layers are combined in deep layers. Tran et al.
[40] also proposed to utilise 1-D and 2-D convolutions
for extracting temporal and time-frequency informa-
tion. However, they only used spectrogram as input
and reshape it for 1-D convolution. In summary, the
use of 1-D convolution requires increased computation
overhead, but offers only small performance improve-
ment. The output feature maps of the convolutional
blocks are generally in three dimensions, time, fre-
quency and channels. To obtain encoded audio fea-
tures, some methods use a global pooling along the



Mei et al. Page 5 of 18

time and frequency axis to obtain fixed-sized features
[39], while others keep the time axis and apply pool-
ing operation along the frequency axis to get a feature
sequence [35, 36].
In summary, CNNs outperform RNNs, and are now

the dominant approach for audio encoding. The main
advantages of CNNs are that they are invariant to time
shift and good at modeling local dependencies within
the spectrograms. However, CNNs have limited recep-
tive fields and modeling long-range time dependencies
for long audio signals needs a deep CNN.

3.2.3 CRNNs
Motivated by the demand for modelling the local and
long-range dependencies simultaneously, convolutional
recurrent neural networks (CRNNs) [41], a combina-
tion of CNNs and RNNs, have also been applied as
audio encoders. In a CRNN, RNN layers are intro-
duced after the CNN layers to model the temporal
relationship between extracted CNN features. Kim et
al. [20] proposed a top-down multi-scale encoder where
the features are extracted from two layers of the VG-
Gish network [28], that is, a fully connected layer for
extracting the high-level semantic features and a con-
volutional layer for extracting the mid-level features.
Those features are then encoded by a two-layer bi-
directional LSTM network where the semantic features
are injected in the second layer. Takeuchi et al. [42]
and Xu et al. [43] both adopted a similar CRNN en-
coder without using multi-level features. Xu et al. [44]
compared CNN and CRNN encoders, and showed that
a CRNN encoder outperformed a CNN encoder when
the encoders are trained from scratch but the CRNN
encoder brought little improvement when pre-training
was applied. In summary, CRNNs need more compu-
tation than CNNs but offer limited improvement [44].

3.2.4 Other approaches
Transformers and their variants that are built on self-
attention mechanism have been probably the most
popular models in the fields of NLP and CV since
2017 [17, 45, 46]. Self-attention based encoders are
also employed in recent works in audio captioning.
Koizumi et al. [18] introduce a self-attention block af-
ter CNN layers in the encoder to learn the temporal
relationship between CNN features. Mei et al. [47] pro-
posed Audio Captioning Transformer (ACT), where
the encoder is a convolution-free Transformer that di-
rectly models the relationships between the patches
of the spectrogram. Figure 4 shows the diagram of
the Transformer-based audio encoder in ACT. More
details about Transformer and self-attention will be
introduced in Section 4.2.2. ACT shows comparable
performance with CNN-based methods while it may
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Figure 4 Diagram of the Transformer-based audio encoder.
The input spectrogram is first split into small patches. These
patches are then projected into 1-D embeddings through a
linear layer, where a positional embedding is further added to
each patch embedding to capture position information. The
resulting embeddings are then fed into the Transformer blocks
to obtain the encoded audio features.

need more data for pre-training to obtain good per-
formance. In addition to simply adding self-attention
layers after convolutional layers, convolution and self-
attention can be combined as in [48] by leveraging a
convolution-augmented Transformer (Conformer) [49]
to take advantage of their respective strengths. How-
ever, the Conformer encoder did not outperform the
CNN encoders. The reason might be that they did not
pre-train the Conformer encoder on a large-scale audio
dataset.
In summary, various neural network architectures

have been investigated as the audio encoder in or-
der to obtain robust audio representations. CNNs are
probably the most popular audio encoders and have
achieved state-of-the-art performance. Early works
adopted RNNs as encoders, but the trend has shifted
from RNNs to CNNs. Recently, novel Transformer-
based architectures have received increasing attention
and have shown competitive performance in learning
robust audio features as compared with the CNN en-
coders, however, they typically require more data for
training to achieve similar performance, in comparison
to the CNN networks [47].

4 Text decoding
The aim of the text decoder is to generate a caption
given the audio features from the encoder. Existing
works adopt an auto-regressive method for text gen-
eration, where each word in the caption is predicted
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based on the condition of the audio features extracted
by the encoder and previously predicted words by the
decoder. In addition to the main decoder block, a word
embedding layer is used before the main decoder block
to embed each input word into a fixed-dimension vec-
tor, so that discrete words can be processed by the net-
work. In this section, we first introduce popular meth-
ods for obtaining word embeddings and then discuss
main approaches for text decoding.

4.1 Word embeddings
A simple method to obtain word vectors is to represent
each word as a one-hot vector, in which the element
whose position corresponds to the index of the word
in the vocabulary is set to one, while the remaining
elements are set to zeros. This is called one-hot encod-
ing. If the vocabulary is large, the dimension of the
one-hot vector can be high. Hence, this method may
suffer from the curse of dimensionality and the loss
of semantic information [50]. Word embedding meth-
ods have become popular in recent years. Word em-
beddings are vectors of fixed-dimension, obtained by
neural networks trained on large-scale text corpora.
Semantically similar words are close to each other in
the embedding space, while dissimilar words are far
away from each other [51]. Examples of pre-trained
word embeddings include Word2Vec [51], GloVe [52]
and fastText [53], which are widely used in existing
audio captioning works [18, 20, 34, 39, 43].
Recently, large-scale pre-trained Transform-based

language models [54, 55] have shown powerful abil-
ity in language modelling thanks to the use of the self-
attention mechanism. Weck et al. [56] employed BERT
[54] to obtain word embeddings. They compared the
effect of different pre-trained models on obtaining the
word embeddings, and found that the BERT model
leads to the best performance in obtaining word em-
beddings, while other models, such as Word2Vec and
GloVe, provide slight improvement as compared to
randomly initialized word embeddings.
In summary, word embeddings are semantic vector

representations of words. They are generally stored in
a matrix with the shape of RV×d, where V is the size
of the vocabulary and d is the dimension of the word
vector. They can be retrieved using the indices of the
words in the vocabulary.

