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Abstract—Particle flow (PF) is a method originally proposed
for single target tracking, and used recently to address the weight
degeneracy problem of the sequential Monte Carlo probability
hypothesis density (SMC-PHD) filter for audio-visual (AV) multi-
speaker tracking, where the particle flow is calculated by using
only the measurements near the particle, assuming that the
target is detected, as in a recent method based on non-zero
particle flow (NPF), i.e. the AV-NPF-SMC-PHD filter. This,
however, can be problematic when occlusion happens and the
occluded speaker may not be detected. To address this issue,
we propose a new method where the labels of the particles are
estimated using the likelihood function, and the particle flow
is calculated in terms of the selected particles with the same
labels. As a result, the particles associated with detected speakers
and undetected speakers are distinguished based on the particle
labels. With this novel method, named as AV-LPF-SMC-PHD,
the speaker states can be estimated as the weighted mean of
the labelled particles, which is computationally more efficient
than using a clustering method as in the AV-NPF-SMC-PHD
filter. The proposed algorithm is compared systematically with
several baseline tracking methods using the AV16.3, AVDIAR
and CLEAR datasets, and is shown to offer improved tracking
accuracy with a lower computational cost.

Index Terms—Audio-Visual Tracking, SMC-PHD Filter, Par-
ticle Flow

I. INTRODUCTION

MULTI-SPEAKER tracking in an enclosed space is an
important task in several subject areas such as spatial

audio [1], surveillance [2], sport video analysis [3], target
discrimination [4], and speech recognition [5]. However, the
number of active speakers is often unknown and time-varying.
Apart from that, the multi-speaker tracker has to deal with
many complex sources of uncertainty, such as measurement
origin uncertainty, false alarm, noise, clutters, missing data,
and births and deaths of targets.

To address these problems, multiple heterogeneous sen-
sors can be exploited jointly for their complementarity. For
example, if the speaker is visually occluded, they can be
tracked using the audio information, and if the speaker stops
talking, they can be tracked using the visual information. Other
modalities, such as radar, sonar, electro-optical, infrared and
unattended, can also be used for multi-speaker tracking. In this
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work, we consider the use of the audio-visual (AV) sensor,
which has been widely adopted due to its low cost and easy
installation [6].

With the measurements from multiple heterogeneous sen-
sors, the Bayesian approach is a popular choice which provides
an intuitive way for the estimation of speaker states [7].
Early methods include the Kalman filter (KF) [8], extended
Kalman filter (EKF) [9] and particle filter [10], which can be
used to track a fixed and known number of speakers, while
more recent methods including random finite sets (RFS) [11],
Gaussian mixture (GM) PHD filter [12], sequential Monte
Carlo (SMC) PHD filter [13], cardinalized PHD filter [14],
generalized labelled multi-Bernoulli (GLMB) RFS [15] and
variational Bayesian methods [16], [17], [18] are employed to
track an unknown and time-variant number of speakers. The
SMC-PHD filter is widely used to estimate the target states
under the non-linear model using a set of random particles.
Compared to the trendy methods in deep learning, such as Yolo
with DeepSort [19], the SMC-PHD filter has the following
advantages. First, it offers an elegant mathematical framework
for interpreting the relationship between the states of speakers
and their measurements including mis-detections (e.g. during
occlusions). Second, it does not involve model training, while
deep learning models usually require the optimisation of their
parameters by training on additional, often manually annotated
data. Third, it is a flexible method and could be used together
with deep learning models, whose detection results can be
used as measurements for the SMC-PHD filters. Therefore,
our focus here is on the SMC-PHD filter.

Although the SMC-PHD filter has a moderate computational
cost, it often suffers from the weight degeneracy problem
[20], i.e. the weights of most particles will become negligible,
while only a few remain significant, after they are updated
for a number of iterations. This problem also happens in other
Monte Carlo based tracking methods, such as AV-GLMB [21],
AV importance particle filter [22] and AV3T [23]. To address
the weight degeneracy problem, several ideas, such as the
auxiliary SMC [24], unscented SMC [25], and more recently,
particle flow filters [26], [27], [28], [29], [30], [31] and end-to-
end neural network [32], [33], have been developed. Although
deep learning based methods [32], [33] have drawn increasing
attention, their performance depends on the quality and size
of the training data. In the particle flow methods, the particles
are migrated from the prior density to the posterior density in
terms of a homotopy function, with which either zero diffusion
particle flow (ZPF) or non-zero diffusion particle flow (NPF)
can be derived with different assumptions.
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The ZPF and NPF have been used with the AV-SMC-PHD
filter in the AV-ZPF-SMC-PHD filter [34] and the AV-NPF-
SMC-PHD filter [35], respectively, to improve the estimation
of the posterior density, and reduce the chances required for
particle resampling. Apart from that, ZPF has also been used
previously to improve the tracking performance of particle
filter and PHD filter with a reduced number of particles in
the particle flow particle filter (PFPF) [36] and the Gaussian
mixture PHD filter [37]. However, the particle flow is designed
for addressing the weight degeneracy issue for single-target
tracking, without using any label information about the parti-
cles. For example, in both AV-ZPF-SMC-PHD [34] and AV-
NPF-SMC-PHD [35], the particle flows are calculated only
with the measurements near the target.

To address the multi-measurement problem of multi-target
tracking, Gaussian particle flow implementation of PHD (GPF-
PHD) filter [37], zero diffusion particle flow SMC delta-
GLMB (ZPF-delta-GLMB) filter [38] and AV-GLMB [21] are
proposed. In the GPF-PHD filter, particle flow is calculated
based on multiple hypothesis tracking [39], where each particle
is independently updated by each measurement. Therefore, the
number of particles is linearly increased with the growth in
the number of measurements, which increases computational
cost, especially for a large number of clutters. The ZPF-
delta-GLMB filter is proposed to calculate the label variables
based on the maximum labelling probability density. The ZPF
has been used to address the weight degeneracy issue of the
delta-GLMB filter [38]. However, in ZPF-delta-GLMB, it is
assumed that the speaker is always detectable. As a result, the
particles associated with undetected targets may be incorrectly
moved towards other speakers.

In this paper, we propose a labelled non-zero diffusion
particle flow (LPF) SMC-PHD filter for audio-visual multi-
speaker tracking, where the particle labels are estimated based
on the likelihood function, and further used to calculate
the particle flow. The labels of the particles include visual
labels, audio labels and speaker labels, which are estimated
independently. The visual and audio labels are calculated from
the visual and audio measurements, respectively, while the
speaker labels are estimated based the speaker states in the
previous time frames. The particles with the same visual, audio
and speaker labels can be considered as belonging to the same
group. As a result, the mean and covariance of the particles
can be estimated in terms of the label information, i.e. without
having to cluster the particles using a k-means algorithm as in
conventional SMC-PHD filters [13]. In addition, the scenario
where the speakers are undetected is also considered and the
states of the speakers are updated according to these labels.

Compared to our earlier work, i.e. AV-NPF-SMC-PHD [35],
and another related method, i.e. ZPF-delta-GLMB filter [38],
the particle flow in the proposed method is calculated with
the particles selected in terms of their labels, and the particles
associated with the undetected, occluded and detected speakers
can be distinguished based on the label information. Compared
to AV-GLMB [21] which is based on labelled RFS [40],
[41], our method differs in the following three aspects. First,
AV-GLMB uses the label information in the labelled RFS,
while our method uses the label information in the particle

flow, but the PHD filter we used is still an unlabelled RFS.
Compared to GLMB, the PHD filter has a lower computational
complexity [42]. Second, the labels used in AV-GLMB are
unique and different for different RFS. However, the labels
used in the proposed method are three independent labels (i.e.
audio, visual and speaker labels). The particles belonging to
the same speakers would have the same labels. Therefore, the
meaning of “label” and the motivation for its use in AV-GLMB
are significantly different from those in our method. Third,
GLMB still has the weight degeneracy problem, as discussed
in [38]. Our proposed LPF could be used with GLMB [21] to
address the weight degeneracy problem of AV-GLMB.

Preliminary results were presented briefly in a conference
paper [43]. Here we provide a comprehensive treatment of the
proposed method, including further experimental results. There
are three main improvements. First, we use the particle labels
to distinguish the particles associated with audio measure-
ments, visual measurements, and speakers, respectively. The
particles with the same labels are used to estimate the particle
covariance matrix and are updated by the associated audio
and visual measurements in particle flow. Second, the labelled
NPF is proposed to update the particles with a novel audio-
visual likelihood function. The particle flow can be calculated
when the speaker is silent or visually occluded. Third, with the
label information, the clustering step, which is often used to
estimate the speaker states in the PHD filter, can be exempted,
and simply replaced by the mean of the labelled particles.

This paper is organised as follows. The next section dis-
cusses the problems and background. Section III presents the
details of the proposed methods. In Section IV, the proposed
algorithms are compared with several baseline algorithms us-
ing comprehensive experiments. Finally, Section V concludes
the paper.

