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Abstract—Automated audio captioning is a cross-modal trans-
lation task for describing the content of audio clips with natural
language sentences. This task has attracted increasing attention
and substantial progress has been made in recent years. Captions
generated by existing models are generally faithful to the con-
tent of audio clips, however, these machine-generated captions
are often deterministic (e.g., generating a fixed caption for a
given audio clip), simple (e.g., using common words and simple
grammar), and generic (e.g., generating the same caption for
similar audio clips). When people are asked to describe the
content of an audio clip, different people tend to focus on different
sound events and describe an audio clip diversely from various
aspects using distinct words and grammar. We believe that an
audio captioning system should have the ability to generate
diverse captions, either for a fixed audio clip, or across similar
audio clips. To this end, we propose an adversarial training
framework based on a conditional generative adversarial network
(C-GAN) to improve diversity of audio captioning systems. A
caption generator and two hybrid discriminators compete and are
learned jointly, where the caption generator can be any standard
encoder-decoder captioning model used to generate captions, and
the hybrid discriminators assess the generated captions from
different criteria, such as their naturalness and semantics. We
conduct experiments on the Clotho dataset. The results show that
our proposed model can generate captions with better diversity
as compared to state-of-the-art methods.

Index Terms—Audio captioning, GANs, deep learning, cross-
modal task, reinforcement learning

I. INTRODUCTION

AUTOMATED audio captioning (AAC) is the task of gen-
erating natural language sentences to describe the content

of audio clips [1], which has received increasing attention in
recent years. Compared with another popular audio-text task-
automatic speech recognition (ASR), AAC mainly focuses on
environmental sounds, rather than speech content that may
be present in audio clips. In general, generated captions are
expected to describe the predominant audio events occurring
in an audio clip, while detailed information such as properties
of the sounding objects, spatial-temporal relationships between
audio events, and information about the acoustic environment
could also be described. Practical applications of AAC sys-
tems include helping the hearing-impaired understand their
surrounding environments, leveraging generated captions for
audio index or retrieval, and monitoring sound in surveillance
systems. Benefiting from the release of high-quality datasets
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[2]–[4] and the advances of deep learning techniques, a variety
of audio captioning methods have recently been developed,
and have greatly improved the performance of audio caption-
ing systems [5]–[16].

Similar to other types of multimedia captioning systems
[17]–[19], we argue that an audio captioning system is
expected to possess three properties: (1) fidelity-generated
captions should be semantically faithful to the content of
the described audio clip; (2) naturalness-the style of the
generated captions should be similar to the style of human
writing, such that humans cannot easily tell whether the
captions are generated by a machine; and (3) diversity-an
ideal AAC system should generate captions with varying
expressions when an identical audio clip is presented multiple
times or when analogous audio clips are presented. However,
existing audio captioning systems are mainly evaluated using
metrics borrowed from natural language processing (NLP) and
image captioning, such as BLEU [20], METEOR [21], and
CIDEr [22], which are based on calculating n-gram or sub-
sequence matching between generated captions and ground-
truth human annotations, thus only account for the property
of fidelity. Other two properties, naturalness and diversity, are
often ignored.

In practice, describing the content of an audio clip is subjec-
tive for each person. Given an audio clip, people may focus on
different sound events and tend to describe the content using
distinct words, phrases and grammar. Consequently, human-
annotated captions exhibit rich diversity. This phenomenon
is readily observable in prevalent audio captioning datasets
[3], [4], where each audio clip is accompanied by several
diverse, human-annotated captions as ground-truths. However,
the captions generated by even state-of-the-art (SOTA) audio
captioning models are deterministic (i.e. generating a fixed
caption for a given audio clip), simple (i.e. using common
words and simple grammar), and generic (i.e. generating same
caption for similar audio clips). These issues are likely caused
by the popular training method, i.e. maximum likelihood es-
timation (MLE), which encourages the use of high-frequency
words and common expressions occurring in the training
set. Even though each audio clip is provided with multiple
reference captions, the generated captions tend to converge
to the words or n-grams which occur most frequently in
reference captions under the MLE training, leading to a limited
vocabulary utilization. As a consequence, the resulting systems
might attain high scores on n-gram based fidelity metrics, but
falter on the diversity dimension. In this work, our driving
motivation is to improve the diversity of the audio captioning
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systems, which encompasses improving vocabulary utilization
and generating captions with varying expressions.

To encourage the diversity of audio captions, we propose
an adversarial training framework based on a conditional
generative adversarial network (C-GAN) [23]. Our proposed
model is composed of a caption generator, two hybrid dis-
criminators and a language evaluator. The generator is trained
to generate natural and diverse captions while the hybrid
discriminators are responsible for distinguishing the generated
captions from the perspective of naturalness and semantics.
The generator and two discriminators compete, and are trained
in an adversarial manner. To ensure the system can still achieve
high scores on fidelity-based evaluation metrics, a language
evaluator is introduced to evaluate the generated captions
using the metric CIDEr. This metric is a pre-defined measure,
therefore, the language evaluator is not incorporated into the
adversarial training process.

A caption is composed of discrete words, therefore, it
is not feasible to update the generator by making slight
changes to the discrete output values with respect to the
gradients back-propagated from the discriminators. Inspired
by SeqGAN [24], we address this problem by policy gradient
[25], a reinforcement learning technique. The scores from the
discriminators and evaluator are regarded as a reward that the
generator is trained to maximize. The experimental outcomes
indicate that our proposed adversarial training framework can
effectively enable the captioning model to generate diverse
captions at both the corpus and set levels. Impressively, there’s
only a slight decline in the scores as evaluated by traditional
fidelity-based metrics. Moreover, when assessed using GPT-4
[26], captions produced by our C-GAN model demonstrated
superior naturalness in comparison to the MLE baseline.

Our contributions can be summarized as follows: (1) to our
knowledge, this is the first work to explore diversity in audio
captioning; (2) we propose the first GAN-based adversarial
training framework for audio captioning to improve the diver-
sity of the captioning system; (3) extensive experiments show
that our proposed framework can generate accurate and diverse
captions, as compared to other state-of-the-art methods.