4.2 Neural networks

4.2.1 RNNs
Sentences are also sequential data composed by dis-
crete words, thus RNNs are popularly employed as the
language decoder. Figure 5 shows a diagram of RNN-
based language decoder. At each time step, the hidden
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Figure 5 Diagram of an RNN-based language model. The
RNN decoder generates the sentence from the left (i.e. the
first word) to the right (i.e. the final word) in an
auto-regressive manner, given the audio feature sequence
generated from the encoder and previously generated words by
the decoder. A start token ‘<s>’ is fed into the RNN at the
first time step to start the generation, while the generation
process is terminated when a stop token ‘</s>’ is generated.

state of the RNN is projected into a probability dis-
tribution along the vocabulary through a linear layer
with a softmax activation function, and a word can be
predicted accordingly.
Drossos et al. [11] proposed a 2-layer GRU network

as the decoder in their initial work. Many subsequent
works have adopted single-layer RNNs, either GRU or
LSTM networks [20, 30, 33, 36, 57]. The main differ-
ences among these works are on how the audio features
generated by the encoder are fused with the decoder.
In a simple recipe, a global audio feature representa-
tion is obtained by applying mean pooling on the au-
dio feature sequence extracted by the encoder, which
is then used as the initial hidden state of the RNN
decoder [19, 29] or is injected to the RNN decoder
at each time step [33, 39]. This simple mean pool-
ing method for getting a global audio representation
is widely used in audio tagging task to detect what
audio events are present in the whole audio clip [27].
However, this method does not consider the relation-
ships between audio features, and thus, it is unable
to capture the fine-grained information about audio
events. These fine-grained information could be impor-
tant for caption generation. Attention mechanism has
been employed to overcome this problem [11]. When
generating a word at each time step, the RNN decoder
can attend to the whole audio feature sequence and
place more weights on the informative audio features.
Thus, the global audio representation at each time step
is a different combination of the whole audio feature
sequence. In addition, to exploit previously generated
words, Ye et al. [36] introduced another attention mod-
ule to attend to previously generated words at each
time step.
In summary, RNNs with attention show reasonable

performance in audio captioning and are widely used
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Figure 6 Diagram of a Transformer-based language model.
When generating a word at each time step, the masked
multi-head attention module attends to the previously
generated words to exploit contextual information. The output
of the masked self-attention module is then fused with the
audio feature sequence from the encoder in the cross-attention
module.

[36, 43]. The main disadvantage of RNNs is that they
may be struggling to capture long-range dependencies
between the generated words. Fortunately, audio cap-
tions are usually short in length, thus RNN decoders
do not need to model very long-range dependencies.

4.2.2 Transformers
Since Vaswani et al. [17] proposed the Transformer net-
work in 2017, the self-attention mechanism, which is
the core of Transformer, has quickly become the basic
building block in large language models. Transformer-
based models such as BERT [54], GPT [55] and
BART [58] outperform RNNs in language modelling
and dominate most of the tasks in the field of NLP.
Transformer-based models have also been employed in
audio captioning works recently and achieved state-of-
the-art performance.
Transformers are built on the self-attention mecha-

nism. The self-attention module takes a sequence of N
inputs and return N outputs, allowing each input di-
rectly interacts with others within the input sequence
and finds out which they should pay more attention
to. This makes it easier to model long range and global
dependencies within the sequence, as compared with
RNNs. Concretely, given an input sequence, the self-
attention module first transforms the inputs into three
representations, query vectors Q, key vectors K, and
value vectors V by three learnable matrices. For each
input, a scaled dot-product is first calculated between

its query with respect to all keys to obtain the atten-
tion weights. After that, the attention weights are first
converted to probabilities by a softmax function and
then multiplied with each value and summed together
to get the output. This can be formulated as:

Attn(Q,K, V ) = Softmax(
QKT

√
dk

)V. (4)

where dk is a scaling factor. In addition, this computa-
tion can be parallelized for all inputs through matrix
multiplication, the training of Transformer could be
more efficient than that of RNNs. The Transformer
decoder is generally employed as the language decoder
and has a stack of blocks, each of which consists of a
masked self-attention module, a cross-attention mod-
ule and a feed-forward layer module. Figure 6 shows a
diagram of Transformer-based language decoder. The
audio feature sequence obtained from the encoder in-
teracts with the decoder through the cross-attention
module, where K and V are derived from the audio
features, while Q is obtained from the output of the
masked self-attention module. Through these two at-
tention modules, each word in the sequence can attend
to the previously generated words and all the audio
features, which may facilitate the model to capture
the temporal relationships between audio events.
Due to the limited data available in audio caption-

ing, many works use shallow Transformer decoders
[34, 35, 37, 47], usually only two blocks, unlike in NLP
tasks where very deep Transformers are often used
[54, 58]. Some modifications to the standard Trans-
former architecture have also been investigated. For
example, Xiao et al. [59] introduced an attention-free
Transformer decoder to reduce computation overhead,
which they claimed could better capture local infor-
mation within audio features.
In summary, Transformer-based decoders show state-

of-the-art performance in audio captioning, and are
computationally more efficient from RNN-based de-
coders during training.

