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Single channel blind source separation (SCBSS) refers to separating multiple sources from a mixture 
collected by a single sensor. Existing methods for SCBSS have limited performance in separating multiple 
sources and generalization. To address these problems, an algorithm is proposed in this paper to 
separate multiple sources from a mixture by designing a parallel dual generative adversarial network 
(PDualGAN) that can build the relationship between a mixture and the corresponding multiple sources 
to achieve one-to-multiple cross-domain mapping. This algorithm can be applied to a variety of mixtures 
including both instantaneous and convolutive mixtures. In addition, new datasets for single channel 
source separation are created which include the mixtures and corresponding sources for this study. 
Experiments were performed on four different datasets including both one-dimensional and two-
dimensional signals. Experimental results show that the proposed algorithm outperforms state-of-the-art 
algorithms, measured with peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), source-
to-distortion ratio (SDR), source-to-interferences ratio (SIR), relative root mean squared error (RRMSE) 
and correlation.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

Single channel blind source separation (SCBSS) aims to separate 
multiple sources from a mixture collected by a sensor which has 
a variety of applications in speech [1], image and EEG signal pro-
cessing [2][3], biomedical engineering [4][5][6], multi-source phase 
retrieval [7][8][9], and eddy current pulsed thermography [10]. For 
example, due to the anisotropies in the cosmic microwave back-
ground (CMB) radiation, it is often required to recover the CMB 
component as accurately as possible from a noisy mixture [11]. The 
SCBSS problem is an extreme case of an underdetermined source 
separation problem, which is an inherently ill-posed problem in 
the sense that only a single-channel mixture is available, and there 
is no prior knowledge about the sources and mixing matrix which 
leads to SCBSS being a very pathological and challenging problem.

Several traditional methods have been proposed for SCBSS 
such as the methods based on optimal filters (e.g. Wiener filter) 
[12][13], empirical mode decomposition and independent com-
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ponent analysis (EMD-ICA) [14][15], ensemble empirical mode 
decomposition and independent component analysis (EEMD-ICA) 
[16][17], and non-negative matrix factorization (NMF) [18][19]. 
These methods work well for instantaneous mixtures. However, 
they are also limited to various conditions. For example, filter 
based methods may require prior knowledge of source signals or 
transmission channels [13]. The intrinsic mode functions (IMFs) 
obtained by the EMD and EEMD are prone to modal aliasing [41]. 
ICA assumes that the sources are statistically independent of each 
other [42], and NMF assumes that all the elements in the matrix 
are non-negative constraints [18].

Recently, deep learning methods have been used as a solu-
tion for this problem. For example, auto-encoders (AEs) [37] have 
been proposed for supervised source separation, however, tradi-
tional AEs usually use a fully connected layer, which will cause 
the loss of image spatial information [43]. Singing Voice Separa-
tion generative adversarial network (SVSGAN) [38] has been pro-
posed for separating voice sources with time-frequency masking. 
The Wasserstein-GAN [20] and a two-stage approach [39] is pro-
posed for speech separation, where in the first stage, a derever-
beration mask (DM) is applied to dereverberation from the mix-
ture, in the second stage, the ideal ratio mask (IRM) is used to 
separate sources from the dereverberated mixture. This method in-
volves the use of two DNNs which incur a high computational cost. 
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Fig. 1. The working process of DualGAN for image-to-image translation. Image u ∈ U is translated to domain V using GA . Similarly, v ∈ V is translated to U using GB .
Evolving multi-resolution pooling convolutional neural network (E-
MRP-CNN) [40] is proposed for monaural singing voice separation 
(MSVS). Synthesis-decomposition (S-D) [21] is proposed for sep-
arating black and white images such as MINIST images from a 
mixture, however, they are not suitable for processing color im-
ages. In addition, these methods have degraded performance in 
separating multiple sources (more than three sources) and gener-
alization to unseen scenarios, and they mainly focus on processing 
signals in a certain field.

In real life, the signal captured by a sensor could be degraded 
by a number of conditions. For example, the electroencephalogram 
(EEG) signals are often mixed with interference signals of elec-
trocardiogram (ECG), electromyography (EMG), and eye movement 
artifacts (EOG). The remote sensing images are often obscured by 
clouds and fog. Due to the erosion of time, the loss of ancient 
Chinese characters often occurs in unearthed cultural relics and 
ancient books. Fingerprint images obtained from criminal inves-
tigation scenes often have multiple fingerprints overlapping with 
each other. In a noisy acoustic environment, multiple speakers are 
talking simultaneously, which raises the challenge of separating 
multiple sources from a mixture. Although many methods have 
been proposed, separating multiple sources from a single channel 
mixture remains an open challenge.

The aim of this paper is to address the problem of separating 
multiple sources from a single channel mixture, which is either a 
one-dimensional or a two-dimensional signal, with either an in-
stantaneous or convolutive mixing model, and improve its general-
ization performance. Inspired by dual learning and GAN [23] which 
can be used to build one-to-one mapping to achieve image-to-
image translation, we design a parallel dual generative adversarial 
network (PDualGAN) to achieve one-to-multiple mapping, and for-
mulate SCBSS as a data conversion problem in different domains 
where multiple sources are separated from a mixture in terms of 
the mapping between a mixture and the corresponding sources. 
Our novel contributions are as follows:

Model. We have formulated a unified model for the instantaneous 
mixing model and convolutive mixing model.
PDualGAN algorithm. A new algorithm is proposed by introduc-
ing PDualGAN, where the model training is performed using the 
mixtures and corresponding multiple sources. The Wasserstein 
GAN gradient penalty (WGAN-GP) is applied in the loss function.
Our algorithm can be applied to both one-dimensional and two-
dimensional signals. In addition, different mixtures are used as 
2

experimental data to evaluate the effectiveness and generalization 
performance.
Datasets. New datasets are created for this study which are com-
posed of two parts: the mixtures and corresponding original 
sources. Each mixture is generated by using randomly generated 
mixing matrices and multiple sources with different weights. The 
datasets created could be valuable for researchers working in the 
image, speech, and EEG area of learning based source separation.

The remainder of this paper is organized as follows. Section 2
describes the background. Section 3 builds a one-to-multiple map-
ping model for the SCBSS problem. Section 4 presents our PDu-
alGAN algorithm for the problem of SCBSS. Section 5 shows the 
experimental results. Section 6 concludes the paper and draws fu-
ture research directions.

2. Background

A generative adversarial network (GAN) is a deep learning 
model and one of the most promising methods for unsupervised 
learning in recent years. It is composed of a generator and a dis-
criminator, where the generator takes random noise as input, and 
then generates corresponding samples, while the discriminator dis-
tinguishes the distribution of the candidate signal generated by 
the generator from the true data distribution. The model produces 
good output through adversarial learning of the generator and the 
discriminator [26]. Inspired by GAN and dual learning [27] from 
natural language translation, a dual generative adversarial network 
(DualGAN) [23] is developed for one-to-one unlabeled data from 
two domains. The original GAN has the limitation in that it can 
only learn to translate data from domain U to those in domain V, 
but the DualGAN can learn to invert the task.

Given two sets of unpaired and unlabeled data selected from 
domains U and V , the task of the DualGAN [23] is to firstly learn 
a generator G A : U → V , which is a mapping from u ∈ U to v ∈
V , secondly, the dual task is to train an inverse generator G B : V
→ U , i.e. which is a mapping from v ∈ V to u ∈ U . This is realized 
with two GANs which have the same structure. The original GAN 
learns the generator G A and discriminator D A that discriminates 
between the fake and real data of domain V . Similarly, the dual 
GAN learns the generator G B and a discriminator D B . The overall 
working process is shown in Fig. 1 [23].

The data from domain u ∈ U is translated to that in domain V
with G A . The fitting degree of G A(u, z) (z is random noise) is eval-
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uated by D A . Then, G A(u, z) is translated back to domain U with 
G B , and output G B(G A(u, z), z′) (where z′ is also random noise) as 
a reconstruction of u. Similarly, v ∈ V is translated to domain U
as G B(v, z′) with G B , and then reconstructed as G A(G B(v, z′), z)
with G A . The discriminator D A is trained with v as true data 
and G A(u, z) as fake data, however, D B takes u as true data and 
G B(v, z′) as fake data. The generators G A and G B are trained and 
optimized to output fake samples to cheat the corresponding dis-
criminators D A and D B , and to minimize the reconstruction error 
‖ v − G A(G B(v, z′), z) ‖ and ‖ u − G B(G A(u, z), z′) ‖.

