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Abstract
In this paper, we introduce the task of language-queried audio
source separation (LASS), which aims to separate a target source
from an audio mixture based on a natural language query of
the target source (e.g., “a man tells a joke followed by people
laughing”). A unique challenge in LASS is associated with the
complexity of natural language description and its relation with
the audio sources. To address this issue, we proposed LASS-
Net, an end-to-end neural network that is learned to jointly
process acoustic and linguistic information, and separate the
target source that is consistent with the language query from
an audio mixture. We evaluate the performance of our pro-
posed system with a dataset created from the AudioCaps dataset.
Experimental results show that LASS-Net achieves consider-
able improvements over baseline methods. Furthermore, we ob-
serve that LASS-Net achieves promising generalization results
when using diverse human-annotated descriptions as queries,
indicating its potential use in real-world scenarios. The sepa-
rated audio samples and source code are available at https:
//liuxubo717.github.io/LASS-demopage.
Index Terms: universal sound separation, source separation,
target source separation, natural language processing

1. Introduction
Human beings can focus their auditory attention on specific
sounds in environments [1]. Source separation systems aim
to separate mixtures of sound sources, which is the basis for
computational auditory scene analysis [2]. Recently, signifi-
cant progress has been made in audio source separation such as
speech separation [3, 4], music source separation [5, 6, 7] and
universal sound separation [8, 9, 10, 11].

One major challenge for existing source separation systems
is to deal with a vast number of sound classes in the real world.
When multiple sources are presented simultaneously, it is dif-
ficult for these systems to obtain accurate separation results
[12, 13]. Previous methods [8, 13] investigated using source cat-
egory information as a query to separate a specific source from a
mixture, as a way to reduce the difficulty of source separation.
However, the information provided by source categories is often
limited. In practical applications, instead of using a predefined
fixed set of source categories, one may prefer to use a natural
language description to identify and separate the target sound
source. Such natural language descriptions can include auxiliary
information for source separation such as spatial and temporal
relationships of sound events, such as “dog barks in the back-
ground” or “people applaud followed by a woman speaking”. To
our knowledge, audio source separation with natural language
queries has not been investigated in the literature.

This paper introduces a language-queried audio source sep-
aration (LASS) task. Given an audio mixture and a natural

language query of the target source, LASS aims to automati-
cally extract the target source from the mixture, where the target
source is consistent with the language query. LASS provides
a potentially useful tool for future source separation systems,
allowing users to extract desired audio sources via natural lan-
guage instructions. Such a system could be useful in many
applications, such as automatic audio editing [14], multimedia
content retrieval [15], and controllable hearable devices [13].

The challenges of achieving LASS are associated with the
complexity of natural language expressions and the character-
ization of their relation with sound sources. The language de-
scription of a sound source usually consists of multiple phrases
(e.g., “people speak and music plays”), each phrase referring to
a sound event in the audio mixture. In addition, the same audio
source can be delivered with diverse language expressions, such
as “music is being played with a rhythmic beat” or “an upbeat
music melody is playing over and over again”. In summary,
LASS not only requires these phrases and their relationships to
be captured in the language description, but also one or more
sound sources that match the language query should be separated
from the audio mixture.

In this work, we present LASS-Net, which is trained to
jointly process acoustic and linguistic information, and separate
the target source described by the natural language expressions.
In LASS-Net, a Transformer-based [16] query network is used
to encode the language expression into a query embedding, and
a ResUNet-based [5] separation network is then used to separate
the target source from mixture conditioned on the query em-
bedding. To evaluate the performance of our model, we create
a dataset based on the AudioCaps [17] dataset, experimental
results demonstrate that our model can achieve considerable im-
provements over baseline methods. We also observe that LASS-
Net shows promising separation performance when queried by
diverse human-annotated descriptions, indicating the potential
for generalization in real application scenarios.

The remainder of this paper is organized as follows. We
review the related work in Section 2. The LASS-Net is presented
in Section 3. We describe the dataset we created in Section 4,
and experiments and results in 5. We draw our conclusions in
Section 6, together with discussions on future work.

2. Related Work
Our work relates to several tasks in the literature: universal sound
separation, target source extraction, and audio captioning. We
will discuss each of these as follows.

2.1. Universal sound separation

Universal sound separation (USS) [9] is the task of separating a
mixture of arbitrary sound sources in terms of their classes. USS
is a challenging problem since the number of sound classes in the
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Figure 1: Framework of our proposed LASS-Net.

real world is very large. Several approaches have been proposed
to address the issue of a large number of sound classes, such
as leveraging semantic information learned by sound classifiers
[12] and establishing large-scale high-quality datasets [11]. In a
similar way to USS, LASS aims to separate real-world sounds,
but the objective of LASS is to perform the separation using
natural language descriptions as queries.