5 Auxiliary information
In addition to the standard encoder-decoder architec-
ture, researchers have investigated the use of auxiliary
information such as keywords or sentence information
to guide caption generation. In this section, we discuss
the auxiliary information used in the literature.
Audio signals have variable lengths and sound events

can occur over arbitrary time frames, making direct
mapping audio signals to sentences challenging. Fur-
thermore, each sound event can be described with dif-
ferent words, which may lead to the word-selection in-
determinacy problem [18]. To improve caption gener-
ation, keywords are widely employed. To obtain key-
words, Kim et al. [20] retrieve the most similar training
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audio clip from AudioSet, the largest dataset for au-
dio tagging available so far, and convert audio tagging
labels of the retrieved audio clip into keywords. They
then align these keywords with the audio features via
an attention module and feed the output into the de-
coder. Some datasets may not have corresponding la-
bel information for each audio clip, and in this case,
researchers first extract keywords or tags from human-
annotated captions according to some rules such as fre-
quency of the words and part-of-speech of the words
[18, 34, 37, 57, 60]. Different methods were investi-
gated to make use of the keywords. Cakir et al. [57]
introduce a keyword decoder to estimate keywords of
an audio clip, and jointly train the keyword decoder
with the audio captioning model. Chen et al. [34] ex-
tract keywords from captions, and pre-train the au-
dio encoder with an audio tagging task to enhance
the ability of the encoder to learn robust audio pat-
terns. Koizumi et al. [18] employ a keyword estima-
tion branch after the encoder, combining the keywords
with audio features before passing them to the lan-
guage decoder. Ye et al. [36] utilize multi-scale fea-
tures extracted by a CNN encoder for keyword predic-
tion. However, some researchers found that keywords
might not really improve the system performance in
some situations. Takeuchi et al. [42] found that key-
words may not work well when the model was trained
from scratch. Ye et al. [36] claimed their model did
not converge when only using keywords information.
The accuracy of the keywords could be a bottleneck
as wrong keywords might adversely impact on the cap-
tioning performance.
Sentence information has also been investigated.

Ikawa et al. [30] introduce a ‘specificity’ term to mea-
sure the output text based on the amount of informa-
tion it carries. The model is trained to generate cap-
tions whose ‘specificity’ is close to ground truth cap-
tions. Similarly, Xu et al. [19] introduce a sentence loss
to generate captions closer to their ground truths in
the sentence embedding space, employing a pre-trained
language model BERT [54] to get the sentence embed-
dings.
Although different auxiliary information has been

used to improve the caption generation process, these
methods have not brought significant improvements
and they may not work well for all datasets. In the
DCASE challenge 2021, most teams still used the
standard encoder-decoder model without using aux-
iliary information, and still achieved promising results
[21, 35]. How to improve the AAC system with the
auxiliary information still needs more investigation.

6 Training strategies
Supervised training with a cross-entropy (CE) loss is
a standard recipe for training an audio captioning

model. The main drawback of this setting is that it
may cause ‘exposure bias’ due to the discrepancy be-
tween training and testing [61]. Reinforcement learn-
ing has been introduced to solve this problem and di-
rectly optimize evaluation metrics. In addition, trans-
fer learning has been widely used to overcome the data
scarcity problem. In this section, we discuss the pop-
ular training strategies used in the literature.

6.1 Cross-entropy training
The cross-entropy loss with maximum likelihood esti-
mation (MLE) is widely used for training audio cap-
tioning models. During training, this approach adopts
a ‘teacher-forcing’ strategy [61]. That is, the objective
of training is to minimize the negative log-likelihood
(equivalent to maximizing the log-likelihood) of cur-
rent ground truth word given previous ground truth
words at each time step. The cross-entropy loss can be
formulated as follows:

LCE(θ) = − 1

T

T∑
t=1

log p(yt|y1:t−1, x, θ) (5)

where yt is the ground truth word at time step t, T
is the length of the ground truth caption, x is the in-
put audio clip, and θ are the parameters of the audio
captioning model.
Models trained via the cross-entropy loss can gen-

erate syntactically correct sentences and achieve high
scores in terms of the evaluation metrics [35]. However,
there are also some disadvantages. First, the ‘teacher
forcing’ strategy brings the problem known as ‘expo-
sure bias’ [61], that is, each word to be predicted is con-
ditioned on previous ground-truth words in the train-
ing stage, while it is conditioned on previous output
words in the test stage. This discrepancy leads to er-
ror accumulation during text generation in the test
stage. Second, models tend to generate generic and
simple captions even though each audio clip has mul-
tiple diverse human-annotated captions in the training
set [62]. This is because the MLE training tends to en-
courage the use of highly frequent words appearing in
the ground truth captions.

