
On Metric Learning for Audio-Text Cross-Modal Retrieval

Xinhao Mei, Xubo Liu, Jianyuan Sun, Mark D. Plumbley, Wenwu Wang

Centre for Vision, Speech and Signal Processing (CVSSP)
University of Surrey, UK

{x.mei, xubo.liu, jianyuan.sun, m.plumbley, w.wang}@surrey.ac.uk

Abstract
Audio-text retrieval aims at retrieving a target audio clip or cap-
tion from a pool of candidates given a query in another modality.
Solving such cross-modal retrieval task is challenging because
it not only requires learning robust feature representations for
both modalities, but also requires capturing the fine-grained
alignment between these two modalities. Existing cross-modal
retrieval models are mostly optimized by metric learning ob-
jectives as both of them attempt to map data to an embedding
space, where similar data are close together and dissimilar data
are far apart. Unlike other cross-modal retrieval tasks such as
image-text and video-text retrievals, audio-text retrieval is still an
unexplored task. In this work, we aim to study the impact of dif-
ferent metric learning objectives on the audio-text retrieval task.
We present an extensive evaluation of popular metric learning
objectives on the AudioCaps and Clotho datasets. We demon-
strate that NT-Xent loss adapted from self-supervised learning
shows stable performance across different datasets and training
settings, and outperforms the popular triplet-based losses. Our
code is available at https://github.com/XinhaoMei/
audio-text_retrieval.
Index Terms: metric learning, audio retrieval, text-based re-
trieval, cross-modal task

1. Introduction
Given an audio clip or a caption as a query, audio-text retrieval
aims at retrieving a paired item from a pool of candidates in
another modality. This cross-modal retrieval task is challenging
as it requires not only learning robust feature representations
for both acoustic and textual modalities but also capturing fine-
grained interaction between the learned acoustic and textual
features and aligning them in a shared embedding space. Audio-
text retrieval can be potentially applied to applications such as
film, audio book production and web search.

Cross-modal retrieval tasks (e.g. image-text retrieval and
video-text retrieval) have received extensive attention in recent
years and have made great progress [1, 2, 3, 4, 5, 6]. However,
little attention has been paid to audio-text retrieval in the litera-
ture. One reason might be the lack of appropriate datasets, thus
early works just focused on tag-based audio retrieval, where the
queries were words not sentences. Chechik et al. [7] proposed
a tag-based audio retrieval system using traditional machine
learning techniques (e.g. support vector machines and Gaussian
mixture models). Ikawa et al. [8] investigated searching sounds
using onomatopoeic words. Elizalde et al. [9] employed a
siamese network to align audio and textual features to a joint em-
bedding space. Although these tag-based audio retrieval works
show reasonable performance, they are constrained in the query
format. Retrieving audio clips using free-form language (sen-
tences) is more natural for humans.

With the fast development of audio captioning in recent

three years [10, 11, 12, 13], publicly available audio captioning
datasets are released [14, 15], which are naturally suited for the
free-form language-based audio-text retrieval task. Koepke et
al. [16] first established the benchmarks for free-form language-
based audio retrieval, where they adapted models from video
retrieval and made use of pre-trained models to solve the data
scarcity problem. Since both the audio and text (captions) are
sequence data, free-form language-based audio-text retrieval is
more challenging than tag-based audio retrieval and is the focus
of this paper. We use the term audio-text and audio-caption
interchangeably in this paper.

Similar to other cross-modal retrieval models [1], the audio-
text retrieval models can be built with two sub-networks, namely,
an audio encoder and a text encoder. The objectives of these two
encoders are to map the audios and texts into a joint embedding
space, where the semantically similar embeddings are close to
each other and the dissimilar items are far away. We refer to
the embeddings as Acoustic Semantic Embeddings (ASE) as
they are learned via jointly modeling the audio and language
modalities. The training objective of cross-modal retrieval mod-
els is consistent with that of metric learning [17]. To this end,
metric learning has been a popular choice for the optimization
of the cross-modal retrieval models. Numerous metric learning
objectives have been introduced for various tasks such as face
identification [18], speaker recognition [19], and retrieval [1, 2],
however, there is no clear argument which one is the most suited
since they may work well on specific tasks or data but may not
generalize well to other tasks [20]. In this work, we aim to study
and compare the impact of different metric learning objectives
for the free-form language-based audio-text retrieval task in a
constant training setting.

