
1

A Novel Composite Graph Neural Network
Zhaogeng Liu, Jielong Yang, Xionghu Zhong, Wenwu Wang, Senior Member, IEEE, Hechang Chen,

and Yi Chang, Senior Member, IEEE

Abstract—Graph Neural Networks (GNNs) have achieved great
success in many fields due to their powerful capabilities of
processing graph-structured data. However, most GNNs can
only apply to scenarios where graphs are known, but real-
world data are often noisy or even do not have available graph
structures. Recently, graph learning has attracted increasing
attention in dealing with these problems. In this paper, we develop
a novel approach to improving the robustness of the GNNs,
called Composite Graph Neural Network. Different from existing
methods, our method uses composite graphs to characterize both
sample and feature relations. The composite graph is a unified
graph that unifies these two kinds of relations, where edges
between samples represent sample similarities, and each sample
has a tree-based feature graph to model feature importance
and combination preference. By jointly learning multi-aspect
composite graphs and neural network parameters, our method
improves the performance of semi-supervised node classification
and ensures robustness. We conduct a series of experiments
to evaluate the performance of our method and the variants
of our method that only learn sample relations or feature
relations. Extensive experimental results on nine benchmark
datasets demonstrate that our proposed method achieves the best
performance on almost all the datasets and is robust to feature
noises.

Index Terms—Composite graph, Tree-based feature graph,
Sample graph, Graph neural networks.

I. INTRODUCTION

IN recent years, Graph Neural Networks (GNNs) have been
successfully used to deal with graph-structured data [1],

[2], and have been widely applied in many domains such as
computer vision systems [3], [4], natural language process-
ing [5], [6], neural-symbolic computing [7], [8], and COVID-

This work was supported in part by the Young Scientists Fund of the
National Natural Science Foundation of China under Grant 62106082, in part
by the National Natural Science Foundation of China under Grant 61976102,
Grant U19A2065, and Grant 61971186, in part by the International Coopera-
tion Project of Jilin Province under Grant 20220402009GH. (Corresponding
authors: Jielong Yang and Hechang Chen.)

Zhaogeng Liu and Jielong Yang are with the School of Artificial Intelli-
gence, Jilin University, Changchun 130012, China, and also with the Engi-
neering Research Center of Knowledge-Driven Human-Machine Intelligence,
Ministry of Education, Jilin University, Changchun 130012, China (e-mail:
zgliu20@mails.jlu.edu.cn; JYANG022@e.ntu.edu.sg).

Xionghu Zhong is with the College of Computer Science and Elec-
tronic Engineering, Hunan University, Changsha 410082, China (e-mail:
xzhong@hnu.edu.cn).

Wenwu Wang is with the Department of Electrical and Electronic
Engineering, University of Surrey, GU2 7XH Guildford, U.K. (e-mail:
w.wang@surrey.ac.uk).

Hechang Chen and Yi Chang are with the School of Artificial Intelligence,
Jilin University, Changchun 130012, China, also with the Engineering Re-
search Center of Knowledge-Driven Human-Machine Intelligence, Ministry
of Education, Jilin University, Changchun 130012, China, and also with
the Key Laboratory of Symbolic Computation and Knowledge Engineering,
Ministry of Education, Jilin University, Changchun 130012, China (e-mail:
chenhc@jlu.edu.cn; yichang@jlu.edu.cn).

19 prevention and control [9], [10]. The good performance
of GNNs depends on their capabilities of utilizing data graph
structure [11]. Many GNNs are developed to aggregate node
information along edges of given sample graphs (the graphs
whose nodes are samples and the edges are the relations
between samples), such as Graph Convolutional Network
(GCN) [12] and Graph Attention Network (GAT) [13]. These
information aggregation methods are also further improved in
recently published works [14], [15]. However, most of these
methods do not learn the graph structure of samples (i.e.,
the sample graph) and thus can be hardly applied to real
scenarios where graphs are noisy or even unavailable. Many
link prediction methods proposed in the literature can learn
sample graphs [16], [17], but these methods either are difficult
to be directly incorporated into GNNs or can not jointly learn
neural network parameters and sample graphs.

Jointly learning the graph structure of samples and the
parameters of a neural network has shown to be important
to the robustness of GNNs [18], [19]. To this end, some GNN
methods capable of simultaneously learning or refining the
graph structure of samples and neural network parameters are
developed [19], [20]. However, none of them consider learning
feature graphs (the graphs whose nodes are features and edges
are feature relationships), thereby incapable of capturing the
structural information between features. Similar to samples,
features can also exhibit multifarious structures, such as tree
structures [21], [22] and graph structures [23], [24]. The
structures of features have been proved to be very important
in many real-world applications [25], [26].