6.2 Reinforcement learning
Xu et al. [43] employ a reinforcement learning ap-
proach to solve the ‘exposure bias’ problem and di-
rectly optimize the non-differentiable evaluation met-
rics. In a reinforcement learning setting, the captioning
model is regarded as an agent and a policy is deter-
mined by the model’s parameters. The agent executes
an action at each time step to sample a word according
to the policy. Once a sentence is generated, the agent
receives a reward of the generated sentence. The goal
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of training is to optimize the model to maximize the
expected reward that could be any evaluation met-
rics. This can be formalized as minimizing negative
expected reward:

LRL(θ) = −Ews∼pθ
[r(ws)], (6)

where ws is a sampled caption from the model, r is the
reward of the sampled caption and θ are the model pa-
rameters. The caption can be sampled via Monte-Carlo
sampling [63], however, it is computationally expen-
sive. Another computationally efficient method, self-
critical sequence training (SCST) [61] is generally em-
ployed. SCST employs the reward of a sentence sam-
pled by greedy search as baseline thus avoids learn-
ing an estimate of expected future rewards. The ex-
pected gradient with respect to a single sample caption
ws ∼ pθ can be approximated as:

∇θLRL(θ) ≈ −(r(ws)− r(ŵ))∇θ log pθ(w
s), (7)

where r(ŵ) is the reward of a caption generated by the
current model using a greedy search.
Reinforcement learning could substantially improve

the scores of the evaluation metrics, although it is
used to optimize only one metric. However, Mei et
al. [35] found that reinforcement learning may impact
adversely on the quality of generated captions by in-
troducing repetitive words and incorrect syntax. This
also implies that existing evaluation metrics may not
correlate well with human judgements.

6.3 Transfer learning
Availability of audio captioning datasets is limited
due to the challenging and time consuming process in
data collection and annotation [64, 65]. To overcome
the data scarcity problem, transfer learning is widely
adopted. In the encoder of the captioning system, pre-
trained audio neural networks such as VGGish [28] and
PANNs [27], are widely used to initialize the param-
eters of encoders [35–37, 66, 67]. Xu et al. [44] in-
vestigated the impact of pre-training on audio cap-
tioning performance. They show that audio encoders
pre-trained with an audio tagging task give the best
performance. Weck et al. [56] compare four off-the-
shelf audio networks. In all the cases, pre-trained au-
dio encoders substantially improve the performance of
the audio captioning system. In the language decoder,
although a lot of pre-trained Transformer-based lan-
guage models have been released in recent years, most
of those models cannot be directly used as the language
decoder, since the decoder needs to interact with audio
features from the encoder via a cross-attention mod-
ule. Koizumi et al. [68] utilize GPT-2 [55] to get word

embeddings. Gontier et al. [69] fine-tune BART [58]
conditioned on the pre-trained audio embeddings and
tags to generate captions and achieve state-of-the-art
performance. To leverage pre-trained BERT [54], Liu
et al. [70] investigate the addition of cross-attention
layers with randomly initialized weights in the pre-
trained BERT models as the decoder and demonstrate
the efficacy of the pre-trained BERT models for audio
captioning.

In summary, pre-trained audio encoders have proved
to be effective to get robust audio features and over-
come the data scarcity problem, while how to incor-
porate existing large pre-trained language models into
an audio captioning system still needs further investi-
gation.

6.4 Other approaches

Contrastive learning has been a popular training
method in CV tasks [75, 76], Liu et al. [23] and Chen
et al. [73] both investigated using contrastive train-
ing to learn better alignment between audio and text.
Specifically, an audio clip and its paired caption are
regarded as a positive pair while audio clips with other
non-paired captions are regarded as negative pairs. A
contrastive loss is combined with the original cross-
entropy loss to encourage the model to maximize the
similarity of the embeddings from the positive pairs
while minimizing the similarity of the embeddings
from the negative pairs. Koh et al. [66] also proposed
an auxiliary objective aiming at maximizing the sim-
ilarity between latent space formed by audio features
obtained by the encoder and the latent space formed
by text features obtained by the decoder. Berg et al.
[22] presented a continual learning approach for con-
tinuously adapting an audio captioning method to new
unseen general audio signals without forgetting learned
information. Mei et al. [62] argued that an audio cap-
tioning system should have the ability to generate di-
verse captions for a given audio clip or across similar
audio clips like human beings. They proposed an ad-
versarial training framework based on generative ad-
versarial network (GAN) [77] to encourage the diver-
sity of audio captioning systems. In addition, because
ASR and AAC share similarities in translating sound
into natural language, Narisetty et al. [74] proposed
approaches for end-to-end joint modeling of speech
recognition and audio captioning tasks.

A brief overview of the published audio captioning
methods is shown in Table 1, which contains the type
of deep neural networks used to encode audio informa-
tion, the language models used to generate captions,
and the key aspects of these methods in the final col-
umn.
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Table 1 An overview of published methods for audio captioning.

Reference Year Audio Encoder Text Decoder Key aspects
Drossos et al. [11] 2017 RNN RNN Attention

Wu et al. [29] 2019 RNN RNN N\A
Xu et al. [19] 2019 RNN RNN Sentence similarity loss

Ikawa et al. [30] 2019 RNN RNN ‘Specificity’ term
Kim et al. [20] 2019 CNN(VGGish)+RNN RNN Multi-scale features, Semantic attention

Nguyen et al. [33] 2020 RNN RNN Temporal subsampling
Cakir et al. [57] 2020 RNN RNN Multi-task learning (keywords)

Perez-Castanos et al. [71] 2020 CNN RNN Attention
Chen et al. [34] 2020 CNN Transformer Pre-trained encoder
Xu et al. [43] 2020 CRNN RNN Reinforcement learning

Takeuchi et al. [42] 2020 CNN+RNN RNN Keywords, sentence length estimation
Tran et al. [40] 2020 CNN Transformer 1-D and 2-D CNN
Eren et al. [39] 2020 CNN(PANNs)+RNN RNN Keywords