II. PROBLEM STATEMENT AND BACKGROUND

This section describes our problem formulation and the
AV-NPF-SMC-PHD filter (in Algorithm 1). For clarity, the
notations used in this paper are summarised in Table VIII
in Appendix. We assume that the speaker dynamics and
observations are described as:
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where m̃j
k ∈ RM is the state vector of the jth speaker at

time k, ˜ is used to distinguish the speaker state from the
particle state used later, and Ñk is the number of speakers
at time k. Let {z̊o

k}
N̊k
o=1 and {z̆u

k}
N̆k
u=1 denote the set of N̊k

audio and N̆k visual measurements at time k, respectively
where o and u are used to represent the index of the audio
and visual measurements, respectively. Different from [43],
we use bounding boxes to represent the speakers. The state
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k, while the measurement is a noisy version of the position.
We define the measurement noise and clutter terms as Ψ̊k

and ϵ̊k for audio measurements, and Ψ̆k and ϵ̆k for visual
measurements, respectively. The state transition model is de-
noted as Fm̃, where the system noise is Υk. The nonlinear
measurement models for audio and visual information are
denoted as F̊z and F̆z , respectively.

In [35], an AV-NPF-SMC-PHD filter is presented for audio-
visual multi-speaker tracking. The audio information and
visual information are applied in the prediction and update
steps. The particle set is defined as {mi

k−1, ω
i
k−1}

Nk
i=1, where

Nk is the number of particles at time k, and mi
k−1 and ωi

k−1

are the state and weight of the ith particle at time k − 1.
The particle state is obtained by the proposal distribution
qk(m

i
k|k−1|m

i
k−1,Zk), where Zk is the set of observations,

mi
k|k−1 ∼ qk(·|mi

k−1,Zk). (4)

Their weights are predicted as,

ωi
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ϕ
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mi

k|k−1|m
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k−1

)
ωi
k−1

qk

(
mi

k|k−1|m
i
k−1,Zk

) , i = 1, ..., Nk, (5)

where ϕ(mi
k|k−1|m

i
k−1) is the analogue of the state transition

probability with the previous state mi
k−1. If a new speaker ap-

pears, NB particles are sampled from the new born importance
function pk,

mi
k|k−1 ∼ pk(·|Zk). (6)

Their weights are

ωi
k|k−1 =

γk(m
i
k|k−1)

NBpk(mi
k|k−1|Zk)

, i = Nk+1, ..., Nk+NB , (7)

where γk is the PHD of new targets.
In the update step, the audio-visual likelihood function hik

is obtained as:

hik =
h̊i
k
T ω̊k + h̆i

k
T ω̆k

∥ω̊k∥1 + ∥ω̆k∥1
, (8)

where ω̊k and ω̆k are the weights for the audio and visual
likelihood, respectively, and ∥·∥1 denotes the L1 norm. Then
the particle state is updated by the NPF,

mi
k ⇐ mi

k +△mi
kλ, (9)

where
△mi

k = f i
k(m

i
k, λ)△λ+ υikw

i
k, (10)

where f i
k ∈ RM is the particle flow vector and wi

k ∈ RM

is the Wiener process with the diffusion coefficient υik. It
moves the particle mi

k|k−1 with the distance △mi
k|k−1 for

the time period △λ. Based on the Fokker-Planck equation
[44], the non-zero particle flow f i

k is calculated by the partial
differential equation:

f i
k = −[∇2 logψi

k]
−1(∇ log hik), (11)

where

∇2 logψi
k ≈ −(P i

k|k−1)
−1 + λ∇2 log hik, (12)

Algorithm 1 AV-NPF-SMC-PHD Filter

1: Input: {mi
k−1, ω

i
k−1}

Nk−1

i=1 , NB , Zk, k and DOA lines.
2: Output: {m̃j

k, ω̃
j
k}

Ñk
j=1, and {mi

k, ω
i
k}

Nk
i=1.

3: Initialize: τk, qk, ϕk|k−1, pk, γk, κk, PD,k, Fm̃, Fz and
speaker histograms.

4: Run:
5: Step 1: Prediction step
6: Propagate surviving particles {mi

k|k−1}
Nk−1

i=1 .
7: Step 2: Particle birth and relocation step by Eq. (4).
8: if DOA lines exist then
9: Concentrate particles around the DOA line by Eq. (6).

10: if new speaker then Sample NB born particles around
the DOA line.

11: Calculate {ωi
k|k−1}

Nk−1

i=1 by Eq. (5) and Eq. (7).

12: {mi
k|k−1, ω

i
k|k−1}

Nk
i=1 = {mi
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i
k|k−1}

Nk−1

i=1 ∪
{mi

k|k−1, ω
i
k|k−1}

Nk−1+NB

i=Nk−1+1.
13: Step 3: Update step
14: for i ∈ [1, ..., Nk] do
15: Calculate the visual likelihood h̆i

k.
16: Calculate the audio likelihood h̊i

k.
17: Calculate the audio-visual likelihood hik by Eq. (8).
18: Calculate ∇ log hik and ∇2 log hik.
19: for λ ∈ [0,△λ, 2△λ, · · · , Nλ△λ] do
20: Evaluate flow f i

k by Eq. (11).
21: Update △mi

k|k−1 by Eq. (9) and Eq. (10).

22: Re-calculate the particle weights.
23: Update {ωi

k|k−1}
Nk
i=1 to obtain {ωi

k}
Nk
i=1 by Eq. (13) and

calculate Ñk =
∑Nk

i=1 ω
i
k.

24: Set {mi
k}

Nk
i=1 as {mi

k|k−1}
Nk
i=1.

25: Get {m̃j
k, ω̃

j
k}

Ñk
j=1 by the k-means or MEAP method

26: if ESS < Nk/2 then (Optional) Resample {mi
k, ω

i
k}

Nk
i=1.

where P i
k|k−1 is the covariance matrix of mi

k|k−1. The deriva-
tion of Eq. (11) can be found in [45]. The first and second
derivative of the likelihood function can be found in [35]. Then
the weights of the particles are calculated as

ωi
k =

1− piD,k +
∑

zr
k∈Zk

piD,kh
i,r
k

κk(zr
k) +Gr

k

ωi
k|k−1, (13)

where

Gr
k =

Nk∑
i=1

piD,kh
i,r
k ωi

k|k−1, (14)

in which κk(z
r
k) denotes the clutter intensity of the rth

measurement zr
k at time k, piD,k is the detection probability at

time k, and hi,rk is the likelihood of the ith particle for the rth
measurement at time k. The measurement zr

k is calculated
by z̊o

k and z̆u
k [35]. The number of speakers is estimated

as the sum of the weights. The states and weights of the
speakers {m̃j

k, ω̃
j
k}

Ñk
j=1 can be calculated using a clustering

step e.g. the k-means clustering method [46] or multi-expected
a posterior (MEAP) [47]. Finally, resampling is performed
when the effective sample size (ESS) [48] is smaller than half
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of the number of particles. More details about the AV-NPF-
SMC-PHD filter can be found in [35].

Although the NPF has successfully mitigated the weight
degeneracy problem of the AV-SMC-PHD filter, it was based
on the assumption that the speakers are detectable, and each
speaker generates only one measurement. This is because
the particle flow method was proposed originally for single-
target tracking, and adapted for multi-target tracking in the
AV-NPF-SMC-PHD filter. Therefore, the particle flow is only
calculated by the audio-visual measurements near the particles.
The particles associated with the occluded speakers may be
incorrectly migrated towards other speakers or clutters by NPF.
As illustrated in Fig. 1, there are two speakers, where the
speaker with a white shirt occludes another speaker with a
yellow shirt. One hundred particles are generated, as shown
in blue dots. When λ = 0 (line 19 of Algorithm 1), the
particles are located near the two speakers. With the particle
flow, most of the particles are migrated from the occluded
speaker towards the detected speaker. When λ = 1, most of
the particles are around the detected speaker and therefore
given high weights, which, therefore, mitigates the weight de-
generacy problem. However, only a small number of particles
are located near the occluded speaker, which can be easily
missed by the tracker.

Fig. 1. Illustration of the non-zero diffusion particle flow on the frame 376
for Sequence 45 (camera 3) of the AV 16.3 dataset. The particles are shown
as the blue dots.

Apart from that, a clustering step, e.g. the k-means or MEAP
method, is applied for estimating the speaker state. However,
the performance of the k-means is effected by the initialised
random seed. Inappropriate choice of initial seeds may degrade
the performance of the AV-NPF-SMC-PHD filter.

III. AUDIO-VISUAL LABELLED NON-ZERO DIFFUSION
PARTICLE FLOW SMC-PHD FILTER

To address the above problems, we propose a new method
based on the particle labels. The idea is to estimate the particle
labels based on the likelihood function, and then calculate
the particle flow in terms of the selected particles with the
same labels. Therefore, the particles associated with detected
speakers and undetected speakers are distinguished based on
the particle labels. This novel method for calculating the
particle flow in terms of particle labels, which we name as AV-
LPF-SMC-PHD, offers significant improvement over AV-NPF-
SMC-PHD in terms of tracking accuracy. Apart from that, with
particle labels, the k-means clustering method (i.e. line 25 of
Algorithm 1) can be replaced by the weighted mean of the
labelled particles, which is computationally more efficient.