The cross-entropy loss function of the original GAN [26] is sub-
stituted by the loss function of Wasserstein GAN (WGAN) [28], 
which performs better in generator convergence and data quality, 
and in improving the stability of the network. The loss function 
applied in D A and D B can be written as

ldA (u, v) = D A (G A (u, z)) − D A (v) , (1)

ldB (u, v) = D B
(
G B

(
v, z′)) − D B (u) , (2)

where u ∈ U and v ∈ V .
The same loss function is applied in generators G A and G B as 

they have the same objective which adopts the L1 distance to mea-
sure the reconstruction losses, as follows

lg (u, v) = λU ||u − G B
(
G A (u, z) , z′) ||

+ λV ||v − G A
(
G B

(
v, z′) , z

) ||
− D B

(
G B

(
v, z′)) − D A (G A (u, z))

(3)

where λU and λV are both constant parameters, which are typi-
cally set to a value within [100, 1000] [23].

Clearly, by training DualGAN, unlabeled and unpaired data can 
be converted from U to the corresponding data in V because the 
data of the two domains have some similar characteristics. In-
spired by DualGAN, single channel blind source separation can be 
addressed by converting the mixtures to the corresponding mul-
tiple sources which have similar characteristics (for example, for 
images, each mixture has similar texture, style, and shape to the 
corresponding sources). In this paper, we develop a PDualGAN to 
train multiple DualGANs simultaneously and convert the mixtures 
to corresponding multiple sources using the PDualGAN algorithm.

3. Mathematical model

SCBSS is an extremely underdetermined problem of Blind 
source separation (BSS) that only one observed signal can be col-
lected. BSS was first proposed by Herault and Jutten [22]. It refers 
to the analysis of original signals from multiple observed mixed 
signals. Assuming that the sources s(t)=[s1(t), s2(t), ..., sM (t)]T are 
M independent signals, and x(t)=[x1(t), x2(t), ..., xN (t)]T are N in-
dependent observation signals, that is⎡
⎢⎢⎣

x1 (t)
x2 (t)
...

xN (t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a11 a12 ... a1M

a21 a22 ... a2M

... ... ... ...

aN1 aN2 ... aN M

⎤
⎥⎥⎦

⎡
⎢⎢⎣

s1 (t)
s2 (t)
...

sM (t)

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

n1 (t)
n2 (t)

...

nN (t)

⎤
⎥⎥⎦ ,

(4)

where A is a N × M matrix, n(t)=[n1(t), n2(t), ..., nN (t)]T is noise. 
In practical application, it is assumed that there is no noise, so the 
(4) can be simplified as

x (t) = As (t) . (5)

On this basis, Leon Cohen [44] first pointed out that SCBSS re-
quires the separability of the source signal in time and frequency. 
3

Then Hopgood and Rayner [45] studied and proposed that the 
separation can be realized when the sources are separable after 
transformation in the transform domain, besides, they defined the 
mathematical model and provide a theoretical basis for SCBSS. Ac-
cording to the mixing mode, the instantaneous mixing model and 
the convolutive mixing model are defined as

Instantaneous mixing model. For instantaneous mixing model, 
x(t) can be defined as

x (t) = a1 (t) s1 (t) + a2 (t) s2 (t) + ... + aN (t) sN (t) , (6)

where x(t) is an observed mixture at discrete time t , si(t) is the 
ith source, and ai(t) is the ith mixing coefficient, i = 1, 2, ..., N . 
(6) can be simplified as

x(t) =
N∑

i=1

ai (t)si (t) . (7)

Convolutive mixing model.
Similarly, for convolutive mixing model, the observed mixture x(t) 
can be defined as

x(t) =
N∑

i=1

ai (t) ∗ si (t) , (8)

where si(t) is the ith source, ai(t) is the ith mixing filter, i =
1, 2, ..., N , and * denotes convolution operation which can be de-
fined as

ai (t) ∗ si (t) =
+∞∑

v=−∞
ai (t − v)si (v) , (9)

where t is the amount of displacement of a(−v). Therefore, (8)
can be described as

x (t) =
N∑

i=1

+∞∑
v=−∞

ai(t − v)si(v). (10)

Single channel blind source separation needs to separate mul-
tiple sources from a mixture, it is a very challenging problem that 
has the following characteristics:

(1) Only a mixture is available and the sources and mixing 
matrixes are unknown which made it an ill-posed and underde-
termined problem in mathematics.

(2) There is no prior knowledge and representation of the 
sources and mixing matrix.

(3) In a practical situation, due to the reflection and time delay 
of the sources in the propagation process, the observed mixture is 
not only generated by instantaneous mixing but also more simi-
lar to that generated by convolutive mixing. Therefore, it is very 
important to solve the problem of single channel blind source sep-
aration with two mixing modes.

We can see from (7) and (10) that both the instantaneous mix-
ing model and the convolutive mixing model can be regarded as 
a form of matrix multiplication, which maps multiple sources to 
a mixture. The existing methods mainly focus on a certain field 
with a single mixed mode. The aim of the proposed PDualGAN al-
gorithm is to address the problem of separating multiple sources 
from a single channel mixture, which can be applied to both one-
dimensional and two-dimensional signals, with either an instanta-
neous or a convolutive mixing model.
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Fig. 2. The overall architecture of the PDualGAN based on the instantaneous and convolutive mixing model, including four parts: the data collection (a), both two-dimensional 
signals and one-dimensional signals are collected. The data preprocessing (b) and the building of one-to-multiple datasets. The training of PDualGAN (c), where N DualGANs 
are trained simultaneously, learn the mapping between the mixture x(t) ∈ U and the corresponding sources s1(t) ∈ V 1, s2(t) ∈ V 2, ..., sN (t) ∈ V N sequentially. The testing of 
PDualGAN (d), where different mixtures are generated by random mixing matrices and multiple sources of different weights (different from the mixing weights in training). 
x(t) are used as the input for estimating the N sources s̄1(t), ̄s2(t), ..., ̄sN (t) as the output.
4. PDualGAN algorithm

In this section, we present a PDualGAN algorithm to address the 
problem of separating multiple sources from a mixture and apply 
it to one-dimensional and two-dimensional signals. As shown in 
Fig. 2. Firstly, we collect the one-dimensional and two-dimensional 
signals. Secondly, the data is preprocessed and the size of two-
dimensional signals is adjusted to 128 × 128, 16384 points are 
clipped and normalized of one-dimensional signal, and converted 
into the multi-dimensional matrix, then different mixtures are 
generated with random mixing matrices and multiple sources with 
different weights, and the datasets are constructed as the input 
of PDualGAN. Thirdly, we transform the problem of SCBSS into a 
data conversion problem in different domains by using PDualGAN 
to train N DualGANs simultaneously with the mixtures (either in-
stantaneous or convolutive mixtures) and corresponding sources. 
The mixtures are generated by using randomly generated mixing 
matrices and multiple sources with different weights (i.e. different 
sources have different proportions), and the mixing matrices sat-
isfy the standard normal distribution. The final step is to test the 
effect of the trained model with different mixtures generated by 
mixing the randomly selected sources with different weights.

4.1. Theoretical basis of PDualGAN algorithm

GAN can generate arbitrary data by random noise to produce 
clearer and real samples by training the generator and discrimina-
tor in an adversarial way. Based on this, A DualGAN is developed 
by introducing dual learning, which can generate unknown sig-
nals with random input and learn to invert the task. DualGANs 
can be applied to cross-domain image-to-image translation (such 
as photo-to-sketch conversion) because it implicitly assumes that 
the structure between input and output images is alignment [23].