We focus on triplet loss and its variants, as they have demon-
strated promising performance and are popularly employed [18].
In a triplet setting for audio-text retrieval, an audio clip and
its corresponding caption are regarded as an anchor and a pos-
itive example, respectively, while other unpaired captions are
regarded as negatives. The hinge-based triplet ranking loss sums
over all negative samples within a mini-batch (thus we refer to
it as triplet-sum). Faghri et al. [1] argued that hard negatives
should be emphasised as other easy negatives may dominate the
loss and create local minimal, thus they proposed a triplet rank-
ing loss with hard negative mining (we refer to it as triplet-max)
which focuses only on the hardest negative within a mini-batch.
Wei et al. [21] further proposed a universal weighting framework
for cross-modal retrieval, where the pairs are weighted based on
their similarity scores (we refer to it as triplet-weighted). In addi-
tion to the triplet-based losses, we further adapt a contrastive loss
used in self-supervised learning here for supervised cross-modal
retrieval, that is, normalized temperature-scaled cross entropy
loss (NT-Xent) [22]. The NT-Xent loss is based on softmax and
aims to identify the positive pairs within a mini-batch.

In summary, we first establish a baseline using pre-trained
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models to learn the acoustic semantic embeddings, then we
present an extensive evaluation of the popular metric learning
objectives described above on our baseline in a constant train-
ing setting. Against popular belief [1, 20], we demonstrate that
triplet losses with hard negative mining are sensitive to the train-
ing settings and may be hard to converge, the NT-Xent loss
shows stable performance with respect to different datasets and
training settings and outperforms the triplet-based losses.

2. Audio-Text Retrieval with Metric
Learning

In this section, we first formulate the audio-text retrieval prob-
lem and introduce the baseline model, then the metric learning
objectives (loss functions) we evaluated are introduced.

2.1. Problem formulation

Let D = {(ai, ti)}Ni=1 be an audio captioning dataset of N
examples, where ai is an audio clip and ti is the paired caption.
Therefore, (ai, ti) is regarded as a positive pair while (ai, tj,j ̸=i)
is a negative pair. One audio clip could have multiple paired
captions, we just consider one here for simplicity. The audio-
text retrieval models usually consist of an audio encoder f and
a text encoder g, which project the audio clip and text into a
shared embedding space, respectively. For an audio-caption pair
(ai, tj), the similarity of the audio and caption can be measured
by cosine similarity of their embeddings:

sij =
f(ai) · g(tj)

||f(ai)||2||g(tj)||2
. (1)

The two encoders are trained to make the similarity score of
positive pairs sii higher than that of negative pairs sij .

2.2. Model

The data available in the audio captioning datasets is limited,
and this data scarcity problem usually limits the performance of
the model in learning robust feature representations. Transfer
learning has been adopted as a standard recipe to alleviate the
data scarcity problem and has shown promising performance in
audio captioning task [23]. Therefore, pre-trained models are
employed here.
Audio Encoder Pre-trained audio neural networks (PANNs) [24]
are pre-trained on AudioSet with an audio tagging task, which
are shown to provide robust audio representations and perform
well on a wide range of audio-related tasks. The ResNet-38 in
PANNs is employed as the audio encoder, where the last two
linear layers are discarded. An average and max pooling layer
is applied to aggregate along the frequency dimension on the
feature map output by the last convolutional block. A multilayer
perceptron (MLP) block is used to project the audio features into
a shared embedding space, which consists of two linear layers
with a ReLU [25] activation layer between them.
Text Encoder Numerous large-scale per-trained language mod-
els have been published in recent year, which show powerful
capability to model the language and produce contextual-aware
embeddings. BERT [26], which stands for Bidirectional Encoder
Representations from Transformers, obtains state-of-the-art re-
sults on a wide variety of Natural Language Processing (NLP)
tasks. The pre-trained BERT is employed as the text encoder
here. A “<CLS>” token is appended at the start of each sen-
tence and used as the final sentence representation. A MLP
block is also applied to project the sentence representation into
the shared embedding space.

2.3. Loss functions

During training, we sample a mini-batch of audio-caption pairs
{ai, ti}Bi=1 where B is the batch size. Triplet-based loss func-
tions are based on the concept of triplet, which is made up by an
anchor, a positive (paired candidate in another modality) and a
negative (unpaired candidate in another modality). The anchor
with its positive is a positive pair and the anchor with its negative
is a negative pair as we defined above.
Triplet-sum For each query, the triplet-sum loss aims to maxi-
mize the similarity score of its positive pair while minimizing
the similarity scores to all other negatives within a mini-batch,
thus it can be formulated as