A. Particle label estimation

To accurately identify the particles associated with un-
detected or occluded speakers, we calculate their labels in
the prediction step. We define the particle label as lik =
[aik, v

i
k, t

i
k]

T , where aik ∈ {0, ...N̊ i
k}, vik ∈ {0, ...N̆ i

k} and
tik ∈ {0, ...Ñ i

k} are the index of audio measurement, visual
measurement and speaker associated with the ith particle at
frame k, respectively. aik = 0 and vik = 0 means that the
speaker associated with the ith particle is not detected by audio
sensor and visual sensor, respectively. Here tik = 0 means
the ith particle is associated with a new born speaker. tik is
calculated when the speaker states are estimated, which will
be discussed in Section III-C. For example, aik = 2, vik =
0, tik = 1 means that the candidate speaker associated with
the ith particle is the first speaker and is only detected by the
second audio measurement in time k.

In the prediction step, the labelled particle is represented
as {mi

k, ω
i
k−1, l

i
k−1}

Nk−1

i=1 , where aik and vik in lik−1 are
calculated as,

aik = Hr̊iD
(1− P̊ i

D,k) argmax
o

(̊ri,ok h̊i,ok|k−1), (15)

vik = Hr̆iD
(1− P̆ i

D,k) argmax
u

(r̆i,ok h̆i,uk|k−1), (16)

where H is the Heaviside step function,

HX(Y ) =

{
0, X ≤ Y
1, X > Y

(17)

where P̊ i
D,k and P̆ i

D,k are audio and visual detection prob-
abilities, respectively. r̊iD and r̆iD are parameters with values
ranging between 0 and 1, which are used to determine whether
the particle is detected. For example, if r̊iD ≤ 1 − P̊ i

D,k,
Hr̊iD

(1−P̊ i
D,k) = 0 and the ith particle is undetected by audio

measurement while if r̊iD > 1−P̊ i
D,k, Hr̊iD

(1−P̊ i
D,k) = 1 and

the ith particle is detected by audio measurement. Since both
r̊iD and r̆iD are valued in terms of uniform distributions, the
probabilities for Hr̊iD

(1− P̊ i
D,k) = 1 and Hr̆iD

(1− P̆ i
D,k) = 1

are 1− P̊ i
D,k and 1− P̆ i

D,k, respectively. r̊i,ok and r̆i,ok are also
random values from 0 to 1 and they are used to select the audio
and visual measurements associated with the ith particle. The
term argmaxo(̊r

i,o
k h̊i,ok|k−1) means that the index of the audio

measurement giving the highest likelihood is selected as the
audio label. The visual label is obtained in a similar way. The
audio and visual detection probabilities are defined as,

P̊ i
D,k =

∑
z̊o
k∈Z̊k

P̊ i
D,k−1h̊

i,o
k|k−1

κ̊k(z̊o
k) +

∑Nk

i=1 h̊
i,o
k|k−1

, (18)

P̆ i
D,k =

∑
z̆o
k∈Z̆k

P̆ i
D,k−1h̆

i,u
k|k−1

κ̆k(z̆u
k ) +

∑Nk

i=1 h̆
i,u
k|k−1

, (19)

where h̊i,ok|k−1 and h̆i,uk|k−1 are the oth audio and uth visual
likelihood of the ith particle mi

k|k−1, respectively. The audio
and visual likelihood densities can be calculated by different
detectors, such as face detector or body detector. In this
paper, the audio and visual likelihood density are given by
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N (̊Fz(m
i
k|k−1)|z̊

o
k, Ψ̊) and N (F̆z(m

i
k|k−1)|z̆

u
k , Ψ̆), respec-

tively, where z̊o
k is calculated in terms of the direction of

arrival (DOA) of the speakers [49] and z̆u
k is calculated by

a face detector [50], since the face detector is not affected by
the clothes on the body and the centre of the face is close
to position of sound sources (i.e. around the mouth region).
An advantage with the use of the PHD filter framework is
that it can work with measurements obtained by a variety of
detection methods, either conventional methods or state-of-
the-art deep learning methods [51]. The index of audio and
visual measurement with high likelihood density has a high
probability to be set as aik and vik, as proved in Appendix.

The new born particles are created based on measurements
and hence they are only used to represent the detected speak-
ers. Therefore, for born particles, we have P̊ i

D,k = 1 and
P̆ i
D,k = 1, and aik and vik are calculated as,

aik = argmax
o

(r(1)̊hi,ok|k−1), (20)

vik = argmax
u

(r(1)h̆i,uk|k−1). (21)

Fig. 2 represents the label space of lik ∈
R(N̊k+1)×(N̆k+1)×(Ñk+1). Each point in this space represents
a candidate speaker. For each layer tik, there are four areas
denoted by a, b, c and d. The particles in the area a, b and
c are associated with the speakers detected by audio-visual
measurement, visual measurement and audio measurement,
respectively. The particles in the area d is associated with the
undetected speaker.

Fig. 2. Illustration of the label space. The yellow area (a) represents the
speakers detected by the audio measurement and visual measurement. The
red area (b) represents the speakers detected only by the visual measurement
while the green area (c) represents the speakers detected only by the audio
measurement. The blue area (d) represents the speakers undetected.

B. AV labelled non-zero diffusion particle flow

In the AV-NPF-SMC-PHD filter, it is assumed that all
speakers are detected, however, this can be violated when

occlusion happens. To address this problem, the audio-visual
likelihood is defined based on the particle labels which are
then used to calculate the particle flow, leading to the pro-
posed LPF method. We use different strategies to update born
particles, survival particles associated with detected speakers
and survival particles associated with undetected speakers.
This helps reduce the computational cost of LPF. Since the
born particles (tik−1 = 0) are created based on measurements
and the importance density at k, the posterior density is only
calculated by the likelihood density and importance density.
The particle flow will not be used to update the new born
particles.

For survival particles associated with detected speaker, i.e.
tik−1 > 0 and aik + vik > 0 as shown in Section III-A, where
aik and vik are the index of the audio and visual measurements
associated with the ith particle, respectively, the audio and
visual likelihood densities of the ith particle, i.e. h̊i,ok|k−1 and
h̆i,ok|k−1 are normalised based on the particle labels, as follows,

h̊ik =
h̊
i,ai

k

k|k−1

κ̊ik +
∑Nk+NB

i′=1 δai
k
(ai

′
k )̊h

i′,ai
k

k|k−1ω
i′

k|k−1

, (22)

h̆ik =
h̆
i,vi

k

k|k−1

κ̆ik +
∑Nk+NB

i′=1 δvi
k
(vi

′
k )h̆

i′,vi
k

k|k−1, ω
i′

k|k−1

(23)

where δ is the Dirac delta function.

δX(Y ) =

{
1, X = Y
0, X ̸= Y

(24)

The function δ is used to select the i′th particle associated
with the same measurements as the ith particle. The audio
and visual clutter densities of the ith particle are denoted by
κ̊ik and κ̆ik, respectively. The audio and visual measurement
densities are defined as

∑Nk+NB

i′=1 δai
k
(ai

′

k )̊h
i′,ai

k

k|k−1ω
i′

k|k−1 and∑Nk+NB

i′=1 δvi
k
(vi

′

k )h̆
i′,vi

k

k|k−1, ω
i′

k|k−1. Based on the novel audio
and visual likelihood densities, the labelled particle flow f i

k is
calculated by the partial differential equation [45]:

f i
k = −[−(P i

k|k−1)
−1 + λ∇2 log hik]

−1(∇ log hik), (25)

where

hik = (1−H0(a
i
k) +H0(a

i
k )̊h

i
k)(1−H0(v

i
k) +H0(v

i
k)h̆

i
k).
(26)

Applying Eq. (17) to H0(a
i
k) and H0(v

i
k), Eq. (26) can be

simplified as,

hik =


h̊ikh̆

i
k , if aik > 0 and vik > 0.

h̊ik , if aik > 0 and vik = 0.

h̆ik , if aik = 0 and vik > 0.
0 , if aik = 0 and vik = 0.

(27)

Based on the definition of weighted covariance, the matrix
P i

k|k−1 of the ith particle is calculated as

P i
k|k−1 =

∑Nk

i1=1 s
i,i1
k [ωi

k|k−1e(m
i
k|k−1)e(m

i
k|k−1)

T ]∑Nk

i1=1 s
i,i1
k (ti1k )ωi

k|k−1

,

(28)
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where
si,i

′

k = δai
k
(ai

′

k )δvi
k
(vi

′

k )δtik−1
(ti

′

k−1). (29)

e(mi
k|k−1) = mi

k|k−1 −

∑Nk

i′=1 s
i,i′

k

(
ωi′

k|k−1m
i′

k|k−1

)
∑Nk

i′=1 s
i,i′

k ωi′

k|k−1

. (30)

where
∑Nk

i′=1
si,i

′
k

(
ωi′

k|k−1m
i′
k|k−1

)
∑Nk

i′=1
si,i

′
k ωi′

k|k−1

is the centre state of the

group of the particles which have the same labels as particles
mi

k|k−1. Eq. (29) is used to select the particles whose visual,
audio and speaker labels are the same, i.e. forming a same
group. Eq. (30) represents the difference between the centre
states of the group and the individual particle states. In the
particle flow, the particle weight is modified as [36],

ωi
k|k−1 ⇐

ϕ
(
mi

k|mi
k−1

)
|det(I +∇λ∇f)|

ϕ
(
mi

k|k−1|m
i
k−1

) ωi
k|k−1. (31)

For the survival particles associated with undetected speak-
ers i.e. tik−1 > 0, aik = 0 and vik = 0, there is no measurement
associated with the particles. In this case, P i

D,k is 0 and the
particle weight remains unchanged.