Recently, some studies noticed that learning the unknown
graph structure of features can help improve the performance
of GNNs, such as Fi-GNN [27] and CatGCN [28]. These
methods consider learning the feature graphs, but the sample
graphs are required to be known, which hinders their applica-
tions in scenarios where the sample graphs are inaccessible.
High-quality sample relations and feature relations depend on
each other, and thus should be jointly learned instead of being
learned at two stages. To this end, we need to use a graph to
characterize both sample relations and feature relations. Both
feature and sample relations can be learned from the Euclidean
distance or the cosine similarity of each pair of samples
and features. However, pairwise similarities (distances) can
neither select important features, nor obtain important feature
combinations, which have been shown to be important for
feature relationship learning [28], [29]. For example, men
aged 20-25 are more likely to be digital enthusiasts [28].
This gender-age feature combination is more discriminating
than either gender or age alone for judging digital enthusiasts.

0000–0000/00$00.00 © 2021 IEEE

2

Sample relations usually represent the pairwise similarity
between samples, while feature relations need to show their
combination preference. Hence, it is a natural way to model
sample relations with a sample graph, and on each node,
feature relations should be modeled with trees.

Thus, a natural question arises: How to model a graph of
samples and trees of features with a unified graph and jointly
learn this unified graph and the neural network parameters?

We propose a Composite Graph Neural Network (CGNN)
to learn and utilize composite graphs (C-graphs) for node
embeddings. First, we propose a new type of feature graph
called the tree-based feature graph. When using features to
build a tree in CGNN, the important features are selected
as nodes, and the combination of two connected features is
preferred. The reasons are because (i) a feature tree’s hierarchy
corresponds to how informative each feature is, with more
informative features closer to the tree’s root node [30], and
(ii) the features used to build a tree are more closely related
to one another than the ones not used [31]. Then, we propose
the composite graph, which uses a sample graph to model the
sample similarities and a tree-based feature graph to model
the feature relations of each sample. Finally, we propose a
C-graph Transformation Operation to aggregate features using
the C-graph. In our method, both sample relations and feature
relations can be jointly updated by minimizing the same loss
function, which enables us to utilize their dependencies and
obtain a better composite graph.

To the best of our knowledge, no previous studies discuss
the unified modeling of the tree structure of features and the
graph structure of samples. We highlight the contributions and
the advantages of our work as follows:

a Unifying the tree-based feature graph and the sample
graph into a composite graph (C-graph). The com-
posite graph reveals both sample similarities and feature
combination preferences.

b Proposing a C-graph Transformation Operation to
aggregate features using the C-graph. This operation
jointly uses sample and feature relations to update fea-
tures.

c Proposing a Composite Graph Neural Network
(CGNN) for semi-supervised node classification prob-
lems. We develop a C-graph based neural network
method, which can jointly learn C-graphs from different
aspects and neural network parameters and thus can be
directly used to handle semi-supervised problems without
knowing graphs a priori.

In addition, extensive validations on different datasets demon-
strate that CGNN achieves better performance than state-
of-the-art methods in semi-supervised classification accuracy,
regardless of whether the sample graph is known or not.
Moreover, additional experiments show that CGNN is robust
to feature noises even when the sample graph is unknown.

The remainder of this paper is organized as follows. Sec-
tion II reviews the related work. In Section III, we propose
our framework CGNN that uses C-graphs to deal with semi-
supervised problems and give the details of jointly learning the
graph structure of samples and the tree structure of features
to obtain C-graph. Comprehensive evaluation and experimental

result analysis are conducted in Section IV. Finally, conclusion
is given in Section V.

Notations: In this paper, we use boldfaced characters to
represent vectors and matrices. Suppose that M is a ma-
trix, then M[n, ·], M[·, f], and M[n, f] denote its n-th row,
f -th column, and (n, f)-th element, respectively. A vector
x = (x1, x2, . . . , xN) is abbreviated as (x[i])Ni=1 if the index
set that i runs over is clear from the context, and the i-th
element of x is x[i]. We summarize the important notations
used throughout the paper in Table I, where X is a matrix of
node feature vectors, and the feature vector of each node is
called a sample. We use each row in X to denote a sample,
each column in X to denote a feature, and α, α̃, Θ1, and Θ2

to denote the neural network parameters.

TABLE I
SUMMARY OF IMPORTANT NOTATIONS.

Symbol Meaning
R the set of real numbers
N the number of samples
F the number of features
C the number of classes
R the number of submodules
0 the C-dimensional zero vector

1> the N -dimensional all-one column vector
I ∈ RN×N the identity matrix
X ∈ RN×F the input dataset
Y ∈ RN×C the one-hot labels
Y̊ ∈ RN×C the pseudo labels

AS ∈ RN×N the adjacency matrix of the sample graph
AF ∈ RF×F the adjacency matrix of the tree-based feature graph

G the composite graph (C-graph)
AG = {AS,AF} the adjacency matrix set of G

α ∈ RF+C , α̃ ∈ RF the trainable vectors
Θ1, Θ2 the trainable weight matrices
� element-wise product
` a differentiable error function
σ a non-linear activation function

II. RELATED WORK

Many graph-based methods have been proposed for re-
lational data with known graph structures, such as semi-
supervised embedding (SemiEmb) [32], DeepWalk [33], and
LINE [34]. Among these methods, graph embedding based
method receives considerable attention. In [35], a method
named Planetoid is proposed, which trains an embedding for
each sample by jointly predicting the class label and capturing
structural information in the given sample graph. However,
Planetoid can not fully embed all the graph structure and label
information limited by its sampling strategy [36]. Recently,
GNNs closely related to graph embedding have attracted
increasing interest in the field of machine learning and data
mining [37]. In [12] and [13], the well-known GCN and GAT
are proposed, which directly aggregate neighbor information
using graph convolution and graph attention, respectively.
Inspired by GCN and GAT, many GNNs with better perfor-
mances are proposed, such as GCNII [14], AdaGCN [38], and
BGAT-T [39].