L =
1

B

B∑
i=1

∑
j ̸=i

[m+ sij − sii]+ + [m+ sji − sii]+, (2)

where [x]+ = max(0, x) and m is a distance margin. Since
audio-text retrieval is a bidirectional retrieval task (audio-to-text
and text-to-audio), the loss has two terms, the first term sums
over all negative captions given a query audio clip while the
second term sums over all negative audio clips given a query
caption. If the similarity of the positive pair is larger than that of
any negatives in the mini-batch by the margin m, the loss will
be zero.
Triplet-max Triplet-sum loss sums over all negatives for each
query within a mini-batch, Faghri et al. [1] argued that the easy
negatives may dominate the loss and make it stuck into local
minimal, thus, hard negatives should be emphasized. They pro-
posed the triplet-max loss that focuses on the hardest negatives
during training, which can be formulated as:

L =
1

B

B∑
i=1

max
j ̸=i

[m+ sij − sii]+ +max
j ̸=i

[m+ sji − sii]+.

(3)
For each query, it aims to maximize the similarity score of its
positive pair while just minimizing the similarity score to its
hardest negative within a mini-batch, that is, the negative closest
to the query in the embedding space. In this way, the easy
negatives won’t violate the loss and the hardest negative takes
all the gradients.
Triplet-weighted Both the positive and negative pairs are treated
equally in the triplet-sum and triplet-max losses. Wei et al. [21]
further introduced a universal function G(·) to weight the pairs
based on their similarity scores. Specifically, the weighting
function is defined as a polynomial function. For a positive pair
(ai, ti), the positive weight function Gpos is defined as:

Gpos = aps
p
ii + ap−1s

p−1
ii + · · ·+ a1s

1
ii + a0, (4)

where p is the order of the polynomial function and {ai}pi=0 are
the hyper-parameters. The negative weight function Gneg can
be formulated as:

Gneg = bqs
q
ij + bq−1s

q−1
ij + · · ·+ b1s

1
ij + b0, (5)

where {bi}qi=0 are the hyper-parameters and q is the order. If
the similarity score of the positive pair (ai, ti) increases, the
positive weight value will decrease. In contrast, for a negative
pair (ai, tj), the negative weight value increases if the similarity
score of the negative pair increases.

Let Nai = {sij,j ̸=i} and Ntj = {sji,i̸=j} be the similarity
scores for all negative pairs of an audio sample ai and a text



Table 1: Results of the experiments. * indicates the learning rate is 5× 10−5 otherwise 1× 10−4.

Dataset Fine-tune Objective Text-to-Audio Audio-to-Text
R@1 R@5 R@10 R@1 R@5 R@10

AudioCaps

No

Triplet-sum 17.2±0.5 47.6±0.2 64.3±0.1 19.3±1.5 51.4±0.8 67.2±0.7

Triplet-max 19.9±0.2 51.6±0.3 67.4±0.3 21.2±0.9 54.9±1.4 70.2±1.0

Triplet-weighted 19.9±0.2 52.1±0.7 67.6±0.6 21.9±0.8 56.3±0.3 71.5±0.4

NT-Xent 19.2±0.4 51.1±0.2 66.6±0.2 21.3±0.5 53.6±0.7 69.8±0.5

Yes

Triplet-sum 32.2±0.3 68.2±0.6 81.6±0.5 36.1±1.2 69.2±1.3 81.4±1.7

Triplet-max 32.7±0.3 68.3±0.8 81.6±0.5 38.7±1.0 70.6±0.7 82.2±0.8

Triplet-weighted 32.6±0.6 67.7±0.7 81.0±0.8 39.6±1.1 72.0±2.2 82.2±1.4

NT-Xent 33.9±0.4 69.7±0.2 82.6±0.3 39.4±1.0 72.0±1.0 83.9±0.6

Clotho

No

Triplet-sum 7.0±0.2 23.0±0.3 34.8±0.5 8.3±0.3 25.4±0.8 36.7±0.5

Triplet-max 7.9±0.2 23.6±0.4 34.2±0.5 8.8±1.0 25.7±1.0 36.3±0.8

Triplet-weighted* 7.2±0.2 22.1±0.3 33.0±0.3 7.5±0.4 23.2±0.1 33.3±0.3

NT-Xent 8.0±0.2 25.3±0.1 36.9±0.3 9.2±0.7 27.9±0.5 39.0±0.7

Yes

Triplet-sum 14.2±0.5 36.6±0.5 49.3±0.7 16.1±0.7 37.5±1.2 50.7±1.0

Triplet-max* 14.2±0.9 36.5±1.2 49.0±0.4 15.8±0.4 36.4±1.6 49.6±2.0

Triplet-weighted* 14.2±0.4 36.6±0.5 49.7±0.3 16.9±0.4 38.1±0.2 51.4±0.2

NT-Xent 14.4±0.4 36.6±0.2 49.9±0.2 16.2±0.7 37.5±0.9 50.2±0.7

sample tj respectively. The loss can be formulated as:

L =
1

B

B∑
i=1

[

P∑
p=0

aps
p
ii +

Q∑
q=0

bq max{Nq
ai
}]+

+
1

B

B∑
i=1

[

P∑
p=0

aps
p
ii +

Q∑
q=0

bq max{Nq
ti
}]+,

(6)

where P and Q are the highest power of positive and negative
pairs, respectively. The max term in the equation will select the
hardest negative pair, thus the loss is referred to as the maximum
polynomial loss. They also proposed another average polynomial
loss that will first select informative negative pairs based on a
mining policy and average the similarity scores of the selected
pairs. We just employ the maximum polynomial loss here as it
performs better than the average one in [21].
NT-Xent NT-Xent is a contrastive loss based on softmax, pro-
posed by Chen et al. [22] to learn visual representations via
self-supervised learning. We adapt it here for the supervised
cross-modal retrieval task, as follows:

L = − 1

B

(
B∑

i=1

log
exp(sii/τ)∑B

j=1 exp (sij/τ)
+

B∑
i=1

log
exp(sii/τ)∑B

j=1 exp (sji/τ)

)
,

(7)

where τ is a temperature hyper-parameter. It aims to maximize
the similarity of the positive pair with respect to all negative
pairs within a mini-batch, and the final loss is also computed in
a bidirectional manner.

3. Experiments
3.1. Datasets

We focus on free-form language-based audio-text retrieval, thus
audio captioning datasets are naturally employed, in which each
audio clip is annotated by humans using natural sentences. Exten-
sive experiments are carried out on AudioCaps [14] and Clotho
[15] datasets, respectively.

AudioCaps AudioCaps is the largest audio captioning dataset
with around 50k audio clips. All the audio clips are 10-second
long and are sourced from AudioSet [27], the largest dataset for
audio tagging. In our downloaded version, the training set con-
tains 49 274 audio clips and each of them has one corresponding
human-annotated caption, the validation and test set contain 494
and 957 audio clips, respectively, and each of them has five
human-annotated captions.
Clotho Clotho is an audio captioning dataset whose audio clips
are collected from the Freesound1 archive. The length of the
audio clips ranges uniformly from 15 to 30 seconds. Clotho v2
is used here. There are 3839 audio clips in the training set and
1045 audio clips in the validation and test sets respectively. All
the audio clips have five diverse human-annotated captions of
eight to 20 words in length.

3.2. Experimental setups

Log mel-spectrograms are used as the audio features, which are
extracted using a 1024-points Hanning window with 320-points
hop size and 64 mel bins. All the models are trained for 50
epochs using Adam [28]. The learning rate is set to 1 × 10−4

or 5 × 10−5 and is decayed to 1/10 of itself every 20 epochs.
The batch size is set to 32 for the AudioCaps dataset and 24 for
the Clotho dataset. We perform experiments by freezing and
fine-tuning the pre-trained models. The best model is selected
based on the sum of recalls on the validation set.

For all triplet-based losses, the distance margin m is set to
0.2, and the temperature hyper-parameter τ in the NT-Xent loss
is set to 0.07. For triplet-weighted loss, we follow the hyper-
parameter settings in [21], that is, Q = 2, {a0 = 0.5, a1 =
−0.7, a2 = 0.2}, and P = 2, {b0 = 0.03, b1 = −0.4, a2 =
0.9}. The dimension of the shared embedding space is 1024.
The learned acoustic semantic embeddings are normalized. All
experiments are carried out on a single RTX3090 GPU.

3.3. Evaluation protocol

Recall at rank k (R@k) is used as the evaluation metric, which is
the popular cross-modal retrieval evaluation protocol. R@k mea-

1https://freesound.org/
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Table 2: Experimental results with different batch sizes on AudioCaps dataset. The pre-trained encoders are not fine-tuned.