This paper extends our ICASSP conference version [27] in
the following three aspects. First, we improve the adversarial
training framework by incorporating the semantic evaluator
into the adversarial training process, which lead to hybrid dis-
criminators, along with the original naturalness discriminator.
The improved hybrid discriminators make the generated cap-
tions more diverse and accurate. Second, we provide additional
details for the implementation of our proposed algorithm.
Third, we conduct extensive experiments and analysis of the
results, such as investigating the effect of the noise vector and
studying how MLE pre-training impacts on our proposed GAN
training process. The remainder of this paper is organized as
follows. Section II introduces the related works. Our proposed
method is described in Section III. Experimental details and
results are discussed in Section IV and Section V, respectively.
Finally, we conclude this work in Section VI.

II. RELATED WORKS

In this section, we review related works in audio captioning
including proposed methods and popular evaluation metrics.

A. Audio Captioning Methods

Inspired by the great success of encoder-decoder paradigm
[28] for text generation tasks in NLP, existing audio captioning
models largely follow the encoder-decoder framework [28]
and are trained in an end-to-end manner, in which an audio
encoder first extracts audio features from the input audio
clips and a text decoder generates captions based on the
features extracted by the encoder [5]. Audio and text are both
sequence data, therefore, recurrent neural networks (RNNs)
[29] have been widely employed as both the encoder and
decoder in early works [5], [30]–[32]. With convolutional neu-
ral networks (CNNs) [33] showing outstanding performance
in audio-related tasks [34]–[36], Chen et al. [7] employed a
CNN as the audio encoder and significantly improved the
performance of audio captioning systems over the RNN-
based models. Further, to combine the advantages of RNNs
and CNNs, Xu et al. [6] investigated using convolutional
recurrent neural networks (CRNNs) to model both the local
and long-range dependencies within input features. Recently,
Transformer [37] was incorporated into audio captioning mod-
els as both the audio encoder and text decoder, showing
SOTA performance [7], [8], [11], [38]. In addition to the
study on model architectures, different training strategies (e.g.,
contrastive learning and reinforcement learning) and auxiliary
information (e.g., keywords and sentence information) have
also been investigated. More related work can be found in our
recent survey paper [1].

Audio captioning models described above are generally
trained with maximum likelihood estimation, that is, maxi-
mizing the conditional log-likelihood of ground-truth words
using the cross-entropy (CE) loss,

LCE(θ) = − 1

T

T∑
t=1

log p(yt|y1:t−1, x, θ) (1)

where x is the input audio clip, θ are the parameters of the
model, T is the length of the caption, and yt is the ground-
truth word at time step t. MLE training encourages the use of
highly frequent expressions occurring in the training set and
common words among multiple reference captions. As a result,
the generated captions are often generic and simple, and the
variants of diverse expressions in the reference captions cannot
be captured effectively.

B. Performance Metrics

As a text generation task, most metrics for evaluating
audio captioning algorithms are directly borrowed from NLP
tasks such as machine translation and summarization. These
metrics, including BLEU [20], ROUGE [39] and METEOR
[21], calculate the precision or recall based on n-gram or sub-
sequence matching between generated and reference captions,
where an n-gram refers to a contiguous sequence of n words.
In addition, there are two metrics borrowed from image
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Fig. 1. Overview of the proposed adversarial training framework, where the caption generator aims at generating captions to confuse the two hybrid
discriminators, while the naturalness discriminator aims at correctly classifying human-annotated and machine-generated captions, and the semantic
discriminator aims at discriminating whether the generated captions are faithful to the content of the given audio clips. The language evaluator evaluates
captions based on conventional evaluation metrics.

captioning, CIDEr [22] and SPICE [40]. CIDEr is also based
on n-gram matching, but improved by applying term frequency
inverse document frequency (TF-IDF) weights to the n-grams
to account for some rare but more informative words. SPICE
parses the captions into scene graphs and calculates an F-
score based on the matches between semantic relations in the
scene graphs. Recently, model-based metrics have also been
introduced to mitigate the shortcomings of traditional methods
[41]. The above metrics all focus on evaluating the fidelity of
a captioning system.

III. PROPOSED FRAMEWORK

In this section, we introduce our proposed adversarial train-
ing framework for generating diverse captions given a fixed
audio clip. Our proposed framework consists of a caption
generator and two hybrid discriminators. The generator and the
hybrid discriminators are trained alternatively in an adversarial
manner. Furthermore, a language evaluator is introduced to
provide feedback to the generator using a conventional metric,
which is not involved in the adversarial training process. The
diagram of the proposed framework is shown in Fig. 1.

A. Caption Generator

Given an audio clip, the caption generator aims at generating
a sentence to describe its content. To achieve the property of
diversity, we expect the caption generator to generate captions
with different words or grammar when the same audio clip
is given multiple times or similar audio clips are presented.
A CNN-Transformer model is employed as the generator
following our previous work [12]. It should be noted that the
proposed adversarial training framework is agnostic to model
types used for the caption generator, which is also applicable
to other encoder-decoder-based audio captioning models such
as RNN-RNN [5] and CNN-RNN [42].

Fig. 2 shows the diagram of the caption generator. To
mitigate the data scarcity problem, a pre-trained 10-layer CNN
is employed as the audio encoder from the pre-trained audio
neural networks (PANNs) [34] that are trained on AudioSet
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Fig. 2. Diagram of the caption generator, which consists of a 10-layer CNN as
audio encoder and a 2-layer Transformer as language decoder. To encourage
diversity in the generated caption, a random noise vector is concatenated with
the audio features extracted by the audio encoder before fed into the text
decoder.