Similarly, for the problems described in section 3, a mixture and 
the corresponding sources also have some similar characteristics, 
for a two-dimensional signal, each mixed image has some com-
mon features (texture, style, shape, cluster, etc.) with the corre-
sponding multiple individual images; For one-dimensional signals, 
4

each mixed signal has some common features (frequency, wave-
form, amplitude, etc.) with the corresponding multiple individual 
signals. Therefore, we consider designing a PDualGAN which in-
cludes N DualGAN to build one-to-multiple mapping which can be 
applied to both one-dimensional and two-dimensional signals.

Combined with the characteristics of DualGAN, in our algo-
rithm, no specific domain knowledge or pre-trained domain rep-
resentation is needed, but the features between the mixtures and 
multiple corresponding sources are searched to establish the map-
ping relationship, so, it is also applied to instantaneous mixing and 
convolutive mixing model.

The reconstruction error measures the disparity between the 
original sources and the reconstructed signals. PDualGAN contains 
N DualGANs, which are of the same structure as shown in Fig. 3. 
The mixtures are sampled from U and the corresponding sources 
are sampled from V 1, V 2, ..., V N respectively. The primary task of 
our PDualGAN is to build the one-to-multiple mapping from x(t) ∈
U to s1(t), s2(t), ..., sN(t) ∈ V 1, V 2,..., V N , respectively.

4.2. Network configuration

Each DualGAN has identical network architecture for G Ai and 
G Bi (G Ai and G Bi are the generators of the ith DualGAN, i =
1, 2, ..., N). The generator has the equal number of upsampling and 
downsampling layers, with skip connections between them, form-
ing a U-shaped net [29][30], and such a structure enables low-level 
information to be shared between the input and output. In ad-
dition, z and z′ are provided only in the form of dropout and 
applied to multiple layers of generators at both training and testing 
phases, but they are not explicitly provided. For discriminators, the 
Markovian PatchGAN architecture [31] is applied, which is effec-
tive in capturing local high-frequency features, and its effectiveness 
has been verified on various conversion tasks [27]. Furthermore, 
it requires fewer parameters, and therefore runs faster than con-
ventional GAN. This scheme will be used for our signal separation 
tasks.

In the generators, 8 convolution layers (g1∼g8) are included in 
down-sampling layers and 8 deconvolution layers (f1∼f8) are in-
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Fig. 3. The working process of each DualGAN. s̄i(t) ∈ V i is the fake data generated by the generator G Ai from the mixture x(t) ∈ U , while x̄(t) ∈ U is reverse generated data 
by the generator G Bi . Similarly, x̂(t) ∈ U is the fake data generated by the generator G Bi from the sources si(t) ∈ V i , and ŝi(t) ∈ V i is reverse generated data by the generator 
G Ai . x(t) (i.e. u), si(t) (i.e. vi ), x̄(t) (i.e. G Bi (G Ai (u, z), z′)), s̄i(t) (i.e. G Ai (u, z)), x̂(t) (i.e. G Bi (vi , z′)), ŝi(t) (i.e. G Ai (G Bi (vi , z′), z)).

Table 1
The setting of the parameter of generators of the PDualGAN network. Lnam , Osiz , Odim , Cker , Cstr , Pstr and Tstr

represent the name of Layers, output size, output dimension, convolution kernel, convolution stride, pooling 
stride, and transpose convolution stride.

Generators
Down-sampling layers Up-sampling layers

Lnam Osiz Odim Cker Cstr Pstr Lnam Osiz Odim Cker Cstr Tstr

g1 64×64 64×2 (3,3) 2 2 f1 1×1 64×16 (3,3) 2 2
g2 32×32 64×4 (3,3) 2 2 f2 2×2 64×16 (3,3) 2 2
g3 16×16 64×8 (3,3) 2 2 f3 4×4 64×16 (3,3) 2 2
g4 8×8 64×8 (3,3) 2 2 f4 8×8 64×16 (3,3) 2 2
g5 4×4 64×8 (3,3) 2 2 f5 16×16 64×8 (3,3) 2 2
g6 2×2 64×8 (3,3) 2 2 f6 32×32 64×4 (3,3) 2 2
g7 1×1 64×8 (3,3) 2 2 f7 64×64 64×2 (3,3) 2 2
g8 1×1 64×8 (3,3) 2 2 f8 128×128 3 (3,3) 2 2
Table 2
The setting of the parameter of discriminators of 
the PDualGAN network. Lnam , Osiz , Odim , Cker , Cstr

represent the name of Layers, output size, output 
dimension, convolution kernel, convolution stride.

Discriminators

Lnam Osiz Odim Cker Cstr

d1 64×64 64×2 (3,3) 2
d2 32×32 64×4 (3,3) 2
d3 16×16 64×8 (3,3) 2
d4 4×4 64×16 (3,3) 2
d5 2×2 1 (3,3) 2

cluded in up-sampling layers. In the discriminators, 5 convolution 
layers (d1∼d5) are included. The setting of parameter of genera-
tors and discriminators in PDualGAN network is shown in Table 1
and Table 2 respectively.

4.3. Training

As the momentum-based methods (such as Adam) would occa-
sionally lead to instability, we use mini-batch stochastic gradient 
descent (SGD) and apply the RMSProp solver which is known to 
perform well on highly nonstationary signals [28]. The sigmoid 
cross-entropy loss of the traditional GAN is locally saturated and 
may cause the gradient to disappear. However, the Wasserstein 
5

GAN gradient penalty (WGAN-GP) [28] loss is differentiable almost 
everywhere, resulting in a better discriminator which can provide 
more reliable gradient information.

As shown in Fig. 2 (c) and Fig. 3, for a mixture, a generator G Ai : 
U → V i in the ith DualGAN is learned by mapping the mixture u
to a corresponding source G Ai (u, z) generated, while the dual task 
is to train an inverse generator G Bi : V i → U that maps a gen-
erated source G Ai (u, z) to a generated mixture G Bi (G Ai (u, z), z′), 
where z and z′ are random noise signals. The N correspond-
ing sources are simultaneously generated by N DualGANs (i.e. 
i = 1, 2, ..., N) from the same mixture with the identical structure.

For an original source, a generator G Bi : V i → U in the ith Du-
alGAN is learned by mapping the source vi to a generated mixture 
G Bi (vi, z′), while the dual task is to train an inverse generator G Ai : 
U → V i that maps a generated mixture G Bi (vi, z′) to a generated 
source G Ai (G Bi (vi, z′), z), where z and z′ are random noises. The 
N different sources generate the same mixture by N DualGANs (i.e. 
i = 1, 2, ..., N) with an identical structure.

The discriminator D Ai discriminates the real source vi of do-
main V i and the fake outputs G Ai (u, z). The discriminator D Bi

discriminates the real mixture u of domain U and the fake out-
puts G Bi (vi, z′). Note that D Ai and D Bi are the discriminators of 
the ith DualGAN, i = 1, 2, ..., N .

The same loss function is applied in each DualGAN for genera-
tors G Ai and G Bi which is defined as
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Algorithm 1 Training of the PDualGAN Algorithm.
Input: The mixture x(t) ∈ U , original sources si(t) ∈ V i , i = 1, 2, ..., N , λU , λV i , ini-

tial learning rate, batch size, clipping parameter.
Output: Estimated sources si(t) ∈ V i , i = 1, 2, ..., N .
1: Each mixture x(t) (i.e. u) is mapped to N corresponding sources 

s1(t), s2(t), ..., sN (t) (i.e. v1, v2, ..., v N ) by N generators G A1 , G A2 , ..., G AN , 
and N original sources are mapped to the same mixture by N generators 
G B1 , G B2 , ..., G BN simultaneously. The results are saved.