After the particle flow, the particle weights ωi
k|k−1 are

updated to ωi
k as follows,

ωi
k =

{
ωi
k|k−1, if tik−1 > 0 and aik + vik = 0

hikω
i
k|k−1, otherwise (32)

Based on Eq. (32), the particles associated with the undetected
survival speakers retain the weights from the previous time
frames, while the weights of the other particles are updated
with our proposed likelihood function.

C. Estimating speaker states

In the baseline AV-NPF-SMC-PHD filter, the k-means al-
gorithm was applied to estimate the speaker states following
the update step. However, k-means often converges to local
optimum and the result is sensitive to the choice of the initial
seeds. Inappropriate initial seeds may degrade the estimation
accuracy, especially for estimating the states of the occluded
speakers. In addition, the clustering step results in increased
computational cost. Here, in our proposed method, inspired by
the weighted mean method of particle filters, we estimate the
speaker states by weighting the particles in terms of their labels
instead of applying the k-means clustering. With the label
information, the weighted mean can be calculated directly
without using the k-means algorithm. Compared to the k-
means algorithm, grouping particles based on labels offers
more accurate results in state estimation, since the visual and
audio labels consider the information from the measurements
and the speaker label considers the information from historical
states. Apart from that, we have proposed a label update
strategy for state estimation, where some particles are not used
for calculating the weighted mean if the speaker to which these
particles correspond is considered as moving out of the view
of the camera.

As shown in Fig. 2, the particles with the same particle
labels are used to estimate the same candidate speaker. How-
ever, since the measurement associated with survival particles
is also used to create new born particles by Eq. (6), the
state of the candidate speaker which has been estimated by
survival particles may be repeatedly estimated by the birth
particles. Therefore, we calculate the state of the candidate
speaker associated with the ith particle with the set of particles,
{mi′

k , ω
i′

k }i′∈Λ(i), where Λ(i) is a subset of [1, · · · , Nk+NB ].
For the ith survival particle, the particle set

{mi′

k , ω
i′

k }i′∈Λ(i) is determined as follows,

Hti
′

k−1
(−1)(δ0(Hi′(Nk))s

i,i′

k +δ1(Hi′(Nk))δvi
k
(vi

′

k )δai
k
(ai

′

k )) = 1,

(33)
where Hti

′
k−1

(−1) means that the particle has not yet been
used. If the i′th particle is a survival particle, we have
i′ ≤ Nk, δ0(Hi′(Nk)) = 1 and δ1(Hi′(Nk)) = 0, while if
the i′th particle is a new born particle, we have i′ > Nk,
δ0(Hi′(Nk)) = 0 and δ1(Hi′(Nk)) = 1. When the particle
label set of the i′th particle and that of the ith particle are
identical, si,i

′

k is equal to 1.
For birth particles (i > Nk), the particle set is determined

via Eq. (34),

Hti
′

k−1
(−1)δ1(Hi′(Nk))δvi

k
(vi

′

k )δai
k
(ai

′

k ) = 1. (34)

Finally, {mi′

k , ω
i′

k }i′∈Λ(i) is the set of the survival particles and
the born particles that have the same label as the i′th particle.
To avoid the same i′th particle being repeatedly selected into
the different sets Λ(i), ti

′

k−1 is set as −1 after Eq. (33) and
Eq. (34), meaning that this particle has already been used. The
state of the candidate speaker is estimated with the particle set
as weighted states,

m̃j
k=

∑
i′∈Λ(i) ω

i′

k m
i′

k

ω̃j
k

, (35)

where
ω̃j
k =

∑
i′∈Λ(i)

ωi′

k , (36)

where ω̃j
k is the weight of the candidate speaker. If the weight

is lower than a threshold ξ (0 < ξ < 1), the state will be
considered as corresponding to noise or clutters, otherwise,
corresponding to the speaker. When the noise level of the
measurements is high, ξ should be set as a low value. In our
experiment, we set ξ as 0.5. The labels of the speakers are
set as ajk = aik and vjk = vik. Finally, the visual detection
probability is updated as follows,

P̊ i
D,k = min

(
wi

kl
i
k

wi
k−1l

i
k−1

, 1

)
, (37)

where (wi
k, l

i
k) are the weight and length of the bounding

box of the ith particle at time k, respectively. The wi
kl

i
k and

wi
k−1l

i
k−1 are the areas of the ith particle at k and k − 1,

respectively. When the speaker associated with the ith particle
is occluded, the area of the bounding box will be degraded and
P̊ i
D,k may become smaller than 1. However, when the speaker

moves away from the camera, the bounding box size decreases,
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which may be incorrectly classified as the occlusion. To avoid
this problem, the visual detection probability is updated in
terms of the aspect ratio of the bounding box,

P̊ i
D,k =

min(
lik
wi

k

,
lik−1

wi
k−1

)

max(
lik
wi

k

,
lik−1

wi
k−1

)
. (38)

When the aspect ratio of the bounding box changes sharply, the
speaker associated with the ith particle is occluded. Since the
speakers walk frequently towards or away from the cameras
in the AV16.3 dataset, we use Eq. (38) in our experiments.
Finally, tik is set as the index of speaker j. The pseudo-code
of the AV-LPF-SMC-PHD filter is presented in Algorithm 2.

Algorithm 2 AV-LPF-SMC-PHD Filter

1: Input: {mi
k−1, ω

i
k−1, l

i
k−1, P̊

i
D,k−1, P̆

i
D,k−1}

Nk−1

i=1 , NB ,

k, {z̊o
k}

N̊k
o=1 and {z̆u

k}
N̆k
u=1.

2: Output: {mi
k, ω

i
k, l

i
k, P̊

i
D,k, P̆

i
D,k}

Nk
i=1 and

{m̃j
k, ω̃

j
k, l̃

j
k}

Ñk,
j=1

3: Initialize: {Υk, ϕk|k−1, pk, γk, Ψ̆ and Ψ̊.}
4: Run:
5: Nk = Nk−1

6: Predict survival particles and create birth particles as in
lines 5-11 of Algorithm 1.

7: for i ∈ {Nk + 1, ..., Nk +NB} do
8: Calculate aik and vik by Eq. (20) and Eq. (21), recep-

tively.
9: Set tik−1 = 0 and ωi

k = hikω
i
k|k−1.

10: for i ∈ {1, ..., Nk +NB} do
11: Calculate aik and vik by Eq. (15) and Eq. (16), recep-

tively.
12: if tik−1 > 0 and aik + vik > 0 then
13: Calculate the audio-visual likelihood hik by Eq. (26).
14: Calculate the covariance matrix by Eq. (28).
15: for λ ∈ [0,△λ, 2△λ, · · · , Nλ△λ] do
16: Evaluate flow f i

k by Eq. (25).
17: Update △mi

k|k−1 by Eq. (9) and Eq. (10).

18: Re-calculate the particle weights by Eq. (31).
19: Update particle weights by Eq. (32).
20: j = 1
21: for i ∈ {1, ..., Nk +NB} do
22: if tik−1 ̸= −1 then
23: Select the particle set {mi′

k , ω
i′

k }i′∈Λ(i) by Eq. (33)
and (34).

24: Estimate the speaker weight by Eq. (36).
25: if ω̃j

k > ξ then
26: Estimate the speaker state by Eq. (35).
27: Set ãjk = aik, ṽjk = vik and t̃jk = j.
28: Set ti

′

k−1 = −1 for i′ ∈ Λ(i).
29: j = j + 1

30: if ESS < Nk/2 then
31: {(Optional) Re-sample {mi

k, ω
i
k}

Nk
i=1.}

IV. EXPERIMENTAL EVALUATIONS

This section presents experimental evaluations of the pro-
posed algorithms as compared with baseline algorithms. We
start with a description of the experimental setup, datasets and
performance metrics, before giving the analysis and compari-
son of the results.

A. Datasets and baselines

Several audio-visual datasets are publicly available, such as
the AV16.3 [52], AVDIAR [53], AVTRACK-1 [54], AVASM
[55], AMI [56], CLEAR [57], MVAD [58] and SPEVI [59].
We consider our requirements for choosing the datasets. The
calibration information should be provided for the projection
of the audio information from the physical space to the image
plane. In addition, the dataset should contain some challenging
situations, e.g., the number of speakers changes and some
speakers are occluded. For these reasons, we have chosen
AV16.3, AVDIAR and CLEAR datasets in our evaluations.

The AV16.3 [52] consists of real-world data with both audio
and video sequences. It provides the calibration information
of the cameras to map the audio data from the physical
space to the image plane. AV16.3 includes the occlusion as
a challenging scenario and consists of sequences where the
speakers are walking and speaking at the same time. The
video is recorded by three calibrated video cameras at 25
Hz, and each image frame has 288x360 pixels. The audio
signals are recorded by two circular eight-element microphone
arrays at a sample rate of 16 kHz. The audio and video
streams are synchronised before running the algorithms. All
algorithms are tested with all three different camera angles
of five sequences: Sequences 1, 24, 25, 30 and 45, which
correspond to the cases of one to three speakers and are
the most challenging sequences in term of movements of the
speakers and occlusions.