Koizumi et al. [18] 2020 CNN(VGGish)+Transformer Transformer Keywords
Koizumi et al. [68] 2020 CNN(VGGish) GPT-2+Transformer GPT-2, similar captions retrieval

Xu et a. [44] 2021 CNN\CRNN RNN Attention, transfer learning
Mei et al. [35] 2021 CNN(PANNs) Transformer Transfer learning, reinforcement learning
Mei et al. [47] 2021 Transformer Transformer Full transformer network
Han et al. [37] 2021 CNN(PANNs) Transformer Weakly-supervised pre-training, keywords
Ye et al. [36] 2021 CNN(PANNs) RNN Keywords, attention

Gontier et al. [69] 2021 CNN(VGGish) BART YAMNet tags, BART
Narisetty et al. [48] 2021 CNN(PANNs)+Conformer Transformer+RNN ASR techniques

Liu et al. [23] 2021 CNN(PANNs) Transformer Contrastive learning
Won et al. [72] 2021 CNN(PANNs) Transformer Transfer learning
Berg et al. [22] 2021 CNN Transformer Continual learning
Weck et al. [56] 2021 CNN(VGGish,YAMNet,OpenL3,COALA) Transformer Transfer learning
Mei et al. [62] 2021 CNN(PANNs) Transformer GAN, diversity
Xiao et al. [59] 2022 CNN Transformer Attention-free Transformer
Liu et al. [70] 2022 CNN(PANNs) BERT Transfer learning, BERT

Chen et al. [73] 2022 CNN Transformer Transfer learning, contrastive learning
Koh et al. [66] 2022 CNN(PANNs)+Transformer Transformer Transfer learning, regularization

Narisetty et al. [74] 2022 Transformer Transformer Joint modelling of ASR and AAC

7 Evaluation metrics
Evaluating audio captions is a challenging and sub-
jective task, because an audio clip can correspond to
several correct captions that may use different words,
grammar, and/or describe different parts of the audio
clip. Existing works adopt the same evaluation met-
rics used in image captioning, where most of these
metrics are borrowed from NLP tasks such as ma-
chine translation and summarization, and the remain-
ing are designed specifically for image captioning. The
automatic evaluation metrics compare the machine-
generated captions with human-annotated references
where the number of references for each audio clip may
vary across different datasets. The number of parallel
references will influence the evaluation results. Gener-
ally, more reference captions are favored to reduce the
evaluation bias [78]. In this section, we first introduce
the conventional rule-based metrics, and then discuss
some novel model-based metrics.

7.1 Conventional evaluation metrics
BLEU. BLEU (BiLingual Evaluation Understudy)
[79] is originally designed to measure the quality of
machine-generated sentences for machine translation
systems. BLEU calculates modified n-gram precision
for n up to four: the counts for n-grams in candidate
sentence is first collected and clipped by their corre-
sponding maximum count in references, the clipped

counts are then summed and divided by the total num-
ber of candidate n-grams, where the n-gram is a win-
dow consisting of n consecutive words. The modified
n-gram precisions are averaged with uniform weights
to account for both adequacy and fluency, where 1-
gram matches account for adequacy while longer n-
gram matches account for fluency. As precision tends
to give short sentences higher scores, a brevity penalty
is introduced to penalize short sentences.
ROUGE. ROUGE (Recall-Oriented Understudy for
Gisting Evaluation) [80] includes a set of metrics pro-
posed to measure the quality of a machine-generated
summary [80]. ROUGE-L which is widely used in im-
age and audio captioning is based on the matching of
the longest common subsequence between a candidate
and a reference caption. ROUGE-L first counts the
length of the longest common subsequence between a
candidate and a reference, which is then divided by
the total lengths of the candidate and reference to get
precision and recall respectively. An F-measure com-
bining precision and recall is then calculated as the
score of ROUGE-L, which favors recall more.
METEOR. METEOR (Metric for Evaluation of
Translation with Explicit ORdering) [81] is also a met-
ric to evaluate machine translation systems. METEOR
calculates unigram precision and unigram recall based
on an explicit word-to-word matching in terms of their
surface forms, stemmed forms, and meanings between
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a candidate and one or more references. An F-mean
placing most of the weight on recall is then computed.
To take into account longer matches, unigrams that
are in adjacent positions in candidate and references
are grouped into chunks, a penalty based on chunks
is introduced and combined with F-mean to give the
final METEOR score.
CIDEr. CIDEr (Consensus-based Image Description
Evaluation) [82] is an automatic consensus metric for
evaluating image description quality. CIDEr also rep-
resents sentences using n-grams presented in them,
where each n-gram is weighted by the term frequency
inverse document frequency (TF-IDF) weights because
n-grams that commonly occur in a dataset are likely to
be non-informative. CIDEr computes the cosine simi-
larity of weighted n-grams between candidate and ref-
erences, which accounts for both precision and recall.
Similar to BLEU, CIDEr considers higher order n-
grams (up to four) to capture grammatical properties
and richer semantics.
SPICE. SPICE (Semantic Propositional Image Cap-
tion Evaluation) [83] is an image captioning evaluation
metric based on semantic content matching. SPICE
parses both candidate and references into scene graphs
in which the objects, attributes and relations are en-
coded. An F-score is then calculated based on the
matching of tuples extracted from the candidate and
reference scene graphs. SPICE ignores the properties
of grammar and fluency of sentences but only focuses
on semantic matching.
SPIDEr. SPIDEr [84] is proposed for evaluating im-
age captions and used as the official ranking metric in
the automatic audio captioning task in DCASE Chal-
lenge. SPIDEr is the average of SPICE and CIDEr: the
SPICE score ensures captions are semantically faithful
to the content, while CIDEr score ensures captions are
syntactically fluent.