[43] with an audio tagging task. Mel-spectrogram of the input
audio clip is used as the input. The CNN encoder consists
of four convolutional blocks, each with two convolutional
layers, and each convolutional layer is followed by a batch
normalization layer and a ReLU activation function. A max
pooling layer with a ratio of 2 is employed after each block
along both the temporal and frequency dimension. A global
average pooling layer is applied after the last convolutional
block to summarize the feature map across the frequency
dimension. Finally, a multi-layer perceptron, composed of two
linear layers with a ReLU nonlinearity in between, is employed
to obtain the final audio features. The text decoder is a 2-layer
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Fig. 3. Diagram of the hybrid discriminators. (a) The naturalness discriminator receives a caption as input and outputs a probability indicating how natural the
caption is. (b) The semantic discriminator receives an audio clip and a caption as inputs, and outputs a probability indicating whether the caption is faithful
to the content of the input audio clip or not.

standard Transformer decoder [37]. A word embedding layer
is used before the main Transformer decoder block to convert
words into vectors. A linear layer with a softmax activation
function is employed after the final Transformer block to
obtain the probabilities of each word over the vocabulary.

Given an audio clip, the audio encoder takes the log mel-
spectrogram x of the audio clip as input and produces the
audio features f(x). The Transformer decoder then generates
a caption word by word in an auto-regressive manner condi-
tioned on the extracted audio features. In order to encourage
diversity, a random noise vector zt sampled from a normal
distribution is concatenated with the audio features f(x)
before they are fed into the Transformer decoder at each time
step t. A word can be sampled as follows:

wt ∼ πθ(wt|f(x), zt, w1:t−1) (2)

where θ are the parameters of the caption generator, πθ is
the conditional probability distribution over the vocabulary,
and wt is the word sampled at time step t. The generator can
generate different captions with different random noise vectors
for a same audio clip. Concatenating random noise vectors
with input features has been previously explored in [44], [45]
to promote the diversity of captions in image captioning within
a GAN framework. We have adapted this method to the audio
domain and propose a novel design of discriminators and
evaluators to improve the quality of captions based on various
criteria.

B. Hybrid Discriminators

Similar to a naive generative adversarial training model
[23], we can design a discriminator to distinguish generator-
generated captions from human-annotated captions, which is
trained to play a min-max game with the generator. However,
this naive discriminator cannot capture the fidelity of the
captions, i.e., whether the captions are semantically faithful to
the content of the audio clips. Because we expect the generated
captions to possess three properties (i.e., fidelity, naturalness,
and diversity) as we introduced earlier, two hybrid discrimi-
nators are introduced in our proposed C-GAN framework. A
naturalness discriminator is adopted to ensure the naturalness
of the generated captions, while a semantic discriminator is
introduced to achieve the property of fidelity.

Let us assume we have an audio captioning dataset and
each audio clip has 5 human annotated captions, the dataset is
denoted as S = {xn, yn,i}N,I

n=1,i=1, where N is the number of
audio clips in the dataset, xn is the n-th audio clip, and yn,i
is a human-annotated caption for the n-th audio clip with i
being the index of the caption, and i = 1, ..., I , with I = 5 in
the Clotho dataset. For simplicity, we will omit the subscript
n in our discussion below. In addition, we define three caption
sets, namely, Cx, formed by all the human-annotated captions
for audio clip x, Cu, formed by unpaired human annotated
captions for the audio clip x within a batch, and Cg , formed
by the captions produced by the generator for x.
Naturalness discriminator. The purpose of the naturalness
discriminator is to evaluate the naturalness of an input caption,
that is, to distinguish whether the caption is human-annotated
or machine-generated. Captions consist of discrete tokens
and are sequence data. Therefore, we employ a single-layer
gated recurrent unit (GRU) network [46] as the naturalness
discriminator, which takes a caption as input and outputs a
probability score DN (·) ∈ [0, 1] that indicates how likely
the caption is human-annotated. The caption generator tries
to generate captions to fool the naturalness discriminator that
generated captions are written by human, and the naturalness
discriminator tries to distinguish generator-generated captions
from human-annotated ones. Fig. 3a shows the diagram of the
naturalness discriminator.

During training, the naturalness discriminator uses two
sources of inputs: human-annotated captions as positive sam-
ples and generator-generated captions as negative samples. It is
trained with a binary cross-entropy loss that can be formulated
as:

LDN = −Ec∼Cx logDN (c)− Ec∼Cg log [1−DN (c)] (3)

where DN (·) is the output of the naturalness discriminator,
E is expectation and c is a caption from the corresponding
caption set.
Semantic discriminator. The semantic discriminator aims at
improving the fidelity of the captioning systems, that is to
encourage the generated captions to be more semantically
faithful to the content of the audio clips. The semantic
discriminator receives an audio clip and a caption as inputs
and outputs a probability score DS(·) ∈ [0, 1] that indicates
the semantic relevance of the given audio clip to the caption.
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The higher the output score, the more relevant the generated
caption is to the audio clip. The semantic discriminator is
composed of an audio encoder and a caption encoder, as shown
in Fig. 3b. The audio encoder is the same pre-trained 10-layer
CNN from PANNs as that in the caption generator, and also
aims at extracting audio features from the input audio clip.
However, the audio encoder here in the semantic discriminator
is frozen in the whole training process. The caption encoder
is a single-layer GRU network. For an input audio clip and
an input caption, the audio encoder and the caption encoder
embed the inputs into a shared embedding space through
a multi-layer perceptron (MLP) block, producing an audio
embedding and a caption embedding, respectively. Then a
cosine similarity is computed between these two embeddings.
Because the cosine similarity ranges from −1 to 1, a ReLU
function is used to limit the score of the cosine similarity
between 0 and 1, thus we can treat the score as a probability.