2.2. Target source extraction

Target source extraction (TSE) aims to separate a specific source
from an audio mixture given query information such as a sound
event tag. In contrast to USS, TSE only extracts sources of
interest from the mixture. There are several applications for
this problem, such as target speech extraction using speaker
information [18, 19], and target sound extraction using acoustic
event tags [13] or onomatopoeic words [20]. In contrast to TSE,
LASS focuses on extracting target audio sources that match
linguistic queries.

2.3. Automated audio captioning

Automated Audio captioning (AAC) [21, 22, 23, 24] is the task
where natural language descriptions are generated for an audio
clip. Recently, AAC has attracted increasing interest in the
Detection and Classification of Acoustic Scenes and Events
(DCASE) community. There are several datasets for AAC, such
as Clotho [25] and AudioCaps [17]. AudioCaps is the largest
public dataset for AAC research and has been used in several
recent studies [26, 27]. In this work, we create a dataset for
LASS based on the AudioCaps dataset. This new dataset will be
described in Section 4.

3. Proposed Approach
We propose LASS-Net, a neural network which separates target
audio sources with natural language queries, as shown in Figure
1. LASS-Net consists of two components: a query network
(QueryNet) that takes a language query as input and outputs
a query embedding, and a separation network (SeparationNet)
that takes mixture and query embedding as input and predicts
the target source. These two modules are trained jointly. We
describe the details of LASS-Net in the following sections.

3.1. LASS-Net

In LASS-Net, We build the separation in the time-frequency
domain. We denote the language query as q, and deploy a query
network to extract a query embedding eq:

QueryNet(q) 7→ eq. (1)

The audio mixture x is transformed to the spectrogram X using
short-time Fourier transform (STFT). The magnitude spectro-
gram and phase of X are denoted as |X| and ej∠X , where
X = |X|ej∠X . Magnitude spectrogram |X| ∈ RF×T is a two-
dimensional time-frequency feature, where T and F represent
the number of time frames and the dimension of the spectral
feature, respectively. Our objective is to learn a regression from
|X| to the magnitude spectrogram |Ŝ| of the estimated target
source ŝ, conditioned on the query embedding eq . Specifically,
we use a separation network that accepts inputs |X| and eq , and
outputs a latent feature Z with the same shape as |X|:

SeparationNet(|X|, eq) 7→ Z ∈ RF×T . (2)

Then, Z is fed into an element-wise sigmoid function σ(·) to
obtain a spectrogram mask M :

σ(Z) = M ∈ [0, 1]F×T . (3)

The magnitude spectrogram |Ŝ| of the estimated target source is
obtained by masking |X|:

|Ŝ| = M ⊙ |X| ∈ RF×T , (4)

where ⊙ is the Hadamard product.
The training objective is to minimize the mean absolute error

(MAE) between |Ŝ| and magnitude spectrogram |S| ∈ RF×T

of the ground truth target audio source. The MAE loss term is
defined as follows:

LossMAE =
∥∥∥|S| − ˆ|S|

∥∥∥
1
, (5)

where ∥.∥ is an l1 norm.
The mixture phase ej∠X is reused to recover the STFT

spectrogram Ŝ from the estimated magnitude spectrogram |Ŝ|,
where Ŝ = |Ŝ|ej∠X . Finally, inverse STFT is applied on Ŝ to
obtain the estimated source ŝ.

3.2. Query network

To extract the language query embedding, we use BERT [16] as
a query network in the proposed LASS-Net. BERT is a language
model pre-trained on large-scale text datasets (e.g., BooksCorpus
[28]). BERT contains prior linguistic knowledge such as syntac-
tic and semantic information, which is useful in audio-language
tasks, as shown in audio captioning [27, 29]. Concretely, we use
the pre-trained BERT [30] consisting of 4 Transformer encoder
blocks, each with 4 head and 256 hidden dimensions, respec-
tively. The input language query q = {qn}Nn=1 which consists
of N words is fed into the BERT model, as a result, a 256-
dimensional word-level embedding e = {en}Nn=1 is obtained.
In the BERT model, the bidirectional self-attention is used to



consider both past and future context, therefore, we adopt the
first embedding e1 as the output embedding of BERT. Finally, e1
is passed to a fully-connected layer with 256 nodes and ReLU
activation to obtain the language query embedding eq .