7.2 Model-based metrics
BERTScore. BERTScore [85] is an evaluation met-
ric for text generation tasks. Unlike conventional met-
rics which almost all rely on surface-form similarity,
BERTScore utilizes pre-trained BERT [54] contex-
tual embeddings that can capture semantic similar-
ity, distant dependencies and ordering. After getting
contextual embedding of each token through BERT,
BERTScore measures the similarity of each token be-
tween candidate and references through cosine simi-
larity where each token is matched to the most sim-
ilar token in the other sentences. The matched token
pairs are used to calculate a precision, recall and an
F1 measure. Importance weighting with inverse docu-
ment frequency is also introduced to weight rare words
more.

SentenceBERT. SentenceBERT [86] is not essen-
tially an evaluation metric but a modification of the
pre-trained BERT model [54]. The SentenceBERT
model can be used to obtain fixed-sized sentence em-
beddings for input captions. The sentence embeddings
are then used to calculate a similarity score, such as co-
sine similarity, Euclidean distance or other similarities,
between candidate and reference captions. Compared
with BERTScore that measures the similarity in token
level, SentenceBERT can be used for audio captioning
for similarity comparison in sentence level.
FENSE. FENSE (Fluency ENhanced Sentence-bert
Evaluation) [87] is a model-based evaluation metric
specifically proposed for audio captioning. FENSE uti-
lizes the Sentence-BERT to derive sentence embed-
dings for candidate and reference captions, and cal-
culates its average cosine similarity score. To cap-
ture grammar issues like repeated words or phrases
and incomplete sentences, FENSE uses a separate pre-
trained error detector to penalize the Sentence-BERT
scores when fluency issues are detected.
In summary, conventional rule-based metrics are

widely used to evaluate the performance of audio cap-
tioning systems. Most of these metrics focus on n-gram
or sub-sequence based matching between the generated
and reference captions. CIDEr and SPICE, proposed
for image captioning, have shown better correlation
with human judgements in captioning tasks than those
borrowed from NLP tasks [82, 84]. However, some au-
thors have shown that these metrics still cannot resem-
ble human judgment well [87, 88]. Model-based metrics
have received increasing attention and shown better
correlation with human judgements in NLP tasks, but
they have not been widely used in captioning tasks so
far. We introduce them here to encourage research ef-
fort for developing novel metrics for audio captioning.

8 Datasets
The release of high quality audio captioning datasets
has greatly promoted the development of this area. Al-
most all existing datasets (except one) are collections
of single-sentence English captions, however, these
datasets differ in many aspects such as the number
of audio clips, the number of captions per audio clip,
and the length of each audio clip. These different char-
acteristics will affect the design and the performance of
the audio captioning model. We describe the details of
existing datasets in this section. To better understand
the datasets, we then use consensus score of previously
introduced metrics to evaluate these datasets.

8.1 Datasets description
AudioCaps. AudioCaps [20] is the largest audio cap-
tioning dataset so far. All the audio clips are 10-
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Table 2 Performances of some surveyed audio captioning methods on two main datasets. Scores are taken from the respective papers.
Only single model performance is considered. Compared to Clotho v1, Clotho v2 introduces new audio clips into the training set and a
new validation set, while retaining the same evaluation set. Some methods merge the new validation set into the training set, these
methods are still evaluated using the same evaluation set. We report these results separately.

Dataset Method Year BLEU1 BLEU2 METEOR CIDEr SPICE SPIDEr

AudioCaps

Kim et al. [20] 2019 0.614 0.446 0.203 0.593 0.144 0.369
Koizumi et al. [68] 2020 0.638 0.458 0.199 0.603 0.139 0.371

Eren et al. [39] 2020 0.710 0.490 0.290 0.750 - -
Xu et al. [44] 2021 0.655 0.476 0.229 0.660 0.168 0.414
Mei et al. [47] 2021 0.647 0.488 0.222 0.679 0.160 0.420

Gontier et al. [69] 2021 0.699 0.523 0.241 0.753 0.176 0.465
Liu et al. [70] 2022 0.671 0.498 0.232 0.667 0.172 0.420

Clotho v1

Drossos et al. [64] 2019 0.420 0.140 0.090 0.100 - -
Cakir et al. [57] 2020 0.409 0.156 0.088 0.107 0.040 0.074

Nguyen et al. [33] 2020 0.417 0.154 0.089 0.093 0.040 0.067
Perez-Castanos [38] 2020 0.469 0.265 0.136 0.214 0.086 0.150

Tran et al. [40] 2020 0.489 0.303 0.143 0.268 0.095 0.182
Takeuchi et al. [42] 2020 0.512 0.325 0.145 0.290 0.089 0.190
Koizumi et al. [18] 2020 0.521 0.309 0.149 0.258 0.097 0.178

Chen et al. [34] 2020 0.534 0.343 0.160 0.346 0.108 0.227
Xu et al. [43] 2020 0.561 0.341 0.162 0.338 0.108 0.223

Eren et al. [39] 2020 0.590 0.350 0.220 0.280 - -
Xu et al. [44] 2021 0.556 0.363 0.169 0.377 0.115 0.246

Koh et al. [66] 2022 0.551 0.369 0.165 0.380 0.111 0.246

Clotho v2

Narisetty et al. [48] 2021 0.536 0.341 0.160 0.346 0.108 0.227
Won et al. [72] 2021 0.564 0.376 0.177 0.441 0.128 0.285
Ye et al. [36] 2021 0.577 - 0.174 0.419 0.119 0.269