The semantic discriminator is used to indicate the semantic
relevance of the audio clips to the captions. To this end,
audio clips and their paired human-annotated captions are used
as positive samples, while audio clips with unpaired human-
annotated captions are regarded as negative samples. During
the adversarial training process, the semantic discriminator
also plays a min-max game with the caption generator. Audio
clips and their generated captions from the caption generator
are also treated as negative samples. As a result, the caption
generator will try to fool the semantic discriminator by gener-
ating captions that are semantically faithful to the audio clips.
The mean squared error (MSE) based loss is used here and
can be formulated as:

LDS
= Ec∼Cx

(1−DS(x, c))
2

+ 0.5× Ec∼Cu
(0−DS(x, c))

2

+ 0.5× Ec∼Cg
(0−DS(x, c))

2

(4)

where x is an audio clip, and DS(·) is the output of the seman-
tic discriminator. Since the output score could be regarded as
a probability, the cross-entropy loss can also be used here. The
loss from negative samples of the unpaired captions and the
generated captions are weighted by 0.5 to counteract training
imbalances.

C. Language Evaluator

In addition to the hybrid discriminators, we introduce a
language evaluator in order to evaluate the captions in terms of
the objective metrics since directly optimizing the evaluation
metrics shows great improvement on the metric scores [12].
The language evaluator is not involved in the adversarial
training process since the objective evaluation metrics are pre-
defined and fixed. We choose CIDEr [22] as the evaluation
metric due to its computational simplicity and promising
performance shown in a previous work [47]. The language
evaluator calculates the CIDEr score for the input captions
by comparing them with their ground-truth human-annotated
captions, returning the CIDEr score as a reward to the caption
generator.

D. Training of Caption Generator G

During the adversarial training process, the caption gen-
erator observes three scores from the hybrid discriminators
and the language evaluator simultaneously, and is trained to
fool the discriminators, i.e., maximizing their output scores
for the generated captions. However, unlike in classical GANs
[23] where the data to be processed, such as images, take
continuous values, captions are composed of discrete words
which are non-differentiable. It is not feasible to revise the
discrete output values with respect to the gradients back-
propagated from the discriminators. As a result, the generator
cannot be optimized through back-propagation directly. To
address this issue, reinforcement learning (RL) with policy
gradient [24] is adopted here.

In a RL setting, the text decoder acts as an agent which
can interact with an environment (words in the vocabulary
and the audio features). The generation of each word is an
action of the agent governed by a policy πθ defined by
the parameters of the caption generator. Upon generating a
complete sentence, the agent can observe a score, which we
call it reward, from the discriminators. The objective of the
agent is to take a sequence of actions (sample sentences) to
maximize the expected reward, which can be formulated as:

max
θ

Ec∼πθ
[r(c)] (5)

where c = (w1, ..., wT ) is a sampled caption from caption
generator, wt is the sampled word at time step t, and r(c)
is the reward of the sampled caption c returned from the
discriminators and the language evaluator. The reward r(c)
is calculated as:

r(c) = λ · (DN (c) +DS(x, c)) + (1− λ) · LE(c) (6)

where x is an audio clip, DN (c) and DS(x, c) are the scores
from the naturalness and semantic discriminator, respectively,
LE(c) is reward score from the language evaluator and λ is a
hyper-parameter with a value between 0 and 1 to balance the
rewards from discriminators and the evaluator. We group the
scores from DN and DS together as we want the captions to
have naturalness and fidelity at the same time. When λ equals
0, the system degenerates to a conventional RL method which
optimizes the evaluation metric directly [6].

Generally, the reward can only be provided when a complete
sentence is generated, which may lead to slow convergence
and gradients vanishing along a long chain [44]. Dai et al.
[44] solved this problem by evaluating an expected future
reward when the caption is partially generated at every time
step, where the expectation is approximated using Monte
Carlo rollouts [24]. However, this method is computationally
intensive due to the sampling of multiple sentences at each
time step. To avoid estimating future rewards at each time step,
we employ the self-critical sequence training (SCST) method
[47] to optimize the caption generator. The SCST method just
needs to sample a single sentence and employs a baseline
as a reference reward, which is the reward of a caption ĉ
generated by current model using greedy decoding, to reduce
the variance of the gradient estimate. The gradient of a single
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Algorithm 1 Diverse Audio Captioning Via Adversarial Train-
ing
Require: caption generator G, naturalness discriminator DN ,

semantic discriminator DS , language evaluator LE ,
dataset S = {xn, yn,i}N,I

n=1,i=1.
1: Initialize G, DN , and DS randomly.
2: Pre-train G on S via MLE according to Eq. (1).
3: Generate captions for audio clips using pre-trained G and

collect two negative caption sets Cu and Cg .
4: Pre-train DN and DS according to Eq. (3) and Eq. (4) on

S and collected caption sets Cu and Cg , respectively.
5: repeat
6: Generate caption set Cg using G and collect negative

caption set Cu for each audio clip in a mini-batch from
S.

7: Update parameters of DN and DS via Eq. (3) and
Eq. (4), respectively.

8: Generate a mini-batch of audio-caption pairs
{(x, c), c ∼ Cg} by G.

9: Calculate the final reward r according to Eq. (6) using
DN , DS and LE .

10: Update parameters of G by the SCST method based on
Eq. (7).

11: until G, DN and DS converge.

sampled caption with respect to the objective function can be
formulated as:

∇θLG(θ) ≈
T∑

t=1

(r(c)− r(ĉ))∇θ log πθ(wt|f(x), zt, w1:t−1)

(7)
where ĉ is the caption generated by the current model using
greedy decoding and r(ĉ) is used as a baseline or reference
reward to normalize r(c). As a result, only captions having
a higher reward than those obtained from baseline greedy-
decoding are given positive weights.

The caption generator and the hybrid discriminators are pre-
trained before applying the adversarial training. The caption
generator is first pre-trained with MLE according to (1). The
naturalness discriminator is pre-trained according to (3), where
captions in Cg are generated by the previously pre-trained
caption generator. During the pre-training of the semantic
discriminator, only audio clips and human-annotated captions
are used.

In the overall adversarial training process, the caption gen-
erator and the hybrid discriminators are trained alternatively.
Specifically, one step of discriminators update is followed
by one step of generator update. Algorithm 1 describes the
whole training pipeline for the proposed framework. After
the adversarial training, the caption generator can be used
to generate captions using greedy search or beam search
as usual. The difference between a normal audio captioning
model is that a noise vector is concatenated with audio features
extracted by the encoder before fed into the decoder at each
time step. As a result, the model tends to generate different
and diverse captions with different noise vectors.