2: Optimize the loss function of generators G Ai and G Bi in each DualGAN [23].

lGi (u, vi) = λU ||u − G Bi

({
G Ai (u, z) , z′|all i} ) ||

+λV i ||vi − G Ai

(
G Bi

(
vi , z′) , z

) ||
−D Bi

(
G Bi

(
vi , z′)) − D Ai

(
G Ai (u, z)

)
3: Optimize the loss function of discriminators D Ai and D Bi in each DualGAN [23].

lD
Ai

(u, vi) = D Ai

(
G Ai (u, z)

) − D Ai (vi)

lD
Bi

(u, vi) = D Bi

(
G Bi

(
vi , z′)) − D Bi (u)

4: End.

lGi (u, vi) = λU ||u − G Bi

({
G Ai (u, z) , z′|all i

}) ||
+ λV i ||vi − G Ai

(
G Bi

(
vi, z′) , z

) ||
− D Bi

(
G Bi

(
vi, z′)) − D Ai

(
G Ai (u, z)

)
,

(11)

where u ∈ U , vi ∈ V i , and λU , λV i are two constant parameters.
The corresponding loss functions applied in D Ai and D Bi are 

defined as:

lD
Ai

(u, vi) = D Ai

(
G Ai (u, z)

) − D Ai (vi) , (12)

lD
Bi

(u, vi) = D Bi

(
G Bi

(
vi, z′)) − D Bi (u) , (13)

where u ∈ U , vi ∈ V i .
The one-to-multiple mapping between a mixture u ∈ U and N

sources v1, v2, ..., v N ∈ V 1, V 2, ..., V N is built by training the pro-
posed PDualGAN.

4.4. Testing

As shown in Fig. 2 (d), after training the proposed PDualGAN, 
we save the trained model and parameters which are then used in 
the test stage. The mixtures with different weights are converted to 
corresponding multiple sources to achieve separation of multiple 
sources from the mixture.

5. Numerical experiments

In this section, experiments are conducted to demonstrate 
the performance of the proposed PDualGAN algorithm. Both one-
dimensional and two-dimensional signals are used in the exper-
iment. In addition, taking the separation of four sources from a 
mixture as an example, we compare the PDualGAN algorithm with 
state-of-the-art baseline algorithms.

Experimental settings. We train the discriminators ncritic steps, 
then one step on generators. The number of critic iterations per 
generator iteration ncritic can be set to 2-4, λU and λV i are all set 
to 1000, an initial learning rate is set to 0.00005, and the batch 
size is assigned as 1. The clipping parameter is set in [0.01, 0.1], 
and λU , λV i are set to a value within [100.0, 1000.0] [23].

Experimental data. We use four kinds of datasets for the exper-
iment: the NWPU-occlusion image datasets, the ancient Chinese 
character occlusion (ACC-occlusion) datasets, the speech datasets, 
and the EEG datasets, with more details given later. We select a to-
tal of 2000 original sources, i.e. each dataset includes 500 sources. 
The mixtures are generated by using randomly generated mix-
ing matrices and four sources with different weights. Each dataset 
includes two types: (1) instantaneous mixtures and correspond-
ing sources; (2) convolutive mixtures and corresponding sources. 
6

In the experiment, we randomly select 80% mixed signals and 
the corresponding original signals for training, the remaining 20%
mixed signals for testing.

[NWPU-occlusion image datasets] This dataset is formed by the 
original images selected from the NWPU-RESISC dataset2 contain-
ing 45 categories, and cloud and fog occlusion images found with 
Google and Baidu search engines. Each mixed image is generated 
by mixing two NWPU-RESISC images and two cloud and fog occlu-
sion images in random weights.

[ACC-occlusion datasets] This dataset includes the ancient Chi-
nese character images and occlusion images. Each mixed image is 
obtained by mixing one ancient Chinese character image and three 
occlusion images in different random weights.

[Speech datasets] The speech signals are selected from the 
THCHS-30 dataset3 with each sentence containing 16384 samples 
randomly clipped and then normalized. Each mixture is obtained 
by mixing four randomly selected speech signals in different ran-
dom weights. The THCHS-30 dataset was recorded by a single 
carbon microphone in a quiet office environment, where the sig-
nals were sampled at 16 kHz and quantized in 16 bits. Most of 
the speakers are college students who can speak fluent Mandarin. 
In total, 1000 recordings are taken, which have a total duration of 
more than 30 hours.

[EEG datasets] The EEG acquisition equipment used in the ex-
periment is the EEG and evoked potential meter (model NCERP-T-
240) of Shanghai Nuocheng Electric Co., Ltd. We use 24-channel 
silver-plated electrodes, and the electrode placement position 
adopts the international standard 10/20. An attention device us-
ing the ThinkGearTM Asic Module (TGAM) chip was developed to 
test the attention of the participants, where a pre-defined thresh-
old p can be used to detect the attention of the participant. If it is 
higher than the pre-defined threshold p (e.g. p > 60), it indicates 
that the participant has a good focus on the auditory stimuli, and 
at this time, EEG signals can be collected by the device.

A total of 50 participants is included in the EEG signal collec-
tion, of which 25 are males and 25 are females, aged between 
20-40. All participants are either teachers or students from Taiyuan 
University of Science and Technology who are in good health and 
meet the requirements for EEG collection experiments.

We select the EEG signals according to the positions of the EEG 
electrodes of the temporal and frontal lobes and pre-processing 
them to remove artifacts such as ECG and oculus, then we ran-
domly clipped 16384 points in each channel and normalize and 
convert the selected EEG signals into a multi-dimensional matrix 
to construct an EEG dataset. Each mixture is obtained by mixing 
four original EEG signals from the collected dataset in different 
random weights.

The four kinds of datasets are used to train our network. All 
the datasets are pre-processed, and each mixture corresponds to 
four sources, which are used as the input data of the PDualGAN 
network. Finally, different mixtures of four sources of different 
weights are selected as test signals to demonstrate the effective-
ness of the proposed algorithm.

Baseline method. We compare our PDualGAN algorithm with 
baseline algorithms for both instantaneous and convolutive mixing 
model based algorithms in separating four sources from a mix-
ture. Instantaneous mixing model based algorithms include ICA4

[46], NMF5 [47], EMD-ICA6 (empirical mode decomposition and 

2 https://hyper.ai /datasets /5449.
3 http://www.openslr.org /resources /18 /data.
4 https://so .csdn .net /so /search ?spm =1000 .2115 .3001.7499 &q =FastICA _25 &t =&u =

&urw.
5 https://download .csdn .net /download /weixin _38688371 /19076985.
6 https://so .csdn .net /so /search ?q =CEEMDAN _V00 &t =doc &u =&urw.

https://hyper.ai/datasets/5449
http://www.openslr.org/resources/18/data
https://so.csdn.net/so/search?spm=1000.2115.3001.7499&q=FastICA_25&t=&u=&urw
https://so.csdn.net/so/search?spm=1000.2115.3001.7499&q=FastICA_25&t=&u=&urw
https://download.csdn.net/download/weixin_38688371/19076985
https://so.csdn.net/so/search?q=CEEMDAN_V00&t=doc&u=&urw
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Table 3
Part of implementation details of the compared algorithms.

Algorithms Running file Format Sampling 
rate

Number of 
output sources

ICA FastICA 16384×4 
matrices

- 4

NMF nmf.m 16384×4 
non-negative 
matrices

- 4

EMD-ICA emd.m, FastICA 16384×1 
matrices

- 4

EEMD-PCA-ICA eemd.m, FastICA 16384×1 
matrices

- 4

CEEDMAN-ICA ceemdan.m, FastICA 16384×1 
mat

- 4

E-SSA-ICA main_SSA_ICA.m 1×16384 
matrices

- 4

Gaussian WGAN main_timit.py 16384×1 
wav

16000 2

CG demo.m 128×128 
mat

- 2

IRLS demo.m 128×128 
mat

- 2

CNMF cnmf.m 16384×4 
non-negative 
matrices

- 4

E-S-D main.py, 
deconvolve_separate.py

128×128 
jpg

- 4

SCBDC main.py, 
deconvolve_separate.py

128×128 
jpg

- 4

E-MRP-CNN dsd2_train.py, 
dsd2_eval.py

262144×2 
wav

44100 2
independent component analysis) [15], EEMD-PCA-ICA7 (ensem-
ble empirical mode decomposition and principal component anal-
ysis and independent component analysis) [16], CEEDMAN-ICA8

(complete ensemble empirical mode decomposition with adap-
tive noise and independent component analysis) [32], SSA-ICA9

(singular spectrum analysis and independent component analysis) 
[33] and Gaussian WGAN10 [20] algorithms. Convolutive mixing 
model based algorithms including CG11 [36] (Conjugate Gradi-
ent), IRLS12 [36], CNMF13 (convolutive NMF) [48], S-D (synthesis-
decomposition)14 [21], SCBDC (single-channel blind deconvolution 
algorithm based on optimized deep convolutional generative ad-
versarial networks) [47] and E-MRP-CNN15 algorithms [40].