Different from the AV16.3 dataset, the speakers in the
AVDIAR dataset [53] talk one by one. There are six micro-
phones mounted on Sennheiser Triaxial MKE 2002. Two of
them are on the left and right ears, and the other four are
on each side of the head. However, since the details of the
microphone positions are not provided, only the microphones
on the left and right ears are considered. The AVDIAR
dataset provides training data to learn a mapping as in [53].
This dataset includes 23 sequences. Each image frame has
1920x1200 pixels. The audio and video were recorded at 48
kHz and 25 Hz, respectively, which were synchronised by an
external trigger controlled by software. There are 12 different
participants, and up to 4 people are recorded in each sequence.

AVTRACK-1 [54] and AVASM [55] are provided by the
same institution as for AVDIAR. However, they are less
challenging than AVDIAR. AMI [56] and MVAD [58], which
are designed for speaker diarization, are not used in our tests
since the speakers are mostly static or with small movements.
In SPEVI [59], audio signals were recorded with linear micro-
phone arrays. Since the calibration information and training set
are not available, this dataset is also not chosen. The CLEAR
dataset [57] is chosen for our experiments since it has the
largest number of speakers among these datasets.
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Several baselines are considered for benchmarking our
proposed algorithms, including the SMC-PHD filter [60],
SAVMS-SMC-PHD filter [60], ZPF-SMC-PHD filter [20],
NPF-SMC-PHD filter [35] and ZPF-delta-GLMB [38]. For
convenience, the SMC-PHD, SAVMS-SMC-PHD, ZPF-SMC-
PHD, NPF-SMC-PHD, ZPF-delta-GLMB and our proposed
LPF-SMC-PHD filters are abbreviated as SMC, SAVMS, ZPF,
NPF, GLMB and LPF, respectively. Their input measurements
are same. Apart from that, the step in LPF for estimating
the speaker state is compared to the k-means and MEAP
clustering methods to show the improvement achieved by
labelling. Finally, we include deep learning baselines, i.e.
YoloV5-DeepSort and YoloV5-StrongSort [19], to demonstrate
that our proposed method offers competitive performance,
even though it does not involve model training.

B. Performance metrics

We use the Optimal Sub-pattern Assignment (OSPA), ESS,
and distance between particles and ground truth speak state as
performance metrics.

The OSPA [61] is defined as,

OSPA({m̃j
k}

Ñk
j=1, {m̃

j̃
k}

Ñk

j̃=1
) =

a

√√√√√√√ min
π∈ΠÑk,Ñk

Ñk∑
j=1

d
(c)

(m̃j
k, m̃

π(j)
k )a + ca(Ñk − Ñk)

Ñk

,

(39)

where {m̃1
k, ..., m̃

Ñk

k } are the ground truth speaker states, and
{m̃1

k, ..., m̃
Ñk

k } are the estimated speaker states. ΠÑk,Ñk
is

the set of maps π : 1, ..., Ñk → 1, ..., Ñk. Here the state
cardinality estimation Ñk may not be the same as the ground
truth Ñk. The OSPA error given in Eq. (39) is for Ñk ≤ Ñk.

If Ñk < Ñk, then OSPA({m̃j
k}

Ñk
j=1), {m̃

j̃
k}

Ñk

j̃=1
) =

OSPA({m̃j̃
k}

Ñk

j̃=1
, {m̃j

k}
Ñk
j=1)). The function d̄(c)(·) is defined

as min(c, d̄(·)) where c is the cut-off value that considers
the relative weighting of the penalties for the cardinality and
localization errors, and a is the metric order which determines
the sensitivity to outliers. A lower OSPA indicates a better
tracking performance.

To assess the weight degeneracy problem, ESS is often used
[36], [20], [31], defined as

ESS =
(
∑Nk

i=1 ω
i
k)

2∑Nk

i=1 (ω
i
k)

2
. (40)

When ESS is small, e.g. ESS < Nk/2, the resampling step is
performed with the uniform weights. When ESS is high, the
posterior density is estimated with more particles to achieve
an increased accuracy.

The performance of the methods for associating the particles
with the speakers is normally evaluated by Silhouette Coef-
ficient [62], R-Square [63] and Improved Hubert Γ Statistic
[64]. However, when the speakers are occluded, the above
metrics, which are based on distances between the particles,
can become inaccurate since the particles associated with
the speakers are overlapping with each other. In this work,

we use Root Mean Squared Error (RMSE) to evaluate the
performance in terms of the fitting of the posterior densities
with a Gaussian distribution. This is because the likelihood and
prior densities of the speakers are both Gaussian [65]. RMSE
can represent the homogeneity score of the particle sets. Since
different methods may give different estimates for the number
of speakers, we use the mean RMSE of all the particles, which
provides a more robust measure of the performance,

RMSE =

∑Nk+NB

i′

√∑
i∈Λ(i′)

∥∥∥ωi
k|k−1

mi
k|k−1

−e(mi
k|k−1

)
∥∥∥
2

∥Λ(i′)∥1

Nk +NB
,

(41)
where ∥.∥1 and ∥.∥2 are the L1 and L2 norm, respectively.

C. Parameter settings

Compared to the baseline methods NPF and ZPF, LPF
uses a smaller number of parameters and thresholds. In this
section, the setting of particle flow, including the threshold Ξ
is discussed, and other parameters are given as in the baseline
methods.

The initial distributions of the particles are randomly sam-
pled in the image frame. When the particles move out of the
image frame, they will be removed from the particle set. The
transition model is defined as

Fm̃ =


1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 . (42)

The DOAs of the speakers are used as the audio information in
our experiments. It can be obtained by either a circular array
(as in AV16.3) or a linear array. As the DOAs are determined
by the relative delay between the pairs of the microphone
signals [60], it shows only the approximate direction θok
of the sound sources with respect to the microphones. The
rectangular coordinate [xok, y

o
k] of m̊o

k can be transformed to
polar coordinate [rok, θ

o
k], where rok is the Euclidean distance

from the state of the nearby speaker at the previous frame to
the microphone position,

rok =
∥∥∥[x̃ĵk−1, ỹ

ĵ
k−1]

T − [xmic, ymic]
T
∥∥∥
2
, (43)

where

ĵ = argmin
j

∥∥∥∥∥ ỹ
j
k−1 − ymic − tan θok(x̃

j
k−1 − xmic)

x̃jk−1 − xmic − tan θok(ỹ
j
k−1 − ymic)

∥∥∥∥∥
1

, (44)

where [x̃jk−1, ỹ
j
k−1]

T and [xmic, ymic]
T are the positions of

the jth speaker at the previous frame and the position of the
microphone array mmic, respectively. Face detection is used
to provide the visual information in our experiment. The visual
measurement model is defined as,

F̆z =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 . (45)
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For survival particles, the proposal distribution
qk

(
mi

k|k−1|m
i
k−1,Zk

)
and the transition distri-

bution ϕ(mi
k|k−1|m

i
k−1) are both simplified as

N (mi
k|k−1|Fm̃mi

k−1,Υk).

For birth particles, when the number of detected faces or
DOA lines is greater than that of the estimated speakers Nk−1,
LPF considers there are new speakers appearing. The birth
density γk(mi

k|k−1) is given as

γk(m
i
k|k−1) =

{
1, if xik|k−1 < 60 or xik|k−1 > 300

0.8, otherwise
(46)

The new speakers often appear at the edge of the image frame,
and the birth density at the edge has a high value. The number
of new birth particles NB is set as 50 for each speaker. For
particle flow, the pseudo time λ is increased incrementally
from 0 to 1, with a step size ∆λ, set as ∆λ = 0.01 in our
experiment.

The threshold ξ is used to detect the candidate speaker
with a high weight. Different values are tested from 0 to
1 in the frames 200-320 and frames 870-910 for sequence
24 (camera 3) and frames 200-400 and frames 500-900 for
sequence 45 (camera 3). In sequence 45, there are three
speakers, while in sequence 24, there are two speakers. The
occlusion mainly happens in frames 870-910 for sequence
24 and frames 500-900 for sequence 45 (camera 1), and the
speakers are undetected in other frames. The results are shown
in Table I. The value of ξ does not affect the running time
of the proposed algorithm. When ξ has a low value such as
0.1, LPF over-estimates the number of the estimated speakers
than the ground truth, since some clutters are estimated as the
speaker. LPF would under-estimate the number of speakers
than the ground truth when ξ has a high value such as 0.9,
since candidate speakers with noisy measurements are not
estimated as speakers. If the number of speakers is accurately
estimated, our proposed method would give the lowest OSPA.
At the frames 200-320 of sequence 24 and frames 200-400
of sequence 45, speakers are away from each other, OSPA
gives the lowest value and the number of speakers can be
accurately estimated at ξ = 0.5. When the occlusion frequently
happens e.g. at frames 500-900 of sequence 45 and frames
870-910 of sequence 24, the weight of the occluded speaker
becomes small and our proposed method offers the lowest
OSPA at ξ = 0.4. Apart from that, Table I shows that the
computational cost is not affected by the value of ξ. Therefore,
it is reasonable to set ξ between 0.4 and 0.5 for AV16.3. Since
the occlusion does not frequently happen in AV16.3, ξ is set
as 0.5 in our experiment.