IV. EXPERIMENT SETUP

A. Dataset

We conduct all experiments on the Clotho v2 dataset [3]
since all the audio clips in Clotho have five human-annotated
captions. During the collection of Clotho, special care has been
taken to promote the diversity of captions [3]. The dataset is
split into three sets, i.e. the training, validation and test sets.
The training set consists of 3839 audio clips. The validation set
has 1045 audio clips, and the test set also has 1045 audio clips.
Different from our earlier work in [27], where the training
set and validation set are merged together to provide a larger
training set, we keep the validation set for model selection and
hyper-parameter determination in this work.

B. Implementation Details

All audio clips are sampled at 44.1 KHz. The input features
are 64-dimensional log mel-spectrograms extracted by a 1024-
point Hanning window with a hop size of 512. SpecAugment
[48] is used as the data augmentation method to augment
the input spectrograms. The rate of the feature outputs from
the audio encoder is around 5 embeddings per second. For
the captions, all the characters are converted to lower case
with punctuation removed. Two special tokens “<sos>” and
“<eos>” are padded to the start and end of each caption.
After these pre-processing steps, we get a vocabulary with
4637 tokens.

The caption generator is first pre-trained using MLE for 15
epochs following the training and hyper-parameter settings in
[12]. The hybrid discriminators are pre-trained for three epochs
respectively. In the adversarial training stage, the generator
and hybrid discriminators are trained jointly for 25 epochs, in
which one step of update for the discriminators is followed
by one step of update for the generator. The batch size and
learning rate are set to 32 and 1 × 10−4, respectively. The
random noise vector is sampled from a normal distribution
with a zero mean and a standard deviation of σ which is
a hyper-parameter to control the diversity of the generated
captions. For another hyper-parameter λ, we test empirically
with different values to find a proper balance between the
rewards from the hybrid discriminators and the language
evaluator. Ablation studies were carried out to investigate the
effects of those two hyper-parameters involved in adversarial
training. During test time, the caption generator generates
5 captions for each audio clip with different random noise
vectors. In addition, we employ the caption generator trained
only via MLE as a MLE baseline. We train the MLE baseline
model for 25 epochs. It should be noted that no random noise
vector is used in the baseline model. We use beam search with
a beam size of 5 to sample 5 captions, in order to compare it
with our proposed method.

C. Evaluation Metrics

We evaluate the system performance from a fidelity per-
spective using conventional evaluation metrics and a diversity
perspective using diversity metrics.
Fidelity metrics. The fidelity of a captioning system can be
evaluated by the conventional evaluation metrics introduced in
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TABLE I
RESULTS OF THE CNN-TRANSFORMER NETWORK TRAINED VIA MLE AND OUR PROPOSED C-GAN FRAMEWORK. BLEU4 , CIDER AND SPIDER ARE

CONVENTIONAL EVALUATION METRICS. VOCABULARY SIZE, MBLEU4 , AND DIV-n ARE THE DIVERSITY METRICS.

Model σ λ BLEU4 (↑) CIDEr (↑) SPIDEr (↑) vocab size (↑) mBLEU4 (↓) div-1 (↑) div-2 (↑)

MLE1 [12] - - 16.7 40.0 26.0 551 - - -
MLE5 [12] - - 15.7 37.6 24.6 793 83.9 28.0 33.2

C-GAN 1.0 1.0 12.8 31.7 21.2 899 64.1 34.7 44.3
C-GAN 1.3 1.0 12.9 31.9 21.5 892 57.6 37.3 48.3
C-GAN 1.5 1.0 12.8 30.9 20.7 910 53.9 38.8 50.3
C-GAN 2.0 1.0 11.9 29.1 19.8 897 43.2 42.3 55.9

C-GAN 1.3 0.7 13.4 32.7 21.9 881 59.5 36.1 46.8
C-GAN 1.3 0.5 14.4 34.8 23.1 802 64.1 33.4 43.2
C-GAN 1.3 0.3 15.0 35.6 23.5 670 68.1 31.5 40.1
C-GAN 1.3 0.1 16.8 36.8 24.0 360 80.6 25.2 30.5

Human - - 32.1 90.1 56.6 3516 32.1 56.1 72.4

Section II-B. BLEUn, CIDEr and SPIDEr are employed here.
BLEUn calculates n-gram precision between the generated
caption and references. We employ BLEU4 here since a
large n could capture richer semantics and some grammatical
properties. CIDEr applies TF-IDF weights to the n-grams
and calculates the cosine similarity of these weighted n-
grams between generated caption and references. SPIDEr
is the average of CIDEr and SPICE, and it is the official
ranking metric in the DCASE challenge for audio captioning
task. SPICE evaluates the captions based on semantic content
matching. The generated caption and references are first parsed
into scene graphs, then an F-score is calculated based on the
matching of these scene graphs between generated caption and
references.
Diversity metrics. We measure the diversity of the captioning
system from the perspective of corpus-level and set-level.
Vocabulary size is employed to measure the corpus-level
diversity as it is an indication of vocabulary utilization. The
vocabulary size is the number of unique words for generated
captions in the test set. A larger vocabulary size indicates a
greater diversity. Furthermore, mBLEUn and div-n are used
to evaluate the diversity of a set of generated captions for a
single audio clip and measure a set-level diversity. The set-
level diversity evaluates if the model can generate varying
expressions. mBLEUn stands for mutual BLEUn, which is
calculated as the mean of the BLEUn score between each
caption against the remaining captions in a generated caption
set for a given audio clip, and a lower mBLEUn score means
a greater diversity. Div-n is calculated as a ratio between the
number of distinct n-grams and the total number of words for a
set of captions given an audio clip, a higher div-n score means
a greater diversity [19]. In summary, we employ vocabulary
size, mBLUE4, div-1 and div-2 for diversity evaluation.