3.3. Separation network

We design the separation network based on ResUNet [5], which
is an improved UNet model used previously in [5, 6, 8] for
source separation. The ResUNet consists of six encoder blocks
and six decoder blocks. There are skip connections between
encoder and decoder blocks at the same level. The encoder
and decoder blocks share the same structure that contains two
ConvBlocks. Each ConvBlock consists of a batch normalization,
a leakyReLU activation, and a convolutional layer with kernel
size 4× 4. In the encoder blocks, average pooling is applied for
downsampling. In the decoder blocks, transpose convolution is
applied for upsampling. The number of feature maps of each
encoder block are 32, 64, 128, 256, 384, and 384, respectively,
and the number of feature maps of each decoder block is 384,
384, 256, 128, 64, and 32, respectively. After the last decoder
block, a 32-channel ConvBlock followed by a 1×1 convolutional
layer is deployed to estimate the spectrogram mask, which has
the same shape as the input spectrogram.

To bridge the query network and the separation network, we
use the Feature-wise Linearly modulated (FiLm) layer [31] after
each ConvBlock deployed in the separation network. Specifi-
cally, let H(l) ∈ Rm×h×w denote the output feature map of a
ConvBlock l that has m filters. The modulation parameters are
applied per feature map H

(l)
i with the FiLm layer as follows:

FiLM(H
(l)
i |γ(l)

i , β
(l)
i ) = γ

(l)
i H

(l)
i + β

(l)
i , (6)

where H
(l)
i ∈ Rh×w, and γ(l), β(l) ∈ Rm are the modulation

parameters from g(.), i.e., (γ, β) = g(eq), such that g(.) is a
neural network and eq is the language embedding obtained from
the query network. In this work, we model g(·) with two fully
connected layers followed by ReLU activation, which is jointly
trained with the separation network.

4. Dataset
We have created a dataset for LASS based on the AudioCaps
[17] dataset. AudioCaps is the largest publicly available dataset
for audio-language research, containing approximately 50k 10-
second audio clips from AudioSet [32]. AudioCaps provides
one human-annotated caption for each audio clip in the training
set, and we can get sound event tags for each audio clip from
AudioSet. Note that there is no direct connection between these
two annotations. To ensure the diversity of audio clips, we first
select 33 sound event tags (e.g., speech, typing, vibration, dog,
rain) that belong to five root categories of AudioSet Ontology
[32]: Human sounds, Animal, Sound of things, Natural sound,
and Channel, environment and background. Then, we retrieve
audio clips from AudioCaps if their sound event tags are all
contained in these 33 sound event classes. As a result, 6244
audio clips (∼17.3 hours) are retrieved, each audio clip has one
caption in AudioCaps. We divide these audio clips into training
data and test data of 6044 and 200 audio clips, respectively.

To create the audio mixtures, we first select an audio clip
as the target source, and then randomly select an audio clip as
the background source, whose sound event tag does not overlap
with that of the target source. We mix the target source and
the background source with a signal-to-noise ratio (SNR) at 0

dB. The training mixtures are created on-the-fly using training
data. To create the test mixtures, each test audio is mixed with
five randomly selected background sources. As a result, 1000
test mixtures are created, each mixture has a ground truth tar-
get source audio and one language query, we denote these test
mixtures as LASS-Test.

In practice, human descriptions of an audio source are often
diverse. To evaluate the model performance under diverse lan-
guage expressions, we first randomly select 50 audio clips from
200 test audio and invite five language experts to annotate them.
Each person labels one description per audio clip without any
hinters and restrictions. As a result, we collect an audio test sub-
set, where each audio has six captions (one from AudioCaps and
five from the annotators we recruited). Then, the corresponding
250 test audio mixtures are drawn from the LASS-Test to create
a test subset mixtures, referred to LASS-Sub-Test. The details
of our created dataset are made available on Github1.

5. Experiments and Results
5.1. Data processing

We load audio signals using 32 kHz sampling rate. STFT is
calculated with a frame size of 1024 and a hop size of 512. An
audio clip of 10 seconds results in a spectrogram with shape
of 513 × 626. We convert all language descriptions to lower
case and remove punctuation. One special token “<SOS>” is
added to the start of each sentence. We tokenize our language
descriptions corpus using the WordPiece [33] to match with the
BERT pre-trained vocabulary (∼30k).

5.2. Baseline system

Previous methods investigated separating sounds from a mixture
given sound event tags [8, 13]. We implement a sound event tags-
queried source separation model as a baseline system. Specifi-
cally, the baseline model is queried by a multi-hot encoding of
the sound event tags of the target source in AudioSet. To make
a fair comparison between the separation performance queried
by language descriptions and sound event tags, the architecture
we used for the baseline model is similar to that of our proposed
LASS-Net, except that the query network is a fully-connected
layer with 256 nodes followed by a ReLU activation.

5.3. Training procedure

We set batch size to 16. Adam [34] optimizer is used for training
with the learning rate of 3 × 10−4. We train the systems for
200 000 iterations using four Nvidia-RTX-3090-24GB GPUs.