Resampling is performed when ESS is smaller than N/2.
The order parameter a in OSPA is set to 2. These parameters
are chosen empirically based on our earlier studies [34], [20],
[43]. All experiments are run on a computer with Intel i7-3770
CPU with a clock frequency of 3.40 GHz and 8G RAM. Each
experiment is repeated 50 times, and the average results are
presented.

TABLE I
RUNNING TIME (S) AND OSPA OF LPF VERSUS ξ ON THE AV 16.3.

Sequence 24 Sequence 45
ξ 200-320 870-910 200-400 500-900

0.1
17.4 5.8 44.2 8.8 time (s)
24.8 25.8 36.1 38.1 OSPA
3.6 2.9 4.9 4.2 Nk

0.3
17.4 5.8 44.2 8.8 time (s)
19.5 20.4 32.9 34.2 OSPA
2.9 2.6 4.3 3.7 Nk

0.4
17.4 5.8 44.2 8.8 time (s)
17.2 17.6 31.4 31.6 OSPA
2.1 2.1 3.4 3.2 Nk

0.5
17.4 5.8 44.2 8.8 time (s)
16.8 19.6 29.8 33.7 OSPA
2.0 1.8 3.2 2.5 Nk

0.7
17.4 5.8 44.2 8.8 time (s)
18.6 21.8 30.8 35.8 OSPA
1.8 1.7 3.0 2.4 Nk

0.9
17.4 5.8 44.2 8.8 time (s)
23.8 27.7 36.7 38.9 OSPA
1.5 0.8 2.4 2.0 Nk

D. Comparison with the baseline methods

In this subsection, we show the improvement achieved by
our proposed ideas using frames from an example sequence,
i.e. the frames 630-700 of Sequence 45 (camera 3), as they
contain some challenging situations.

First, we compare our proposed particle label estimation
method with the two particle-speaker association baselines,
i.e. the particle-speaker association method in NPF using the
measurements near the particles, and the particle-speaker asso-
ciation method in delta-GLMB based on all the measurements.
Second, this section compares our proposed labelled particle
flow, with two baseline methods, i.e. zero diffusion particle
flow and non-zero diffusion particle flow. Third, this section
compares our state estimation method based on the particle
labels, with the k-means and and MEAP clustering methods
for state estimation.

1) Labelling particles: In this section, we compare the
particle label estimation method in LPF, with the particle-
speaker association methods used in NPF and delta-GLMB.
Fig. 3 shows an example for Sequence 45 (camera 3), where
at frame 640, a speaker with a black shirt begins walking into
the frame, and the speaker with a white shirt then occludes
the speaker with a yellow shirt. The initial particles are spread
randomly and in the same way for all the filters.

Fig. 3. Frames 640 (a), 660 (b) and 670 (c) for Sequence 45 (camera 3) in
the AV16.3 dataset. There are three speakers. One of them is walking into
the scene and the speaker with the yellow shirt is occluded in frame 660.

Fig. 4 shows the particle labels estimated for the frame 660
for Sequence 45 (camera 3) where the speaker in yellow shirt
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is occluded. Note, the face images were cropped manually
from the video signal to visualise the distribution of the
particles around the face area, which is very small in the
whole image plane. The particles of the new speaker with
the black shirt can be accurately labelled by the filters as it
only has a nearby measurement, which is not shown in Fig.
4. For better visualisation, we only plot the particles with
high weights. The green asterisks and red asterisks show the
particles associated with the speaker with a white shirt and
the occluded speaker with yellow shirt, respectively. Since
the speaker in yellow shirt is occluded by another speaker,
only one face can be detected in frame 660. In NPF, the
particle flow is calculated with the audio-visual measurements
near the particle, and the particles are classified based on the
distance from the particles to the measurements. Therefore,
the particles associated with the occluded speaker are labelled
as the particles associated with the front speaker, and as a
result, there are only green asterisks in Fig. 4(a). In GLMB
(Fig. 4(c)), the labels of the particles are given when they are
created, and the undetected speaker is considered. Therefore,
nearly half of the particles are shown as the red asterisks, and
there is a clear boundary between the two groups of particles.
In our proposed LPF (Fig. 4.b), due to the random values in
Eq. (16) and Eq. (15), the particles in green and the particles
in red are mixed. As a result, most of the particles can still
track their associated speakers. Fig. 4 shows that the proposed
LPF provides a better data association than GLMB. In this
example, one speaker is occluded by another, and their face
states should be similar. However, for GLMB, the centre of
the particles corresponding to the front speaker is lower than
the actual position of their face, while in LPF, the particle
distributions of the two speakers are mixed, meaning that the
estimated states of these two speakers are closer to each other,
thus the LPF provides a better fit with the ground truth.

Fig. 4. The labelled particles of NPF (a), LPF (b) and GLMB (c) at frame 660
for Sequence 45 (camera 3). The particles of the front speaker and occluded
speaker are shown as the green and red asterisks, respectively.

In Fig. 5, we show the RMSE of NPF, GLMB and LPF,
respectively, for frames 630-700 of Sequence 45 (camera 3).
The initial particle sets for the three filters are the same at
frame 630. Apart from that, RMSE is calculated before the
update step, such as in line 11 of Algorithm 2 and line 13 of
the Algorithm 1. The only factor that affects the RMSE is the
method for associating the particles of these filters. For better
visualisation, we only plot log(RMSE).

In the beginning, the RMSE of the compared filters is
similar. Since the speakers have a long distance to other
speakers, the label of particles can be accurately estimated
by the nearby measurements in NPF. At frames 650 - 660,

the occlusion happens and log(RMSE) of NPF increases
to -12.70, since NPF can not accurately label the particles
for the occluded speaker. However, with our proposed LPF,
log(RMSE) is about -18.89, resulting in a 48% performance
improvement over NPF thanks to the particle labels estimated
by Eq. (15) and Eq. (16). GLMB gives an RMSE similar
to LPF, as GLMB can estimate the particle labels accurately
based on the Bernoulli filter.

630 640 650 660 670 680 690 700

Frame

-22
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-16
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Fig. 5. log(RMSE) of NPF, GLMB and LPF at the frames 630-700 for
Sequence 45 (camera 3).

2) Particle flows: To evaluate the particle flow, ZPF, NPF,
GLMB and LPF are compared. To allow for a fair comparison,
the speakers are estimated by the k-means method. Fig. 6
shows how the particles are modified by these filters from
λ = 0 to λ = 1. The three figures in each row are shown
for λ = 0, 0.5 and 1, respectively. The rows show the tracking
results of ZPF, NPF, GLMB and LPF, respectively. The particle
flow of ZPF and GLMB is calculated based on the zero
diffusion flow, while the particle flow of the NPF and GLMB
is calculated based on the non-zero diffusion flow. The green
asterisks show the front speaker and the red asterisks show
the occluded speaker. Since ZPF and NPF are only calculated
based on the measurements near the particles without the
label information, there are only green asterisks for ZPF
and NPF. Compared to the NPF and ZPF, LPF gives more
accurate estimates for the speaker states, and more particles are
located nearby the occluded speakers. Although GLMB uses
the particle label information to update the particle weights, it
assumes the speaker is always detected, and the particle flow
is also modified towards the nearby measurements.

In Fig. 7, we show the variation of ESS of NPF, ZPF and
LPF from λ = 0 to λ = 1 on the frame 660 for Sequence
45 (camera 3). At the beginning of the update step, one
of the speakers is occluded, and the filters encounter with
the weight degeneracy problem. Using ZPF, NPF, GLMB
and LPF, the ESS is increased to 71.9, 71.7, 77.1 and 79.3,
respectively. In NPF and ZPF, the particles associated with the
occluded speaker are modified towards the front speaker with
a white shirt. The number of particles associated with the front
speaker is increased and the average weight of these particles
is decreased. Therefore, ESS of the NPF and ZPF at λ = 1
is only increased by 10.6% and 10.3% as compared with the
ESS at λ = 0. Although GLMB uses particle labels to update
the particle weights, the particle flow of GLMB updates the
particle states with the measurements. The particles of GLMB
are modified towards the detected speakers. The improvement
of ESS achieved by LPF is the highest among the tested filters.
With the label information, the LPF provides an ESS that is
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Fig. 6. The motion trails of the particles by ZPF, NPF, GLMB and LPF. The
columns show the results for λ = 0, 0.5, 1 respectively in the frame 660 for
Sequence 45.

11% higher than its baseline NPF.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pseudo time 

65

70

75

80

E
S

S

ZPF

NPF

GLMB

LPF

Fig. 7. The ESS and OSPA of ZPF, NPF, GLMB and SMC in the frame 660
for Sequence 45 (camera 3) changes with respect to λ.

Fig. 8 shows the average OSPA for the frames 630-700 of
Sequence 45. It can be observed that LPF gives the smallest
average OSPA. Due to the presence of occlusion from frames
645 to 660, the OSPAs for NPF and ZPF have increased. OSPA
of the LPF remains low in most of the frames. At frame 660,
LPF gives an average OSPA at about 13.5, resulting in a 29%,
28% and 6% performance improvement over ZPF, NPF and
GLMB, respectively, thanks to the more accurate estimate of
the number of speakers offered by the label information, as
shown in Fig. 9.