V. RESULTS

This section presents the experimental results including the
comparison between MLE and C-GAN using fidelity related
metrics and diversity related metrics, ablation studies on a
variety of settings in the proposed system, and the comparison
of this work with those in our preliminary work [27].

A. MLE baseline

Table I presents the results from MLE baseline and our pro-
posed models trained with different hyper-parameters. Human-
level performance is shown in the last row in the table, and can
be regarded as an upper-bound performance on the Clotho test
set. To calculate the human-level performance, we regard one
of the five human-annotated captions as a predicted caption
and the remaining 4 captions as references to calculate the
scores for all 5 parallel human-annotated captions, and finally
average these scores. It should be noted that there are some
near-duplicates in the human-annotated captions, which might
lead to overestimated fidelity but underestimated diversity
scores.

For the MLE baseline, beam search with a beam size of
5 is used to sample multiple captions for each audio clip.
MLE1 only takes the most probable caption as the output,
while MLE5 takes the top-5 probable captions as outputs. As
a result, diversity metrics can be calculated for the MLE5

baseline. Comparing results for MLE1 and MLE5 baselines,
we could observe that scores on conventional metrics drop,
while the vocabulary size increases, both due to the sampling
of more captions in MLE5 baseline. As expected, MLE
baselines achieved the highest scores on conventional metrics
as compared with our proposed C-GAN models. This is not
surprising, as MLE training will encourage the use of frequent
n-grams occurring in references and these metrics mainly
focus on the n-gram matches with references. However, it still
has a significant margin with human level performance.

B. Proposed C-GAN

For our proposed C-GAN models, first, we fix the hyper-
parameter λ to 1.0, which means the rewards just come from
the hybrid discriminators, but not the language evaluator. We
then vary another hyper-parameter, the standard deviation of
the noise vector, and the results can be seen in the middle
rows in Table I. It could be clearly observed that the scores
in terms of the conventional metrics are not as good as those
of the MLE baselines, while the scores on diversity related
metrics are all better than those of the MLE baselines. With the
increase of the standard deviation, the generated captions will
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TABLE II
CAPTIONS GENERATED BY THE PROPOSED C-GAN MODEL FOR FOUR AUDIO CLIPS FROM THE CLOTHO TEST SET.

MODEL EXAMPLE 1 EXAMPLE 2 EXAMPLE 3 EXAMPLE 4

Ground Truth

the coins are shaking around
in a cup

a car beeps its horn and peo-
ple are talking and a motorcy-
cle drives by

a bird whistles loudly while
water flows steadily

thunder is rumbling and birds
are chirping in the background

the coins or change are shak-
ing around in a cup

a car beeps its horn as people
are talking and a motorcycle
drives by

water is flowing while birds
are tweeting in the distance

wind is blowing loudly and
birds are tweeting

someone shaking a jar full of
change back and fourth

a cars horn and cars driving
passed people who are chat-
ting

as a bird is chirping water is
flowing in a creek

the thunder is rumbling while
birds are chirping in the back-
ground

MLE5

a person is shaking a set of
keys around in a container

people are talking in the back-
ground as cars drive by

water is flowing and birds are
chirping and singing

the wind is blowing and the
wind is blowing

a person is shaking a set of
keys around in a chain

people are talking in the back-
ground while cars are passing
by

water is flowing and birds are
chirping in the background

the wind is blowing and the
rain is falling

a person is shaking a set of
keys around in a cup

people are talking in the back-
ground as a car horn honks

water is flowing and birds are
chirping

the wind is blowing and the
rain is pouring down

C-GAN

a set of coins are being shuf-
fled around in a container

a large truck is driving and
people are talking

water flowing over rocks as
birds chirping in the back-
ground

thunder rumbles in the dis-
tance as the wind blows

metal objects are being moved
around in a glass container

people are talking while a car
is driving by

water flows into a pond while
birds chirping in the distance

thunder rumbles as birds chirp
in the background

a person is dropping coins into
a glass jar

a car horn beeps while people
talk in the background

water flowing gently while a
bird is chirping in the back-
ground

the thunder is rumbling while
birds are chirping in the back-
ground

be more diverse, either at the corpus-level or set-level. When
the standard deviation is 2.0, the mBLEU4 is 43.2, almost
half of that of the MLE5 baseline, and it is also close to the
human-level performance (32.1), which indicates our proposed
model could successfully generate more diverse captions than
the models trained via MLE. However, it can be seen from the
table that there is a trade-off between the fidelity and diversity
in our proposed C-GAN model. Specifically, the larger the
standard deviation, the more diverse the generated captions
are, but the lower the scores on conventional fidelity metrics.

The motivation of introducing the language evaluator is
to enable the models to achieve high scores in terms of the
conventional metrics by directly optimizing CIDEr. Therefore,
we next incorporate the language evaluator into training by
varying the hyper-parameter λ while keeping the standard
deviation at 1.3. The results can be seen in the bottom rows
of Table I. With the decrease of λ, the rewards from the
hybrid discriminators contribute less, while the reward from
the language evaluator contributes more. We can see that the
scores for all the three conventional metrics have improved.
This suggests that the introduction of the language evaluator
successfully improves the scores on conventional metrics.
However, the performance in terms of diversity metrics gets
worse with the increasing contribution from the language
evaluator. This is inline with our previous research finding
that directly optimizing CIDEr using reinforcement learning
reduces the distinctness of the captions, but improves the
conventional metrics [12]. As a result, a reasonable balance
between the rewards from the hybrid discriminator and the
reward from the language evaluator is required to achieve both
fidelity and diversity.

Finally, we present four qualitative examples in Table II.
For each example, three ground truth captions, three captions
generated by the MLE baseline with a beam search, and

three captions generated by our proposed C-GAN model
with different noise vectors are shown. First, for the captions
generated by the MLE baseline, they tend to be deterministic
(i.e. generating the fixed set of captions no matter how many
times the input audio clip is presented). Second, these captions
generated by the MLE baseline differ only slightly to each
other at the end of the captions. In contrast, the captions
generated by the C-GAN model are more diverse and resemble
the ground truth captions.