5.4. Evaluation metrics

We evaluate the model performance using four commonly used
objective metrics [35] in source separation: source to distortion
ratio (SDR), source to inferences ratio (SIR), sources to artifact
ratio (SAR) and scale-invariant SDR (SI-SDR) [36]. A higher
number indicates a better performance.

Table 1: Evaluation results on LASS-Test.

Models SDR SIR SAR SI-SDR
Unprocessed -0.46 12.17 0.55 -0.53

UNet-Tag 5.40 16.28 4.75 4.24
LASS-Net 5.89 16.70 5.18 4.86

1https://github.com/liuxubo717/LASS
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Figure 2: Box plots of the SDR scores on two experiments: (a) Evaluation on LASS-Test (b) Evaluation on LASS-Sub-Test. Red solid line
represents the median value.

Table 2: Evaluation results on LASS-Sub-Test.

Models SDR SIR SAR SI-SDR
Unprocessed 0.56 12.27 1.68 0.53

UNet-Tag 6.18 16.41 5.29 4.90
LASS-Net 6.58 17.57 5.60 5.55

LASS-Net (human) 6.13 17.03 5.45 5.04

5.5. Results

5.5.1. Evaluation on LASS-Test

Three systems are evaluated on the LASS-Test in this experiment.
The first method is the Unprocessed system which directly uses
the audio mixtures in the test set for evaluation. The second
one is the UNet-based baseline system we implemented using
sound event tags as queries, referred to as the UNet-Tags system.
The third one is the approach we proposed using AudioCaps
language descriptions as queries, denotes as LASS-Net.

Table 1 shows the experimental results and Figure 2 (a) de-
picts the box plot of the SDR scores. LASS-Net achieves the
SDR, SIR, SAR, SI-SDR improvement of 6.35 dB, 4.53 dB,
4.63 dB, and 5.39 dB, respectively, compared with the unpro-
cessed system. This proves the feasibility of LASS task and the
effectiveness of our proposed approach. In addition, compared
with the UNet-Tag baseline system, LASS-Net achieves the SDR,
SIR, SAR, SI-SDR improvement of 0.49 dB, 0.42 dB, 0.43 dB,
and 0.62 dB, respectively. Those performance improvements
indicate that using natural language descriptions as queries leads
to more accurate separation results, as compared with the use of
sound event tags.

5.5.2. Evaluation on LASS-Sub-Test

Four systems are evaluated on the LASS-Sub-Test. The first three
systems are Unprocessed, UNet-Tag, and LASS-Net, respectively,
which are same as those described in Section 5.5.1. The fourth
system is the model we proposed, but using our collected human
description as queries, which we denote as LASS-Net (human).
For LASS-Net (human), we average the evaluation results of five
language queries for each target audio source.

Table 2 shows the experimental results and Figure 2 (b) de-
picts the box plot of the SDR scores. LASS-Net (human) achieves
the SDR, SIR, SAR, SI-SDR improvement of 5.57 dB, 4.76 dB,
3.77 dB, and 4.51 dB, respectively, compared with the unpro-
cessed system. Although the human-annotated descriptions we
collected have a different word distribution from that in Audio-
Caps, the performance of LASS-Net (human) is only slightly
lower as compared with the LASS-Net system. In addition, LASS-
Net (human) outperforms UNet-Tag baseline system on SIR,
SAR and SI-SDR metrics by 0.62 dB, 0.16 dB, and 0.14 dB,
respectively. These experimental results indicate the promising
generalization performance of our proposed approach.

We visualize the spectrograms of an audio mixture, the
ground truth target source, the separated sources queried by
AudioCaps description and our collected human description,
respectively, in Figure 3. Although these two language queries
are different, we observe that the results of these two separations
are similar and both are close to the ground truth source, which is
consistent with our experimental results. More audio separation
samples are available on our project page.

(a) Mixture (b) Ground Truth

(c) LASS (AudioCaps) (d) LASS (human)

Figure 3: Spectrogram visualizations of (a) an audio mixture,
(b) The ground truth target source, (c) The separated source
queried by AudioCaps description: “applauding followed by
people singing and a tambourine”, and (d) The separated source
queried by our collected human description: “a show start with
audience applauding and then singing”.

6. Conclusions
We have presented a study of the LASS task, which, to our
knowledge, is the first attempt bridging audio source separation
with natural language queries. We presented a LASS-Net which
separates target sources from mixtures using natural language
queries. Experimental results show the promising separation
results and generalization capabilities of LASS-Net. In future
work, we will extend LASS to the scenario of complex acoustic
mixtures and fine-grained natural language queries.
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