Han et al. [37] 2021 0.585 0.392 0.177 0.474 0.130 0.302

Clotho v2 + val set

Narisetty et al.[48] 2021 0.541 0.346 0.161 0.362 0.110 0.236
Liu et al. [23] 2021 0.553 0.349 0.168 0.368 0.115 0.242
Mei et al. [35] 2021 0.561 0.374 0.171 0.426 0.124 0.275

Chen et al. [73] 2022 0.572 0.379 0.171 0.407 0.119 0.263
Xiao et al. [59] 2022 0.578 0.387 0.177 0.434 0.122 0.278

seconds long and are sourced from AudioSet, a large-
scale audio event dataset [1]. The audio clips are se-
lected by following some selection qualifications that
ensure the chosen audio clips are balanced with respect
to the ground truth annotations (tags) in the original
dataset and diverse in terms of content. The audio clips
are annotated by crowdworkers through Amazon Me-
chanical Turk (AMT), annotators are provided with
an audio clip with corresponding word hints and video
hints, and are required to write a natural language de-
scription with provided information.
The official release of AudioCaps contains 51k audio

clips and is divided into a training set, a validation
set and a test set. Each audio clip in the training set
contains one corresponding human-annotated caption
while those in validation set and test set contain five
corresponding captions. Audio clips in AudioSet are
not freely available but can be extracted from YouTube
videos. It is worth noting that some audio clips might
be no longer downloadable, thus the number of down-
loadable audio clips might be different from the offi-
cial release of AudioCaps. The statistics in Table 3 are
reported based on the official release version of Audio-
Caps.
Clotho. Clotho [64] is the dataset used for official
ranking of the submitted systems in the task 6 (Au-
tomated Audio Captioning) of DCASE challenges in

Table 3 An overview of English-annotated datasets.

Dataset
# of

audios
# of captions

per audio
Audio

duration
Vocab

size
Avg caption

lengths

AudioCaps 51 308 1, 5 10 s 5066 8.79
Clotho 5929 5 15-30 s 4365 11.33
MACS 3930 2, 3 ,4, 5 10 s 2776 9.24

2020 and 2021. All the audio clips are sourced from the
online platform Freesound [89] and are ranging almost
uniformly from 15 to 30 seconds. Annotators are em-
ployed through AMT for crowdsourcing the captions.
During the annotation process, only the audio signal
was provided to the annotators, with no additional in-
formation such as word or video hints (different from
AudioCaps), to avoid introducing biases.

The latest Clotho v2 published a development set
containing three subsets. There are 3839 audio clips in
the training set and 1045 audio clips in the validation
and evaluation set, respectively. Each audio clip con-
tains five human-annotated captions, ranging from 8
to 20 words long. In the DCASE challenges, all three
of these published sets can be used to train the mod-
els, while the final performance is evaluated using a
preserved testing split by the organisers. For reporting
results for conference or journal papers, performances
are assessed using the published evaluation set and
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some authors may include the validation set into train-
ing since the validation set is added in Clotho v2. As a
result, the model performance reported on Clotho may
not all be on the same ground.

MACS. MACS (Multi-Annotator Captioned Sound-
scapes) [65] consists of audio clips from the develop-
ment set of TAU Urban Acoustic Scenes 2019 dataset
[90]. The audio clips are all 10-second long recorded
from three acoustic scenes (airport, public square and
park) and are annotated by students. The annotation
process contains two stages. Given a list of ten classes
and an audio clip, the annotators are first required to
select the audio events presented in an audio clip from
the given class list. Afterwards, the annotators are re-
quired to write a description of the audio clip.

MACS contains 3930 audio clips without being split
into subsets. The number of captions per audio clip
varies in the dataset. Most audio clips have five cor-
responding human-annotated captions, while some of
them may only have two, three or four.

AudioCaption AudioCaption is a domain-specific
Mandarin-annotated audio captioning dataset. Two
scene-specific sets have been published: one for hos-
pital scene [29] and another for car scene [19]. The
hospital-scene set contains 3707 audio clips with three
captions per clip while the car-scene set contains 3602
audio clips with five captions per clip. All the audio
clips are annotated by native Mandarin speakers.

8.2 Datasets evaluation

Since all the datasets mentioned above are annotated
under different protocols, they show different charac-
teristics such as the number of captions per audio clip,
caption lengths and sample variance in multi-reference
captions. We believe these characteristics will influ-
ence the design and performance of audio captioning
models. To better understand the datasets, we eval-
uate three English-annotated datasets from different
aspects. Table 2 reports the performance of some sur-
veyed methods on two main datasets, AudioCaps and
Clotho, for which some methods listed in Table 1, such
as [11, 19, 30], are not considered as they were not
evaluated on these two datasets. Table 3 summarizes
the datasets with some basic statistics. In addition, we
use a consensus score [78] to represent the agreement
among the parallel reference captions for the same au-
dio clip, and the results are shown in Table 4. The
consensus score c among n parallel reference captions
R = {ri}ni=1 for an audio clip is defined as:

c =
1

n

n∑
i=1

metric(ri,R\ri) (8)

where ri is the i-th caption and the metric can be
anyone mentioned above. Since the number of refer-
ences are varied among different datasets, we report
the consensus score of AudioCaps using the validation
and test set, Clotho using the training set and MACS
using all the audio clips having five reference captions.
As the consensus scores are computed among the

human-annotated captions, they can be also regarded
as upper bound human-level performance on each
dataset. As can be seen from Table 4, the consensus
scores on AudioCaps and Clotho are close to each other
except that the SentenceBERT score on AudioCaps is
clearly higher than that of Clotho. Surprisingly, the
consensus scores on MACS are lower than the other
two datasets while only the SentenceBERT is close to
them. This may reveal that the human-annotated cap-
tions in MACS are more diverse than the other two,
and SentenceBERT can better capture semantic rele-
vance between diverse captions. The consensus scores
can be regarded as a measure of the dataset quality to
some extent.