C. Ablation Studies

1) Effect of varied noise vectors: When generating word
one by one during the decoding process, a new noise vector
is sampled and concatenated with the audio features at each
time step, thus the noise vector is varied at each time step. We
could also use a fixed noise vector during the whole decoding
process. Here, we carry out experiments to study the difference
between these two methods.

Table III shows the results where we use a fixed noise
vector during the decoding process. Intuitively, we might
expect the models with a fixed noise vector to achieve higher
scores on the conventional metrics while performing worse
on the diversity metrics. However, we could observe that the
models with the fixed noise vector achieve lower scores on
the fidelity metrics as compared with the results in Table I,
especially when the standard deviation is large. When the
standard deviation is small, the models with the fixed noise
vector has a large margin with the models with varied noise
vectors in terms of the diversity metrics. In summary, the
varied noise vectors lead to better performance on both fidelity
and diversity of the captioning system.

2) Effect of components: We then conduct experiments
to study the contribution of the hybrid discriminators and
evaluator in our proposed framework. The results are shown
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TABLE III
RESULTS OF THE PROPOSED C-GAN MODEL WITH FIXED NOISE VECTOR DURING DECODING PROCESS.

Model σ λ BLEU4 (↑) CIDEr (↑) SPIDEr (↑) vocab size (↑) mBLEU4 (↓) div-1 (↑) div-2 (↑)

C-GAN 1.0 1.0 13.3 31.5 21.2 806 72.6 31.8 39.0
C-GAN 1.3 1.0 12.4 29.8 20.2 875 60.6 37.0 46.8
C-GAN 1.5 1.0 11.8 29.0 19.8 890 54.7 38.8 50.1
C-GAN 2.0 1.0 11.0 26.5 18.3 899 41.8 41.5 54.8

TABLE IV
ABLATION STUDIES OF THE INDIVIDUAL COMPONENTS IN OUR PROPOSED C-GAN MODEL. ND: NATURALNESS DISCRIMINATOR, SD: SEMANTIC

DISCRIMINATOR, LE: LANGUAGE EVALUATOR WITH THE CIDER METRIC.

Model σ BLEU4 (↑) CIDEr (↑) SPIDEr (↑) vocab size (↑) mBLEU4 (↓) div-1 (↑) div-2 (↑)

C-GAN ND 1.0 12.2 29.0 19.9 874 52.4 38.0 49.9
1.5 10.8 24.9 17.3 857 35.6 45.5 60.2

C-GAN SD 1.0 12.6 31.0 20.8 826 66.3 34.4 43.4
1.5 11.4 28.4 19.3 908 50.4 39.0 51.7

C-GAN LE 1.0 16.9 38.6 24.6 180 93.3 20.8 23.9
1.5 15.3 34.0 22.4 219 87.6 22.1 26.2

TABLE V
RESULTS OF THE PROPOSED C-GAN MODEL WITH DIFFERENT PRE-TRAINED CAPTION GENERATOR.

MLE pretrain MLE SPIDEr σ λ BLEU4 (↑) CIDEr (↑) SPIDEr (↑) vocab size (↑) mBLEU4 (↓) div-1 (↑) div-2 (↑)

scratch - 1.0 1.0 2.4 3.8 4.2 12 94.1 18.1 20.0
5 epochs 15.1 1.0 1.0 12.5 28.4 19.3 427 80.7 27.7 33.1

15 epochs 26.0 1.0 1.0 12.8 31.7 21.2 899 64.1 34.7 44.3

in Table IV. When only using the naturalness discriminator,
the models could achieve better performance in terms of
the diversity metrics, especially when the standard deviation
is large. However, the scores on the conventional metrics
are all significantly lower than those of the models trained
with the hybrid discriminators. When only using the semantic
discriminator, the conventional metrics are slightly lower than
those of the models trained with the hybrid discriminators,
while the diversity metrics achieved are similar. These results
demonstrate the effectiveness of our proposed hybrid discrim-
inators, and the models trained with the hybrid discriminator
achieves good balance in fidelity and diversity.

When only using the language evaluator to optimize the
CIDEr score, the system degenerates to a conventional RL
optimization method, which is generally used to fine-tune the
MLE models [12]. Due to the addition of the noise vector,
the conventional metrics drop slightly as compared with the
MLE baselines when standard deviation is 1.0, while these
metrics drop significantly when the standard deviation is 1.5.
For the diversity metrics, the m-BLEU4 is very high, and the
vocabulary size, div-n are all small, which are consistent with
the observation in [12] that optimizing CIDEr using RL would
reduce distinctiveness of the generated captions. In summary,
the results demonstrate the effectiveness of each component
in our proposed C-GAN model. The hybrid discriminators are
complementary to ensure the accuracy and diversity of the
captions while the language evaluator can improve the metrics
measuring accuracy but may impact adversely on the diversity

in the generated captions.

3) Effect of pre-training: In all the previous experiments,
the caption generator is first pre-trained via MLE for 15 epochs
and then fine-tuned using our proposed C-GAN framework.
We now investigate whether a well-trained caption generator is
necessary for the C-GAN training. We employed three caption
generators, one trained from scratch, one pre-trained via MLE
for five epochs and could achieve a SPIDEr of 15.1, and
the last one is pre-trained via MLE for 15 epochs and could
achieve a SPIDEr of 26.0 (used in all previous experiments).
The standard deviation of the noise vector is set to 1.0 and
λ is set to 1.0. The results are shown in Table V. When the
caption generator is trained from scratch, it cannot generate
captions of reasonable quality, and performing poorly on both
conventional metrics and diverse metrics, which indicates the
pre-training using MLE is necessary. Then for the caption
generator pre-trained for 5 epochs, we could observe the SPI-
DEr improved after our C-GAN training, which demonstrates
that the hybrid-discriminators could give correct guidance to
the caption generator to generate better captions. However, it
does not perform well in terms of diversity related metrics
when compared to the caption generator pre-trained for 15
epochs. Although the conventional metrics drop for the caption
generator pre-trained for 15 epochs, they are still higher than
other models compared. In contrast, its performance in terms
of the diversity metrics is better than those of others. In
summary, when a caption generator is not well-trained, the
discriminators could easily identify that the generated captions
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Fig. 4. Comparison of n-gram (n up to 3) count ratios on the test set with different models. An n-gram count ratio is computed between the frequency of
n-gram in generated captions to its expected frequency in the test set. A count ratio around 1.0 means that the vocabulary statistics of the test set match well
with those of the training set.