The ICA, NMF, CNMF, EMD-ICA, EEMD-PCA-ICA, CEEDMAN-ICA, 
SSA-ICA, CG, and IRLS algorithms are implemented in Matlab, The 
facilities applied to perform the Gaussian WGAN, S-D, SCBDC, E-
MRP-CNN and PDualGAN algorithms include Intel I9-10900X 13.7 
GHz CPU, 2*NVIDIA RTX 8000 Graphics Card and 6*32 GB memory. 
Part of the implementation details of these algorithms is shown in 
Table 3. For the SSA-ICA and S-D algorithms, we adjusted part of 
the program code so that it can process four sources, therefore, we 

7 https://so .csdn .net /so /search ?q =CEEMDAN _V00 &t =doc &u =&urw.
8 https://so .csdn .net /so /search ?q =CEEMDAN _V00 &t =doc &u =&urw.
9 https://download .csdn .net /download /qq _39065549 /12318104.

10 https://github .com /ycemsubakan /sourceseparation _misc.
11 http://groups .csail .mit .edu /graphics /CodedAperture.
12 http://groups .csail .mit .edu /graphics /CodedAperture.
13 https://download .csdn .net /download /weixin _38688371 /19076985.
14 https://github .com /qiuqiangkong /gan separation deconvolution.
15 https://github .com /tuxzz /emrpcnn _pub.
7

renamed these two algorithms as extended SSA-ICA (E-SSA-ICA) 
and extended S-D (E-S-D) respectively. The codes of ICA, EMD-ICA, 
EEMD-PCA-ICA, CEEDMAN-ICA, and E-SSA-ICA algorithms cannot 
be used directly to process color images, so we process the R, G, 
and B channels separately, and then merged the three channels. 
Original Gaussian WGAN and E-MRP-CNN algorithms are designed 
for audio and singing voice and are not applicable for processing 
images, so the two algorithms are only applied to one-dimensional 
signals. For the result of the E-MRP-CNN algorithm, the vocal rep-
resents the first source, and the accompaniment may be a mixture 
of the remaining sources.

Evaluation index. For the experiments on the NWPU-occlusion 
and ACC-occlusion image datasets, the performance of the pro-
posed PDualGAN algorithm can be evaluated by the peak signal-
to-noise ratio (PSNR) [34] structural similarity index (SSIM) [48]
and correlation [35]. For the experiments on the speech datasets, 
the performance of the proposed PDualGAN algorithm can be 
evaluated by the source-to-distortion ratio (SDR) [49], source-to-
interferences ratio (SIR) [49] and correlation. For the experiments 
on the EEG datasets, the performance of the proposed PDualGAN 
algorithm can be evaluated by the relative root mean squared error 
(RRMSE) [16][25] and correlation.

The PSNR can be defined as

PSNR = 10log10

(
MAXI

2

MSE

)
, (14)

where MSE is the mean square error between two images with 
size w × v. MAX represents the maximum value of an image with-
out noise. The MSE of images M and H can be written as

https://so.csdn.net/so/search?q=CEEMDAN_V00&t=doc&u=&urw
https://so.csdn.net/so/search?q=CEEMDAN_V00&t=doc&u=&urw
https://download.csdn.net/download/qq_39065549/12318104
https://github.com/ycemsubakan/sourceseparation_misc
http://groups.csail.mit.edu/graphics/CodedAperture
http://groups.csail.mit.edu/graphics/CodedAperture
https://download.csdn.net/download/weixin_38688371/19076985
https://github.com/qiuqiangkong/gan
https://github.com/tuxzz/emrpcnn_pub
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Table 4
The performance of our algorithm compared with instantaneous model based algorithms on the NWPU-occlusion image 
dataset.

Algorithms NWPU-occlusion Dataset

PSNR SSIM Correlation

s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4

ICA 6.71 5.49 5.26 4.98 0.37 0.29 0.17 0.02 0.32 0.26 0.10 0.12
NMF 7.92 6.88 7.43 6.05 0.29 0.21 0.19 0.11 0.33 0.23 0.28 0.12
EMD-ICA 9.64 7.88 6.13 5.69 0.30 0.25 0.15 0.04 0.41 0.26 0.17 0.11
EEMD-PCA-ICA 11.45 7.62 6.91 6.44 0.33 0.22 0.19 0.16 0.55 0.32 0.18 0.19
CEEDMAN-ICA 8.26 5.23 6.87 7.83 0.25 0.13 0.15 0.16 0.37 0.14 0.15 0.22
E-SSA-ICA 9.10 10.24 8.80 7.41 0.21 0.38 0.19 0.18 0.42 0.53 0.29 0.27
PDualGAN 22.15 17.10 21.87 16.22 0.76 0.67 0.72 0.65 0.77 0.69 0.73 0.65

Table 5
The performance of our algorithm compared with convolutive model based algorithms on the ACC-occlusion dataset.

Algorithms ACC-occlusion Dataset

PSNR SSIM Correlation

s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4

CG 4.55 5.48 - - 0.18 0.12 - - 0.17 0.14 - -
IRLS 6.39 2.63 - - 0.24 0.07 - - 0.23 0.09 - -
CNMF 8.12 7.49 7.05 5.8 0.26 0.22 0.17 0.15 0.28 0.23 0.18 0.13
E-S-D 12.50 14.46 13.41 13.09 0.52 0.61 0.57 0.53 0.53 0.60 0.64 0.57
SCBDC 14.70 13.54 14.88 14.92 0.64 0.52 0.56 0.65 0.55 0.59 0.65 0.66
PDualGAN 26.23 22.03 19.71 16.56 0.78 0.73 0.77 0.65 0.80 0.72 0.76 0.67

Table 6
The performance of our algorithm compared with convolutive model based algorithms on the Speech dataset.

Algorithms Speech Dataset

SDR SIR Correlation

s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4

CG 4.85 2.18 - - 5.09 2.33 - - 0.40 0.22 - -
IRLS 3.38 2.13 - - 3.31 1.89 - - 0.26 0.13 - -
CNMF 4.31 3.89 3.79 3.54 5.01 4.22 2.76 3.54 0.33 0.28 0.29 0.21
E-S-D 8.50 9.46 7.41 7.09 9.19 9.41 8.25 7.13 0.53 0.61 0.54 0.48
SCBDC 9.14 9.48 8.26 7.60 9.78 9.88 8.45 8.03 0.63 0.64 0.58 0.57
E-MRP-CNN 8.16 9.23 - - 9.22 10.59 - - 0.69 0.59 - -
PDualGAN 11.03 12.63 17.71 18.36 12.80 12.02 18.67 17.76 0.65 0.62 0.79 0.78

Table 7
The performance of our algorithm compared with instantaneous model based algorithms 
on the EEG dataset.

Algorithms EEG Dataset

RRMSE [%] Correlation

s1 s2 s3 s4 s1 s2 s3 s4

ICA 62.27 66.14 68.26 72.11 0.36 0.31 0.23 0.11
NMF 64.33 68,17 70.45 72.29 0.34 0.24 0.19 0.14
EMD-ICA 66.12 69.24 73.54 77.34 0.21 0.14 0.06 0.03
EEMD-PCA-ICA 65.14 68.12 74.45 78.02 0.23 0.19 0.03 0.01
CEEDMAN-ICA 60.44 65.98 69.13 74.25 0.19 0.15 0.05 0.03
E-SSA-ICA 63.18 66.72 73.87 75.73 0.28 0.11 0.04 0.02
Gaussian WGAN 56.48 67.26 - - 0.54 0.22 - -
PDualGAN 37.12 42.59 44.32 51.14 0.74 0.66 0.69 0.67

Table 8
The running time complexity of the PDualGAN algorithm compared with state-of-the-art algorithms.