3) Clustering: Here we compare our approach for esti-
mating the speaker states using the labels estimated, with
k-means and MEAP clustering, at frame 660 for Sequence
45. We add clutter with a clutter rate ranging from 0 to 40,
including both audio clutter and visual clutter. The clutter is
randomly distributed over the measurement space. Fig. 10
shows the frame 660 of Sequence 45 with audio clutters
and visual clutters. The visual measurements and clutters are
shown in the red and blue boxes, respectively, while the audio
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Fig. 8. The OSPA of ZPF, NPF, GLMB and LPF for Sequence 45 (camera
3) for frames 630-700.
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Fig. 9. The number of speakers estimated by ZPF, NPF, GLMB and LPF for
Sequence 45 (camera 3) for frames 630-700.

measurements and clutters are shown in the yellow and green
lines, respectively. The number of visual and audio clutters is
same for each experiment, and the clutters and measurements
are the same for these methods.

Table II shows the OSPA and computational time with
respect to different number of clutters. We observe that our
proposed method is computationally most efficient. This is
because its computational complexity is only O(NK) while
the k-means clustering and MEAP is a time-consuming itera-
tive procedure. Our proposed method offers the lowest OSPA.
When there is no clutter, our proposed method can reduce
the OSPA by approximately 5% and 3% as compared with k-
means and MEAP, respectively. However, the advantage of our
proposed method in terms of OSPA tends to decrease with the
growing number of clutters. The reason is that some particles
may be associated with clutter, which increases the risk of
generating false particle flows.

Fig. 10. The clutter at frame 660 of Sequence 45. The face detection, DOA
lines, visual clutters, and the audio clutters are shown in the red boxes, yellow
lines, blue boxes and green lines, respectively.
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TABLE II
RUNNING TIME (S) AND OSPA OF K-MEANS, MEAP AND OUR

ESTIMATION METHOD CHANGES WITH NUMBER OF CLUTTERS AT FRAME
660 OF SEQUENCE 45 OF AV 16.3.

Num. of clutters 0 10 20 30 40

K-means 0.4 0.73 0.8 1.08 1.65 time (s)
13.5 15.6 20.4 24.8 31.3 OSPA

MEAP 0.38 0.63 0.75 0.89 1.32 time (s)
13.2 14.5 19.8 24.6 31.3 OSPA

Our method 0.31 0.32 0.32 0.32 0.33 time (s)
12.8 14.1 18.6 22.5 30.4 OSPA

E. Comparison with other audio-visual algorithms

In this subsection, the proposed algorithm LPF is compared
with several baselines, including ZPF [34], NPF [35], GLMB
[38], GPF [37] and SMS algorithms [60]. GPF, GLMB and
ZPF are implemented by the zero diffusion particle flow. LPF
and NPF are implemented by the non-zero diffusion particle
flow. Although the particle flow is not used in the SMS, the
weight degeneracy of SMC filter is address by the mean-shift
method. Table III reports the average OSPA. It can be observed
that using LPF about 24% reduction in tracking error has been
achieved as compared with NPF. The advantage of LPF is clear
on Sequence 45, where occlusion happens frequently.

TABLE III
THE OSPA OF LPF, NPF, ZPF, GPF, GLMB AND SMS RUNNING ON THE

AV 16.3.

Seq (Cam) LPF NPF ZPF GPF GLMB SMS
24 (1) 10.13 12.32 12.99 13.00 10.66 14.50
24 (2) 10.34 13.20 13.82 15.13 11.98 15.35
24 (3) 9.38 13.23 14.01 15.22 11.62 15.72
25 (1) 12.04 15.96 16.80 18.28 13.43 17.17
25 (2) 12.35 15.29 15.88 15.58 12.94 15.39
25 (3) 12.13 16.29 17.56 18.62 14.45 17.62
30 (1) 12.64 15.76 17.15 18.89 13.55 19.27
30 (2) 10.24 13.41 14.22 16.12 11.68 16.16
30 (3) 12.44 15.93 17.63 19.03 16.38 19.67
45 (1) 13.12 17.65 19.33 23.12 18.14 23.40
45 (2) 14.24 18.60 20.85 22.71 20.35 23.16
45 (3) 14.12 19.50 21.35 23.76 20.36 23.80

Avg. OSPA 11.93 15.60 16.80 18.28 14.63 18.43

To show the difference among the results of the tested
algorithms in Table III, we have run the ANOVA based F-
test [66] and present the results in Table IV. The significance
value is set as 5%, and the degree of freedoms for all the
significance tests is (1, 22). The corresponding critical value
Fcrit is 4.30 in terms of the F -distribution table [66]. Note
that the F-value is the ratio of the between-group variability
to the within-group variability. The p-value is the probability
of a more extreme result than the value achieved when the
null hypothesis is true. According to the test, the results are
considered as statistically significant if F -value > Fcrit and
p-value is less than the significance value (0.05). It can be
observed that the improvements of LPF over ZPF, NPF and
GLMB are statistically significant.

Table V shows Frame rate per Sequence per Speaker (FPSS)
and computational complexities of the compared algorithms.
Since the measurements of different algorithms are the same,
the computational complexities of the detector is not included
in this table. As shown in Table V, LPF and NPF have

TABLE IV
SIGNIFICANCE TEST FOR THE DIFFERENCE BETWEEN LPF, AND NPF,

ZPF, GPF, GLMB AND SMS, RESPECTIVELY.

Method NPF ZPF GPF GLMB SMS

LPF
21.4 28.12 33.15 6.21 36.08 F

0.0001 2.5e-05 8.60e-06 0.021 4.80e-06 p-value

a similar computational cost. Although LPF calculates the
particle labels, LPF saves the cost at the clustering step. Since
GLMB considers not only the particle labels but also the
label history, the particles of GLMB may have multiple labels.
However, the particles of LPF have only one label. Therefore,
the number of particle flows in GLMB is greater than that in
LPF, which leads to a higher computational cost. Although
LPF and GPF use the same initial number of particles, the
number of particles is drastically varying since a few particles
are added in the update step of the GPF [37]. Therefore,
LPF runs faster than the GPF. The FPSS of LPF is about
25 % higher than that of NPF. As the complexity of LPF
does not depend on the number of measurements, LPF is
computationally more efficient than GLMB.

TABLE V
FRAME RATE PER SEQUENCE PER SPEAKER (FPSS) COMPARISON FOR

LPF, NPF, ZPF, GPF, GLMB AND SMS.

Seq LPF ZPF NPF GPF GLMB SMS
24 6.72 4.02 5.52 1.21 2.21 6.53
25 6.63 3.83 5.21 1.03 1.95 6.35
30 6.75 3.96 5.40 1.11 2.01 6.48
45 4.51 2.64 3.53 0.74 1.34 4.32

FPSS 6.15 3.61 4.92 1.02 1.88 5.92
Com NkNλ NkNλ NkNλ NkUkNλ NkUkNλ UkNk

To show the performance of the proposed method on other
datasets rather than AV16.3, we selected sequence 32 (four
speakers) and 09 (three speakers) from the AVDIAR dataset
[53], and the frames 100-170 (four speakers) and frames 180-
250 (five speakers) for Sequence UKA from the CLEAR
dataset [57]. Their average errors are summarised in Table
VI. Our proposed LPF offers the lowest OSPA among all
the filters. However, as the speakers are talking one by one,
the performance difference among the compared filters is not
significant. The OSPA of all the methods is increased with the
increase in the number of speakers.

F. Comparison with deep learning methods

In this subsection, we compare the proposed method with
deep learning based methods, i.e. YoloV5-DeepSort1 and
YoloV5-StrongSort2, using Sequence 45 Camera 1 of AV16.3,
under occlusions (frames 640 to 665) and non-occlusions (the
remaining frames of this sequence), respectively. Considering
the fact that these two deep learning based methods use visual
information only, we adjust the proposed method accordingly
by dropping the audio measurements to ensure a fair com-
parison. The audio labels were set as 0 in this case. All the

1https://github.com/HowieMa/DeepSORT YOLOv5 Pytorch
2https://github.com/mikel-brostrom/Yolov5 StrongSORT OSNet

https://github.com/HowieMa/DeepSORT_YOLOv5_Pytorch
https://github.com/mikel-brostrom/Yolov5_StrongSORT_OSNet
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TABLE VI
EXPERIMENTAL RESULTS FOR LPF, NPF, ZPF, GPF, GLMB AND SMS,

IN TERMS OF THE OSPA ERROR FOR SEQUENCE 09 AND 32 OF THE
AVDIAR DATASET AND FRAMES 100-170 AND FRAMES 180-250 FOR

SEQUENCE UKA 20060726 OF THE CLEAR DATASET.

Filters sequence 09 sequence 32 frames 100-170 frames 180-250

LPF 11.75 12.32 24.53 26.65

ZPF 13.72 14.37 28.62 31.57

SMS 13.95 14.90 29.35 36.68

GPF 13.82 14.78 30.25 37.84

GLMB 11.74 12.25 24.67 26.98

NPF 13.80 14.42 28.60 31.55

TABLE VII
EXPERIMENTAL RESULTS FOR LPF, YOLOV5-DEEPSORT AND

YOLOV5-STRONGSORT, IN TERMS OF THE AVERAGE OSPA ERROR OF
TWO COMPARISON GROUPS FOR SEQUENCE 45 CAMERA 1 OF THE

AV16.3 DATASET (FRAMES 630-700).