are unreal or not semantically faithful to the audio clips with
high confidence and provide low rewards, which cannot guide
the caption generator effectively. Therefore, a well-trained
caption generator is necessary in our proposed C-GAN model.
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Fig. 5. Diagram of the change of vocabulary size with different word counts
threshold.

D. Vocabulary statistics

We follow the n-gram usage statistics employed in [19]
to investigate how well the generated captions from different
models match the statistics of human-annotated captions.
An n-gram count ratio is computed between the frequency
of an n-gram in generated captions to its expected fre-
quency in the test set. If an n-gram occurs m times in
the training set, the expected frequency will be calculated
as m × |test− set|/|training − set|, where |test− set| and
|training − set| are the sizes of the test and training sets. Uni-,
bi- and tri-grams are considered here.

Fig. 4 shows the results. First, for test references, we expect
the count ratios to be centred around 1.0, meaning that the
vocabulary statistics of the test set match well with those of
the training set. It can be observed that the high-frequency n-
grams are centred around 1.0, however, the variance is large

TABLE VI
RESULTS OF NATURALNESS EVALUATION USING GPT-4.

C-GAN MLE Human

GPT-4 score 8.9 8.1 9.5

for these low-frequency n-grams, which might be caused by
the diversity of the annotated captions in the Clotho dataset.
For the MLE baseline, some of the ratios are 0 for the low-
frequency n-grams, which is an indication of low vocabulary
utilization. The proposed C-GAN method performs better
than the MLE baseline on using the low-frequency n-grams.
However, both the MLE baseline and C-GAN models have a
larger variance than the test references, and they both have a
significant gap with test references in terms of the count ratios.
These observations suggest that while our proposed C-GAN
model achieves better diversity than the MLE baseline, both
models are yet to match the vocabulary statistics of human
users.

There are many low-frequency words in the Clotho dataset
which lead to a long-tail distribution problem, for example,
there are 2013 out of 4365 words occurring 5 times or less in
the training set. Fig. 5 shows the vocabulary size as a function
of the threshold on word counts for the test references, C-
GAN model, and MLE baseline, respectively. We can observe
that, when the threshold is low, the vocabulary size of test
references is larger than those of the other two models, while
our proposed C-GAN model has slightly large vocabulary sizes
than the MLE baseline. This means that the proposed C-GAN
can use more low-frequency words. However, modeling the
long-tail distribution is still very difficult for both models. It
is worth noting that the long-tail problem leads to a large
variance for the low-frequency n-grams in Fig. 4, as the
models are limited in learning these low-frequency words.

E. Naturalness evaluation with GPT-4

We utilized automatic evaluation metrics to assess the
fidelity and diversity of our proposed methods. However,
these metrics cannot effectively gauge the naturalness of the
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captioning system, and it is also infeasible to evaluate the
naturalness property using automatic metrics. To address this
limitation, we employed GPT-4 [26], an advanced language
model that has demonstrated human-equivalent performance
in numerous language understanding tasks, to evaluate the
naturalness property automatically. We randomly selected 50
captions from our proposed C-GAN model (σ = 1.3, λ = 1.0),
the MLE baseline and human-annotated ground-truths, respec-
tively. GPT-4 was then prompted to rate each caption on a scale
from 0 to 10, solely based on its naturalness and grammar. A
high score indicates a human-like caption without grammatical
errors, while a low score points to machine-like generation or
the presence of errors.

The results are shown in Table VI. While human captions
garnered the highest score, our proposed C-GAN model sur-
passed the MLE baseline. This enhancement in naturalness
is likely attributed to the integration of the naturalness dis-
criminator. Furthermore, previous studies such as [12] indicate
that reinforcement learning tends to introduce grammatical
errors when optimizing the CIDEr metric. Our proposed hybrid
discriminators effectively address this issue.

F. Comparison to ICASSP work

Since this work is an extension of our previous work pre-
sented on ICASSP 2022 [27], we analyze the improvement in
this section. First, the biggest change is that we incorporate the
pre-trained and fixed semantic evaluator into the adversarial
training process. From the ablation studies, we can see that
the caption generator cannot generate any reasonable captions
when only using the semantic evaluator. After incorporating it
into the adversarial training processing here, we can observe
that the caption generator achieves good performance on both
fidelity and diverse metrics. Second, although we use a smaller
training set here (i.e. without merging the training set and
the validation set), all the metrics are better than those in
our ICASSP work. These observations further demonstrate the
effectiveness of the improvement we made in this work.

VI. CONCLUSION

This paper has presented a new approach to audio cap-
tioning using conditional generative adversarial network (C-
GAN) to promote diversity in the generated captions for a
given audio clip, which was neglected in the literature. The
proposed framework is composed of a caption generator, two
hybrid discriminators and a language evaluator. The generator
and discriminators compete and are trained alternatively during
training while the language evaluator is used to provide feed-
back to the caption generator using conventional evaluation
metric-CIDEr. We empirically show that the system trained via
the proposed framework can generate more diverse captions
and still achieve competitive results on conventional fidelity
metrics as compared with state-of-the-art methods. Finally,
we show existing models still do a poor job in matching the
vocabulary statistics with human-annotators. Future research
should be carried out to improve the matching of vocabulary
statistics between deep learning models and human-annotators.
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