Instantaneous model 
based algorithms

Running time (s) Convolutive model 
based algorithms

Running time (s)

ICA 0.42 CG 19.05
NMF 0.57 IRLS 19.05
EMD-ICA 0.61 CNMF 0.59
EEMD-PCA-ICA 17.34 E-S-D 30
CEEDMAN-ICA 35.44 SCBDC 29
E-SSA-ICA 2.78 E-MRP-CNN 55
Gaussian WGAN 10.92 PDualGAN 8.41
PDualGAN 8.41
8
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Fig. 4. Testing results of the PDualGAN approach for instantaneous mixing of the NWPU-occlusion images. Each group includes three different mixtures ((a), (b) and (c)) of 
four images of different random weights. The X represents the mixture, s1, s2, s3, and s4 represent the four original ground-truth sources, s̄1, s̄2, s̄3, and s̄4 represent the 
corresponding estimated sources.

Table 9
The average correlation between si and s̄i of the proposed PDualGAN compared with the state-
of-the-art instantaneous mixing algorithms.

Algorithm First group Second group Third group

(a) (b) (c) (a) (b) (c) (a) (b) (c)

ICA 0.31 0.27 0.29 0.21 0.23 0.22 0.18 0.19 0.20
NMF 0.28 0.25 0.23 0.24 0.22 0.23 0.24 0.27 0.22
EMD-ICA 0.21 0.22 0.28 0.25 0.24 0.29 0.28 0.35 0.33
EEMD-PCA-ICA 0.28 0.27 0.28 0.24 0.22 0.25 0.33 0.31 0.30
CEEDMAN-ICA 0.37 0.27 0.25 0.35 0.29 0.32 0.28 0.18 0.21
E-SSA-ICA 0.31 0.25 0.37 0.21 0.34 0.22 0.47 0.31 0.39
PDualGAN 0.98 0.92 0.95 0.84 0.74 0.75 0.62 0.65 0.64
MSE(M, H) = 1

w v

w−1∑
i=0

v−1∑
j=0

(M(i, j) − H(i, j))2. (15)
9

The SSIM can be defined as

SSIM (x, y) =
(
2μxμy + c1

) (
2σxy + c2

)
(

2 2
) (

2 2
) , (16)
μx + μy + c1 σx + σy + c2
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Fig. 5. Average PSNR and SSIM of the proposed PDualGAN compared with the state-of-the-art instantaneous mixing model based algorithms. (For interpretation of the colors 
in the figure(s), the reader is referred to the web version of this article.)

Fig. 6. Average PSNR, SSIM and correlation of the proposed PDualGAN varying with SNR.
where μx and μy are the mean of x and y, μ2
x and μ2

y are 
the variance of x and y, σxy is the covariance, c1 = (K1L)2

and c2 = (K2L)2 are constants for maintaining stability, L is 
the dynamic range of the pixel values, K1 is 0.01 and K2 is 
0.03.
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The SDR and SIR can be defined as

SDR = 20log10

∥∥starget
∥∥∥∥einter f + enoise + earti f

∥∥ , (17)

SIR = 20log10

∥∥starget
∥∥∥∥e
∥∥ , (18)
inter f
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Fig. 7. Average PSNR and SSIM of the proposed PDualGAN compared with the state-of-the-art convolutive mixing model based algorithms.
where the starget represents the target source, einter f is an interfer-
ence of the unwanted source, enoise is a noise source, earti f is an 
interference source generated by algorithm.

The RRMSE is given by

RRMSE = RMS
(
s (t) − ŝ (t)

)
RMS (s (t))

× 100[%], (19)

where ŝ(t) is the estimate signal and s(t) is the original signal, 
RMS(.) is the root mean square.

The correlation coefficient of signals X and Y can be expressed 
as

r =

N∑
i=1

(
Xi − X̄

) (
Yi − Ȳ

)
√

N∑
i=1

(
Xi − X̄

)2

√
N∑

i=1

(
Yi − Ȳ

)2

. (20)

We conducted experiments on four datasets according to the 
two mixing modes. For two-dimensional signals, we show the 
separation result of the instantaneous mixtures on the NWPU-
occlusion image datasets, and the separation result of the convolu-
tive mixtures on the ACC-occlusion datasets; for one-dimensional 
signals, we show the separation result of the instantaneous mix-
tures on the EEG datasets, and the separation result of the convo-
lutive mixtures on the Speech datasets. Table 4, Table 5, Table 6
and Table 7 show the comparison results of average values of 
our algorithm as compared with the state-of-the-art algorithms for 
separating four sources.
11
As demonstrated, in separating four sources, the traditional 
ICA, NMF, EMD-ICA, EEMD-PCA-ICA, CEEDMAN-ICA, E-SSA-ICA, CG, 
IRLS, and CNMF algorithms have limited performance, the E-S-D 
and SCBDC algorithm have relatively better performance in sepa-
rating four sources on ACC-occlusion datasets and speech datasets, 
and the E-MRP-CNN algorithm can achieve higher SDR and SIR on 
the Speech datasets. In general, the proposed PDualGAN algorithm 
has better performance than the ICA, NMF, EMD-ICA, EEMD-PCA-
ICA, CEEDMAN-ICA, E-SSA-ICA, Gaussian WGAN, CG, IRLS, CNMF, 
E-S-D, SCBDC and E-MRP-CNN algorithms.

Besides, Table 8 demonstrated the running time complexity of 
the instantaneous and convolutive model based algorithms which 
are approximately calculated. As demonstrated, The traditional ICA, 
NMF, CNMF, EMD-ICA, and E-SSA-ICA algorithms have low com-
putational complexity, and the EEMD-PCA-ICA, CEEDMAN-ICA, CG 
and IRLS algorithms have relatively high complexity. Although Du-
alGAN has a long training time of 80.50 h, it runs for less than 
9 s, which is lower than other Gaussian WGAN, S-D, SCBDC, and 
E-MRP-CNN deep learning algorithms.

5.1. PDualGAN for NWPU-occlusion images

In the first set of simulations, we evaluate the separation per-
formance of the proposed PDualGAN algorithm described in Algo-
rithm 1 for instantaneous mixtures on the NWPU-occlusion image 
datasets.

Fig. 4 shows part of the test results of separating four images 
from instantaneous mixtures, three groups of instantaneous mix-
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Fig. 8. Testing results of the PDualGAN approach for convolutive mixing ACC-occlusion images. Each group includes three different mixtures ((a), (b) and (c)) of four images 
of different random weights. The x represents the mixture, s1, s2, s3, and s4 represent the four original ground-truth sources, s̄1, s̄2, s̄3, and s̄4 represent the corresponding 
estimated sources.
tures are selected from the NWPU-occlusion datasets, where each 
group shows the separating results from three different mixtures 
((a), (b), (c) in Fig. 4), and each mixture is generated by randomly 
selected mixing matrices and four images with random weights. 
Fig. 5(a) and Fig. 5(b) show the comparison results of average PSNR 
and SSIM obtained by the proposed PDualGAN algorithm and ICA, 
NMF, EMD-ICA, EEMD-PCA-ICA, CEEDMAN-ICA, E-SSA-ICA instan-
taneous model based algorithms. Table 9 shows the comparison 
results of average correlation obtained by the proposed PDualGAN 
algorithm and these state-of-the-art algorithms.

As observed from Fig. 4, Fig. 5 and Table 9, the proposed PDu-
alGAN algorithm can obtain high PSNR, SSIM and correlation when 
the four sources can be separated correctly (such as the first group 
in Fig. 4), otherwise, the performance will be degraded (such as 
the second group and the third group in Fig. 4). In general, the 
12
average PSNR of the proposed algorithm can achieve 23.92 dB, 
outperforming the baseline algorithms ICA, NMF, EMD-ICA, EEMD-
PCA-ICA, CEEDMAN-ICA, and E-SSA-ICA of 6.93 dB, 7.05 dB, 8.05 
dB, 7.92 dB, 7.84 dB, and 8.30 dB, the average SSIM can achieve 
0.77 which is significantly higher than these algorithms of 0.24, 
0.23, 0.26, 0.27, 0.27, 0.31. The average correlation obtained by the 
PDualGAN algorithm can reach 0.78 which outperforms the base-
line algorithms of 0.23, 0.24, 0.27, 0.28, 0.28, and 0.32. Therefore, 
the PDualGAN algorithm achieves better results than the baseline 
instantaneous mixing model based algorithms.