Method Non-Occlusion Occlusion
LPF 14.45 22.81

YoloV5-DeepSort 14.27 27.54
YoloV5-StrongSort 13.11 24.22

compared methods are run under the same condition as in
Section IV-D1 with the same measurements given by YoloV5
using the pre-trained model ‘crowdhuman yolov5m.pt’. Un-
like YoloV5-DeepSort which uses the default settings for
the Re-ID model, we select ‘osnet x0 25 market1501.pt’ for
YoloV5-StrongSort. The experimental results in terms of the
average OSPA over these frames are given in Table VII.
For the non-occlusion cases, all the three methods provide
similar performance, with the deep learning methods providing
slightly better results. However, for the occlusion cases, our
proposed method offers better performance with a lower aver-
age OSPA error at 22.81, as compared with YoloV5-DeepSort
and YoloV5-StrongSort. This is because our proposed method
has exploited visual and speaker labels which characterise the
historical information of the particles and speakers during
tracking. Even if the speaker is occluded, its states could
still be estimated with the label information. Although the
two deep learning based methods use historical information
within a Kalman filter framework, they did not consider cluster
density and detection density, which results in failure during
occlusion.

Our AV-LPF-SMC-PHD filter does not involve model train-
ing, which offers advantages in cases where no training data
is available. In addition, it is a flexible method, and could be
used together with a deep learning method, such as YoloV5-
DeepSort and YoloV5-StrongSort, where the detection results
from deep learning methods can be used as measurements
in our AV-LPF-SMC-PHD filter. This can help leverage
the excellent detection performance from deep learning and
promising performance of the proposed method in tracking
over occlusions.

V. CONCLUSION

We have presented a novel AV-LPF-SMC-PHD filter for
audio-visual multi-speaker tracking using particle labels.
Specifically, the audio and visual labels of the particles are
independently estimated based on the likelihood density and
detection probability. Based on our proposed label space, the
states of the undetected speakers can be estimated by the audio
and visual labels. The particles associated with the detected
speaker are selected and updated by the labelled particle flow
with our proposed likelihood, which considers four different
situations in the label space. Finally, the weighted mean of
the selected particles is used for calculating the states of the
speakers, which replaces the clustering step widely used in
conventional SMC-PHD filters. The proposed algorithm has
been tested on the AV16.3, AVDIAR and CLEAR datasets,
and compared with other particle flow methods, PHD filters,
GLMB filter and deep learning methods. The experimental
results show that the proposed filter offers a higher tracking
accuracy than several baseline methods with a lower compu-
tational cost.

APPENDIX A
LIKELIHOOD COMPARISON AND PROBABILITY ANALYSIS

For the convenience of expression, some complex symbols
are redefined in this appendix. Audio likelihood h̊i,ok|k−1 and
visual likelihood h̆i,uk|k−1 are both denoted as {hz}Nz=1, where
z is the index of the measurement and N is the number of
measurements. The maximun value of {hz}Nz=1 is hζ and
argmaxz∈{1,...,N}(h

z) = ζ. We define rz as a random value
from 0 to 1 and z1 and z2 are two different indices of the
measurement.

The probability of rz1hz1 ≥ rz2hz2 is defined as
P (rz1hz1 ≥ rz2hz2) where z1 ∈ {1, ..., N} and z2 ∈
{1, ..., N}. If hz1 ≥ hz2 ,

P (rz1hz1 ≥ rz2hz2)

=P (rz1
hz1

hz2
≥ 1) + P (rz1

hz1

hz2
≥ rz2 |rz1 < hz2

hz1
)P (rz1 <

hz2

hz1
)

=
hz1 − hz2

hz1
+

1

2

hz2

hz1
= 1− hz2

2hz1
≥ 1

2
.

(47)

If hz1 < hz2

P (rz1hz1 ≥ rz2hz2) = 1− P (rz1hz1 < rz2hz2)

= 1− 1 +
hz1

2hz2
<

1

2
.

(48)

The probability of argmax(rzhz) = z1 is

P (argmax(rzhz) = z1) =
∏

1⩽z⩽N

P (rz1hz1 ≥ rzhz). (49)

If z1 ̸= ζ, the probability of argmax(rzhz) = ζ is

P (argmax(rzhz) = ζ) =
∏

1⩽z⩽N

P (rζhζ ≥ rzhz). (50)

To compare P (argmax(rzhz) = ζ) and P (argmax(rzhz) =
z1), we need to compare P (rζhζ ≥ rzhz) and P (rz1hz1 ≥
rzhz). If hζ ≥ hz > hz1 , we can get

P (rζhζ ≥ rzhz) ≥ 1

2
. (51)
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P (rz1hz1 ≥ rzhz) <
1

2
. (52)

and
P (rζhζ ≥ rzhz) ≥ 1

2
> P (rz1hz1 ≥ rzhz). (53)

If hζ ≥ hz1 ≥ hz ,

P (rζhζ ≥ rzhz)− P (rz1hz1 ≥ rzhz)

=1− hz

hζ
− 1 +

hz

hz1
≥ 0.

(54)

Therefore, we can find that P (rζhζ ≥ rzhz) always has a
larger value than P (rz1hz1 ≥ rzhz), where z1 ̸= ζ. Based
on Eq. (49) and Eq. (50), we get P (argmax(rzhz) = ζ) >
P (argmax(rzhz) = z1), where z1 ̸= ζ and 1 ⩽ z1 ⩽ N ,
which means that argmax(rihi) has a high probability to be
equal to the index of the high likelihood ζ.

ACKNOWLEDGEMENT

The authors wish to thank the reviewers and the associate
editor for their constructive comments to further improve the
paper. W. Wang was partially supported by the SIGNetS
project. For the purpose of open access, the authors have
applied a creative commons attribution (CC BY) licence to
any author accepted manuscript version arising.

REFERENCES

[1] A. Hampapur, L. Brown, J. Connell, A. Ekin, N. Haas, M. Lu, H. Merkl,
and S. Pankanti, “Smart video surveillance: exploring the concept of
multiscale spatiotemporal tracking,” IEEE Signal Processing Magazine,
vol. 22, no. 2, pp. 38–51, Mar. 2005.

[2] H.-S. Yeo, B.-G. Lee, and H. Lim, “Hand tracking and gesture recogni-
tion system for human-computer interaction using low-cost hardware,”
Multimedia Tools and Applications, vol. 74, no. 8, pp. 2687–2715, 2015.

[3] W.-L. Lu, J.-A. Ting, J. J. Little, and K. P. Murphy, “Learning to track
and identify players from broadcast sports videos,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 35, no. 7, pp. 1704–1716, 2013.

[4] R. Thiolliere, E. Dunbar, G. Synnaeve, M. Versteegh, and E. Dupoux,
“A hybrid dynamic time warping-deep neural network architecture for
unsupervised acoustic modeling,” in Proc. INTERSPEECH, 2015, pp.
3179–3183.

[5] P. Escudero, C. D. Bonn, R. N. Aslin, and K. E. Mulak, “Indexical and
linguistic processing in infancy: Discrimination of speaker, accent and
vowel differences,” in Proc. Int. Congress of Phonetic Sciences., May
2015, pp. 1–5.

[6] J. Vermaak, M. Gangnet, A. Blake, and P. Perez, “Sequential Monte
Carlo fusion of sound and vision for speaker tracking,” in IEEE
International Conference on Computer Vision (ICCV), vol. 1. IEEE,
2001, pp. 741–746.

[7] X. Qian, A. Xompero, A. Brutti, O. Lanz, M. Omologo, and A. Caval-
laro, “3D mouth tracking from a compact microphone array co-located
with a camera,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal
Processing (ICASSP), 2018.

[8] G. Welch, G. Bishop et al., “An introduction to the Kalman filter,” 1995.
[9] T. Gehrig, K. Nickel, H. K. Ekenel, U. Klee, and J. McDonough,

“Kalman filters for audio-video source localization,” in Proc. IEEE
Workshop on Applications of Signal Processing to Audio and Acoustics.,
Oct. 2005, pp. 118–121.

[10] K. Okuma, A. Taleghani, N. d. Freitas, J. J. Little, and D. G. Lowe, “A
boosted particle filter: Multitarget detection and tracking,” Proc. IEEE.
European Conference on Computer Vision (ECCV), pp. 28–39, 2004.

[11] R. P. Mahler, “Multitarget Bayes filtering via first-order multitarget
moments,” IEEE Trans. Aerospace and Electronic Systems, vol. 39,
no. 4, pp. 1152–1178, 2003.

[12] B.-N. Vo and M. Wing-Kin, “The Gaussian mixture probability hypoth-
esis density filter,” IEEE Trans. Signal Processing, vol. 54, no. 11, pp.
4091–4104, Oct. 2006.

TABLE VIII
DESCRIPTION OF SYMBOLS.

Symbols Description
j Index of speaker
k Index of time
m̃j

k State vector
(xj

k, y
j
k) Speaker position

(ẋj
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