9 Challenges and future directions
Many deep learning-based methods have been pro-
posed to improve automated audio captioning systems,
and this task has seen rapid progress in recent years.
However, there is still a large gap between the perfor-
mance of the resulting systems and human level perfor-
mance. In this section, we discuss challenges remaining
in this area and envisage possible future research di-
rections.

9.1 Data
There are two main challenges about data for au-
dio captioning. First, the data scarcity problem is
still a main challenge. Existing datasets are limited
in size. The collection of an audio captioning dataset
is time consuming, and it is hard to control the qual-
ity of human-annotated captions. Han et al. [37] collect
weakly labeled dataset from online available sources to
pre-train the AAC model and show that more training
data (even weakly-labelled) can greatly improve the
system performance. This reveals that we can make
use of audio clips available online with their weakly-
labelled text description to learn more robust audio-
text representation, such as CLIP [91] in computer vi-
sion.
Second, existing datasets usually do not cover all

possible real-life scenarios, and thus, audio caption-
ing models cannot generalize well to different contexts.
Martin et al. [65] investigate dataset bias of existing
datasets from a lexical perspective. The bias problem
still needs more investigation, e.g. how it will influence
the model performance.
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Table 4 Consensus scores of English-annotated datasets.

BLEU1 BLEU2 BLEU3 BLEU4 ROUGE-L METEOR CIDEr SPICE SPIDEr BERTScore SentenceBERT
AudioCaps 0.65 0.48 0.37 0.29 0.49 0.28 0.90 0.21 0.56 0.52 0.64

Clotho 0.65 0.49 0.38 0.31 0.50 0.30 0.86 0.23 0.54 0.54 0.53
MACS 0.49 0.28 0.16 0.08 0.32 0.18 0.21 0.13 0.17 0.24 0.52

9.2 Model and training strategies

Existing AAC methods all follow the encoder-decoder
paradigm and generate sentences in an auto-regressive
manner. These two techniques have been the standard
recipe for audio captioning models. Nonetheless, novel
methods should be investigated in future research. For
example, BERT-like architectures which fuse acoustic
and textual modalities in early stage can be a replace-
ment for the encoder-decoder paradigm, and work well
in image captioning [92, 93]. Non-auto-regressive lan-
guage models could reduce the inference time by gener-
ating all words in parallel [94], which might be a worth-
while research direction as it offers computational ad-
vantages, despite the fact that it under-performs the
auto-regressive models in terms of captioning accuracy.

For the training strategies, the standard cross-
entropy loss brings the problem of ‘exposure bias’
and tends to generate simple and generic captions. Al-
though reinforcement learning is introduced to solve
this problem, it may adversely affect the quality of
generated captions. A promising line of research is to
design new objective functions or add human feedback
in a reinforcement learning setting to solve these prob-
lems. In addition, it requires more investigation on how
to make use of learned knowledge in large pre-trained
language models to improve caption generation.

9.3 Evaluation

The performance of audio captioning systems is gen-
erally assessed by objective evaluation metrics, since
the human evaluation can be time-consuming and ex-
pensive. As discussed in the end of Section 7, existing
objective metrics may not correlate well with human
judgements [35, 87, 88], and none of them are designed
specifically for audio captioning. Future work is ex-
pected to figure out to what extent the existing objec-
tive metrics correlate with human judgements, and to
develop more reliable evaluation metrics.

9.4 Diversity and stylized captions

As argued in [95], a good captioning model should gen-
erate sentences that possess three properties: fidelity,
i.e. the generated captions should reflect the audio
content faithfully; naturalness, i.e. the captions should
not be identified as machine-generated; diversity, i.e.
the sentences should have rich and varied expressions,

reflecting how different people would describe an au-
dio clip in different ways. However, many existing ap-
proaches only consider semantic fidelity. Further re-
search should be conducted to improve the other two
properties. In addition, stylized captioning systems,
which can generate outputs suitable for different au-
diences such as kids, could be a worthwhile research
direction.

9.5 Other potential directions

There are also other potential directions for audio
captioning. For example, temporal information of the
sound events is not well used in existing works. Fu-
ture work could investigate the use of information re-
lated to activities and timing information of sound
events to generate more accurate captions. Informa-
tion from other modalities could be also employed
to train the audio captioning models, such as using
audio-visual captioning methods [96, 97]. In addition,
audio captioning can be potentially linked with other
audio-language multi-modal tasks, such as audio-text
retrieval [12, 98], audio question answering [99], text-
based audio generation [100] and text-based audio
source separation [101].

10 Conclusion
Audio captioning is a fast developing task involving
both audio signal processing and natural language pro-
cessing. In this paper, we have reviewed published au-
dio captioning methods from the perspective of audio
encoding and text decoding. We discussed auxiliary in-
formation employed to guide the caption generation,
and training strategies adopted in the literature. In
addition, main evaluation metrics and datasets are re-
viewed. We briefly outlined challenges and potential
research directions in this area. We hope this survey
can serve as a comprehensive introduction to audio
captioning and encourage novel ideas for future re-
search.
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