Batch size Objective Text-to-Audio Audio-to-Text
R@1 R@5 R@10 R@1 R@5 R@10

32

Triplet-sum 17.2±0.5 47.6±0.2 64.3±0.1 19.3±1.5 51.4±0.8 67.2±0.7

Triplet-max 19.9±0.2 51.6±0.3 67.4±0.3 21.2±0.9 54.9±1.4 70.2±1.0

Triplet-weighted 19.9±0.2 52.1±0.7 67.6±0.6 21.9±0.8 56.3±0.3 71.5±0.4

NT-Xent 19.2±0.4 51.1±0.2 66.6±0.2 21.3±0.5 53.6±0.7 69.8±0.5

128

Triplet-sum 17.0±0.7 47.2±0.2 62.7±0.2 20.0±1.2 49.9±1.5 66.7±1.0

Triplet-max 11.8±0.3 38.1±0.9 53.7±0.5 15.0±0.5 43.4±0.6 59.6±0.7

Triplet-weighted 10.1±0.6 31.7±0.9 46.5±0.9 10.7±0.9 33.4±1.7 48.7±2.6

NT-Xent 19.5±0.1 50.4±0.3 65.6±0.8 22.2±0.7 53.7±2.0 69.5±0.4

sures the percentage of targets retrieved within the top k ranked
results, thus the higher the score, the better the performance. We
report R@1, R@5, and R@10. All the experiments are repeated
three times with different training seeds and we report the mean
and standard deviation of the metrics.

4. Results
4.1. Model performance

The experimental results are shown in Table 1. The baseline
model is simple but effective. It can be observed that fine-tuning
can substantially improve the model performance and lead to
state-of-the-art results on both datasets. In addition, we could
observe that the scores on the Clotho dataset are relatively lower
than those on the AudioCaps dataset, which is consistent with
the results in [16]. The reasons might be two folds: (1) the size
of training data is limited in the Clotho dataset, (2) captions for
each audio clip in the Clotho dataset are more diverse thus it is
challenging to map the diverse captions close with each other in
the shared acoustic semantic embedding space.

4.2. Metric learning objectives

As can be seen in Table 1, the NT-Xent loss shows stable per-
formance on both AudioCaps and Clotho datasets regardless of
whether the pre-trained encoders are fine-tuned or frozen. It
outperforms the other three triplet-based losses in most cases
on both text-to-audio and audio-to-text retrieval. For the other
three triplet-based losses, the models trained via triplet-sum are
not as good as others especially when the encoders are frozen.
However, they achieve similar performance on the Clotho dataset
when the encoders are fine-tuned. The triplet-max and triplet-
weighted losses achieve similar results on the AudioCaps dataset,
but the models trained via triplet-weighted loss perform less well
than others on the Clotho dataset when the encoders are frozen.
The weighting method does not bring substantial improvements.
The reason might be that the weighting function has many hyper-
parameters to be tuned while we have used the values in the
original work [21]. Tuning the hyper-parameters for the dataset
we evaluated may lead to better performance. Overall, the NT-
Xent loss outperforms other three triplet-based losses on both
text-to-audio and audio-to-text retrieval in most situations.

In our experiments, we also found that the two losses based
on hardest negative mining, the triplet-max and triplet-weighted
losses, are sensitive to the training settings, while the other two,
triplet-sum and NT-Xent, are more robust and stable to different
training settings. For example, triplet-max and triplet-weighted
need a good learning rate, otherwise the models are difficult to

converge. On the AudioCaps dataset, all the models are trained
with a learning rate of 1× 10−4 and all converge well. However,
the models trained via triplet-max and triplet-sum with such a
learning rate do not converge on the Clotho dataset. Furthermore,
triplet-max and triplet-weighted are sensitive to the initialization
of model parameters, and we found that some of the models
with different training seeds may not converge under the same
training settings.

In addition, we study the impact of batch size on the Au-
dioCaps dataset without fine-tuning the encoders. The results
are shown in Table 2. We can observe the performance of mod-
els trained via triplet-max and triplet-weighted losses degrades
considerably when the batch size is increased to 128, while mod-
els trained via the other two losses (triplet-sum and NT-Xent)
show stable performance with respect to the change of the batch
size. This is somewhat inconsistent with results in the literature,
where it is generally believed that larger batch sizes could lead
to better performance for the triplet-based losses [18]. We found
the triplet-max and triplet-weighted do not converge with a batch
size of 128. The reason might be that the learning rate should
also be tuned to adapt for a larger batch size. Overall, triplet-sum
and NT-Xent losses are more robust to different training settings
and datasets, while triplet-max and triplet-weighted are more
difficult to train.

5. Conclusions
We have presented a simple but effective model to learn the
Acoustic Semantic Embeddings for the free-form language-
based audio-text retrieval task, then we studied the impact of
metric learning objectives based on our model in a constant train-
ing setting. We empirically demonstrated that the metric learning
objectives have a significant impact on the model performance,
where the NT-Xent loss outperformed the popular triplet-based
losses and showed stable performances with respect to different
training settings and datasets. The triplet losses with hard neg-
ative mining need careful tuning of hyper-parameters, and are
sensitive to the initialization of model parameters.
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