In addition, considering the effect of noise on the proposed 
PDualGAN algorithm, the white Gaussian noise is added to the in-
stantaneous mixtures in Fig. 4 to test the separation performance. 
The average PSNR, SSIM and correlation are measured with the 
source-to-noise ratio (SNR) ranging from 10 dB to 20 dB, the re-
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Fig. 9. Average PSNR, SSIM and correlation of the proposed PDualGAN algorithm varying with SNR.

Fig. 10. Average SDR and SIR of the proposed PDualGAN compared with the state-of-the-art convolutive mixing model based algorithms.
Table 10
The results of average, standard deviation and confidence interval of PSNR of the 
instantaneous mixing model based algorithms on the NWPU-occlusion dataset.

Algorithm Average PSNR Standard deviation Confidence interval

ICA 5.61 0.43 [5.52, 5.69]
NMF 7.07 0.48 [6.98, 7.16]
EMD-ICA 7.34 2.44 [6.86, 7.81]
EEMD-PCA-ICA 8.11 3.90 [7.34, 8.87]
CEEDMAN-ICA 7.05 1.35 [6.78, 7.31]
E-SSA-ICA 8.89 1.02 [8.69, 9.09]
PDualGAN 19.34 6.82 [18.01, 20.67]

sults are shown in Fig. 6. As observed, the proposed PDualGAN 
algorithm can still have good performance and is robust.

Considering the statistical error, we provide the average, stan-
dard deviation and confidence interval of PSNR to analyze the 
dispersion of the results, confidence intervals include the effect 
information about precision and magnitude [24]. We set the confi-
dence level to 95%, and the test sample size to 100. Table 10 given 
13
the results of the ICA, NMF, EMD-ICA, EEMD-PCA-ICA, CEEDMAN-
ICA, E-SSA-ICA and the proposed PDualGAN algorithms.

5.2. PDualGAN for ACC-occlusion images

In the second set of simulations, we evaluate the separation 
performance of the proposed PDualGAN algorithm described in Al-
gorithm 1 for convolutive mixtures on the ACC-occlusion datasets.

Fig. 8 shows part of the test results of three groups of convo-
lutive mixtures which are selected from the ACC-occlusion image 
datasets, each group shows the separating results from three dif-
ferent mixtures ((a), (b), (c) in Fig. 8), and each mixture is a con-
volutive mixture generated by random mixing matrices and four 
images with different random weights. We compared the PDual-
GAN algorithm with CG, IRLS, CNMF, E-S-D, and SCBDC convolu-
tive model based algorithms according to the different mixtures of 
Fig. 8. The comparison results of average PSNR, SSIM and corre-
lation obtained by these state-of-the-art algorithms are shown in 
Fig. 7(a), Fig. 7(b) and Table 11 respectively.
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Fig. 11. Testing results of the PDualGAN approach for convolutive mixing speech signals. Each group includes two different mixtures ((a), (b)) of four signals of different 
random weights. The first column is the mixtures, the second column is the corresponding original sources s1, s2, s3, and s4, and the third column is the corresponding 
estimated sources s̄1, s̄2, s̄3, and s̄4.

Table 11
The average correlation between si and s̄i of the proposed PDualGAN compared with the 
state-of-the-art convolutive mixing model based algorithms.

Algorithm First group Second group Third group

(a) (b) (c) (a) (b) (c) (a) (b) (c)

CG 0.24 0.25 0.24 0.11 0.16 0.25 0.27 0.25 0.22
IRLS 0.15 0.27 0.24 0.13 0.21 0.15 0.23 0.26 0.22
CNMF 0.28 0.35 0.23 0.31 0.38 0.33 0.27 0.25 0.26
E-S-D 0.54 0.62 0.59 0.64 0.59 0.68 0.58 0.49 0.66
SCBDC 0.64 0.62 0.59 0.57 0.62 0.58 0.65 0.62 0.63
PDualGAN 0.78 0.77 0.75 0.69 0.68 0.55 0.99 0.97 0.97
14
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Fig. 12. Average SDR, SIR and correlation of the proposed PDualGAN algorithm varying with SNR.
Table 12
The results of average, standard deviation and confidence interval of PSNR of the 
convolutive mixing model based algorithms on the ACC-occlusion dataset.

Algorithm Average PSNR Standard deviation Confidence interval

CG 5.02 0.22 [4.98, 5.06]
IRLS 4.51 0.77 [4.36, 4.66]
CNMF 7.12 0.72 [6.97, 7.26]
E-S-D 13.37 0.51 [13.27, 13.46]
SCBDC 14.51 0.32 [14.45, 14.57]
PDualGAN 21.13 12.43 [18.70, 23.57]

Obviously, the average PSNR of the proposed algorithm can 
reach 25.74 dB, outperforming the baseline algorithms CG, IRLS, 
CNMF, E-S-D and SCBDC of 4.84 dB, 4.67 dB, 7.87 dB, 13.72 dB and 
14.32 dB, and the average SSIM can achieve 0.77 which is signif-
icantly higher than these algorithms of 0.22, 0.22, 0.25, 0.57, and 
0.60. Table 11 demonstrates the average correlation that the PDu-
alGAN algorithm can achieve 0.79 which outperforms the baseline 
algorithms of 0.22, 0.21, 0.30, 0.59, and 0.61.

Similar to section 5.1, the results of average PSNR, SSIM and 
correlation of the proposed PDualGAN algorithm measured with 
the source-to-noise ratio (SNR) are shown in Fig. 9.

We calculated the average, standard deviation and confidence 
interval of PSNR on the ACC-occlusion dataset, the results of the 
state-of-the-art convolutive mixing model based algorithms are 
shown in Table 12.

5.3. PDualGAN for speech signals

In the third set of simulations, we evaluate the separation per-
formance of the proposed PDualGAN algorithm described in Algo-
rithm 1 for convolutive mixtures on the Speech datasets.

As shown in Fig. 11, two groups of the convolutive mixtures are 
selected from the Speech datasets, and each group shows the sep-
arating results from two different mixtures ((a), (b) in Fig. 11), and 
each mixture is a convolutive mixture generated by four speech 
signals with different random weights. Fig. 10 (a) and Fig. 10 (b) 
show the comparison results of the SDR and SIR obtained by the 
PDualGAN, CG, IRLS, CNMF, E-S-D, SCBDC and E-MRP-CNN algo-
rithms according to Fig. 11. Table 13 demonstrates the average 
correlation of these state-of-the-art algorithms.

The performance of CG, IRLS, and CNMF algorithms is relatively 
limited which can obtain the average SDR of 3.61 dB, 3.56 dB, and 
4.13 dB, the SIR of 3.63 dB, 3.58 dB, and 4.17 dB, and the correla-
tion of 0.25, 0.23, and 0.30. The performance of the E-S-D, SCBDC 
and E-MRP-CNN algorithms performs better and has achieved an 
average SDR of 8.38 dB, 8.60 dB and 14.11 dB, the SIR of 8.54 dB, 
15
Table 13
The average correlation of the proposed PDualGAN compared with the state-of-the-
art convolutive mixing algorithms.

Algorithm First group Second group

(a) si and s̄i (b) si and s̄i (a) si and s̄i (b) si and s̄i

CG 0.37 0.07 0.29 0.27
IRLS 0.26 0.20 0.22 0.25
CNMF 0.34 0.30 0.28 0.27
E-S-D 0.55 0.60 0.56 0.53
SCBDC 0.63 0.59 0.58 0.55
E-MRP-CNN 0.67 0.52 0.58 0.77
PDualGAN 0.94 0.96 0.71 0.70

Table 14
The results of average, standard deviation and confidence interval of SDR of the 
convolutive mixing model based algorithms on the Speech dataset.

Algorithm Average SDR Standard deviation Confidence interval

CG 3.52 1.78 [3.17, 3.87]
IRLS 2.76 0.39 [2.68, 2.84]
CNMF 3.88 0.08 [3.87, 3.90]
E-S-D 8.12 0.88 [7.94, 9.29]
SCBDC 8.62 0.55 [8.51, 8.73]
E-MRP-CNN 8.76 0.22 [8.72, 8.80]
PDualGAN 14.93 9.99 [12.97, 16.89]

8.66 dB and 10.58 dB, and the correlation of 0.57, 0.59 and 0.65, 
but are still lower than the proposed PDualGAN algorithm which 
can reach an SDR, SIR and correlation of 20.33 dB, 20.83 dB and 
0.82.

Fig. 12 shows the performance of average SDR, SIR and correla-
tion of the proposed PDualGAN measured with the source-to-noise 
ratio (SNR).

Similarly, we calculated the average value, standard deviation 
and confidence interval of SDR and SIR on the Speech dataset, the 
results of the state-of-the-art convolutive mixing model based al-
gorithms are shown in Table 14 and Table 15.

5.4. PDualGAN for EEG signals

In the fourth set of simulations, we evaluate the separation 
performance of the proposed PDualGAN algorithm described in Al-
gorithm 1 for instantaneous mixtures on the EEG signal datasets.

Fig. 13 shows part of the test results for instantaneous mixing 
signals, two groups are randomly selected, each group shows the 
separating results from two different mixtures ((a), (b) in Fig. 13), 
and each mixture is generated by four EEG signals with different 
random weights. Similarly, we compared the PDualGAN algorithm 
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Fig. 13. Testing results of the PDualGAN approach for instantaneous mixing EEG signals. Each group includes two different mixtures((a), (b)) of four signals of different 
random weights. The first column corresponds to the mixtures, the second column shows the corresponding original sources s1, s2, s3, and s4, and the third column shows 
the corresponding estimated sources s̄1, s̄2, s̄3, and s̄4.

Table 15
The results of average, standard deviation and confidence interval of SIR of the con-
volutive mixing model based algorithms on the Speech dataset.

Algorithm Average SIR Standard deviation Confidence interval

CG 3.71 1.90 [3.34, 4.08]
IRLS 2.60 0.50 [2.50, 2.69]
CNMF 3.88 0.69 [3.75, 4.02]
E-S-D 8.50 0.81 [8.34, 8.65]
SCBDC 9.04 0.66 [8.91, 9.16]
E-MRP-CNN 9.41 0.66 [9.28, 9.54]
PDualGAN 15.31 8.60 [13.63, 16.99]

with ICA, NMF, EMD-ICA, EEMD-PCA-ICA, CEEDMAN-ICA, E-SSA-
ICA and Gaussian WGAN algorithms according to Fig. 13. Fig. 14
and Table 16 demonstrates the comparison results of the average 
RRMSE and correlation obtained by these state-of-the-art algo-
rithms.

As observed, the proposed PDualGAN algorithm has a lower 
RRMSE of 40.55% and a higher correlation of 0.70 which outper-
forms the baseline algorithms ICA, NMF, EMD-ICA, EEMD-PCA-ICA, 
CEEDMAN-ICA, E-SSA-ICA, and Gaussian WGAN with an RRMSE of 
69.22%, 70.63%, 69.84%, 68.52%, 69.23%, 68.27%, 59.69%, a correla-
tion of 0.22, 0.21, 0.15, 0.21, 0.19, 0.22 and 0.46.
16
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Fig. 14. Average RRMSE of the proposed PDualGAN compared with the state-of-the-
art instantaneous mixing algorithms.

Table 16
The average correlation of the proposed PDualGAN compared with the state-of-the-
art instantaneous mixing algorithms.

Algorithm First group Second group

(a) si and s̄i (b) si and s̄i (a) si and s̄i (b) si and s̄i

ICA 0.31 0.24 0.18 0.16
NMF 0.27 0.24 0.19 0.17
EMD-ICA 0.18 0.12 0.16 0.13
EEMD-PCA-ICA 0.16 0.24 0.36 0.09
CEEDMAN-ICA 0.29 0.08 0.23 0.15
E-SSA-ICA 0.31 0.16 0.26 0.14
Gaussian WGAN 0.48 0.52 0.43 0.40
PDualGAN 0.74 0.72 0.68 0.66

Table 17
The results of average, standard deviation and confidence interval of RRMSE of the 
instantaneous mixing model based algorithms on the EEG dataset.

Algorithm Average RRMSE Standard deviation Confidence interval

ICA 67.20 12.67 [64.71, 69.68]
NMF 68.81 8.82 [67.08, 70.54]
EMD-ICA 71.56 18.07 [68.02, 75.10]
EEMD-PCA-ICA 71.43 25.76 [66.38, 76.48]
CEEDMAN-ICA 67.45 25.09 [62.53, 72.37]
E-SSA-ICA 69.87 26.25 [64.73, 75.02]
Gaussian WGAN 61.87 29.05 [56.18, 67.56]
PDualGAN 43.79 25.06 [38.88, 48.70]

Fig. 15 shows the performance of average RRMSE and correla-
tion of the proposed PDualGAN measured with the source-to-noise 
ratio (SNR).

Similar to section 5.1, we calculated the average value, standard 
deviation and confidence interval of RRMSE on the EEG dataset, 
the comparison results of the state-of-the-art instantaneous mixing 
model based algorithms are shown in Table 17.

The experimental results show that the proposed algorithm can 
obtain higher PSNR, SSIM, SDR, SIR and correlation and lower 
RRMSE when the corresponding sources can be estimated cor-
rectly. The comparison shows that the PDualGAN algorithm out-
performs the state-of-the-art algorithms on the four different 
datasets for the instantaneous mixtures and the convolutive mix-
tures, which shows the effectiveness of the proposed algorithm for 
both one-dimensional and two-dimensional signals.
17
5.5. Minimum sample size

As we know, training on datasets of smaller size while main-
taining nearly the same performance would be very beneficial, so 
we perform an experiment to check the minimum amount of sam-
ple of the proposed PDualGAN for separate four sources on the 
NWPU-occlusion dataset as an example. We still randomly select 
80% mixed signals and the corresponding original signals for train-
ing and the remaining 20% mixed signals with different weights 
for testing. Fig. 16 shows the testing results of PSNR, SSIM and 
correlation varying with different amount of sample.

As demonstrated, when the amount of sample is lower than 
200, the value of PSNR, SSIM and correlation increase gradually, 
however, with the amount of sample is more than 200, the per-
formance of the proposed PDualGAN is stable which indicate that 
the data is adequately trained and the PDualGAN can work prop-
erly for separating four sources from the mixtures with different 
weights.

6. Conclusion

In this paper, a new algorithm for the problem of single channel 
blind source separation (SCBSS) has been presented. Our contribu-
tions are as follows:

Model. We have formulated a unified model for the instan-
taneous mixing model and convolutive mixing model for the re-
search.

Algorithm. Based on the instantaneous mixing model and 
convolutive mixing model, we proposed a PDualGAN algorithm. 
The N DualGANs are trained simultaneously with mixtures and 
corresponding sources to realize one-to-multiple mapping, and
the Wasserstein generative adversarial networks gradient penalty 
(WGAN-GP) loss function is applied in the network.

The proposed algorithm can be used to both one-dimensional 
and two-dimensional signals, and different mixtures are applied to 
test the effectiveness and generalization performance.

Datasets. We build the one-to-multiple datasets in the experi-
ment which are composed of two parts: the mixtures and corre-
sponding sources. Each mixture is generated by using randomly 
generated mixing matrices and multiple sources with different 
weights. These datasets can be used for related research.

Numerical experiments show that the proposed PDualGAN algo-
rithm performs well in separating four sources from instantaneous 
mixtures and convolutive mixtures which outperforms the ICA, 
NMF, EMD-ICA, EEMD-PCA-ICA, CEEDMAN-ICA, E-SSA-ICA, Gaus-
sian WGAN, CG, IRLS, CNMF, E-S-D, SCBDC and E-MRP-CNN al-
gorithms. However, with the increase in the number of sources, 
the performance of the algorithm will decline. In the future, we 
will consider improving the performance of separating multiple 
sources.
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Fig. 15. Average RRMSE and correlation of the proposed PDualGAN algorithm varying with SNR.

Fig. 16. Average PSNR, SSIM and correlation of the proposed PDualGAN algorithm varying with the amount of sample on the NWPU-occlusion dataset.
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