A foundational assumption of the previous methods is that
the given graph structure of samples is of high quality, limiting

3

their application in scenarios with unknown or noisy graph
structures. Recently, graph learning has drawn significant
attention in dealing with these problems [40], [41]. Some link
prediction methods and GNN methods can extend a sample
graph based on some prior known structural relationships
between nodes [42], [43], but these methods cannot learn the
sample graph and neural network parameters simultaneously.
Recently, some methods that can jointly learn the sample graph
and neural network parameters have been proposed. kNN-LDS
gives a bilevel programming approach to jointly learn the sam-
ple graph and a neural network [19]. DIAL-GNN iteratively
learns the parameters of a neural network and augments the
given graph structure [44]. Graphite proposed in literature [45]
uses a deep latent variable generative model to learn a sample
graph and the sample graph can be iteratively refined via a
message passing operation. Pro-GNN simultaneously learns
the parameters of a neural network and a robust graph structure
of samples by exploring graph properties of sparsity, low rank,
and feature smoothness [18]. A GCN method proposed in
literature [46] learns the graph and graph representation from
the low-dimensional space of the original data simultaneously
by using a new multigraph fusion method. Peng et al. [47]
proposed a GNN method that learns the graph structure from
the given data points by using reverse graph learning and out-
of-sample extension strategies.

Although the aforementioned methods jointly learn sample
graph and neural network parameters, they do not consider
the unknown underlying relations between features. However,
in many applications, the hierarchical structure of features
and the combination of related features are essential. In our
method, we jointly learn the graph structure of samples and the
tree structure of features, which further compose the composite
graph. Hence, our proposed composite graph can characterize
the similarity between samples, relative importance between
features, and combination preference of features. However, it
is still an unresolved problem in the literature to learn and
utilize the C-graph. Next, we will provide the details of our
method in Section III.

III. COMPOSITE GRAPH NEURAL NETWORK

In this section, we propose graph neural network method
CGNN to address the challenging problem where data samples
influence each other through edges of multiple unknown
graphs and these edges are closely related to the features of
samples. CGNN is a unified framework to learn a general-
ized graph, C-graph, capable of demonstrating both sample
relationships and feature relationships. Specifically, CGNN is
proposed to

a Learn a C-graph of features and samples, which charac-
terizes the similarity between samples, the hierarchical
structure of features and the combination preference of
related features.

b Learn multiple C-graphs from different aspects using
different submodules.

c Jointly learn the C-graphs and neural network parameters
for semi-supervised tasks. The joint learning of sample
relations and neural network parameters is shown to be
essential to the robustness of GNNs.

A toy example for illustrating CGNN is shown in Fig. 1. The
pseudocode of CGNN is given in Algorithm 2 in Section IV.

A. Main Definitions

Consider a dataset with N samples X = [x1,x2, . . . ,xN]>.
For any n ∈ {1, 2, . . . , N}, xn ∈ RF has F features. The
one-hot labels of these samples are Y = [y1,y2, . . . ,yN]>,
where each element yn ∈ RC with C being the number
of classes. In this paper, we focus on the semi-supervised
classification problem where X and a subset of Y are used
to learn a model to predict the remaining unknown subset of
Y. Incorporating the relationship between samples (i.e., the
sample graph) has shown great potential in semi-supervised
classification problems [12]. Most GNNs can only deal with
the case where graphs are known and some other GNNs
capable of learning graphs only consider the sample relations.
In this paper, we consider a composite graph characterizing
both the sample relations and feature relations.

Definition 1 (Composite Graph). In this paper, the composite
graph (C-graph) is defined as G , (S,ES,EF), where S, ES

and EF are the sample node set, the sample edge set, and the
feature edge set, respectively. We define the adjacency matrix
set of G as AG , {AS,AF}, where AS and AF are the
adjacency matrices of the sample graph and the tree-based
feature graph, respectively. We say AS and AF are unified
into a composite graph since they are simultaneously used to
update features in Algorithm 1, jointly learned by optimizing
the same loss function `(Y, Ŷ), and depend on each other in
the update process (see Section III-C3).

Given a dataset X and a known subset of Y, we aim at
learning the composite graph AG = {AS,AF} and use the
learned graph to obtain node embeddings and predicted labels.
It is worth noting that AS and AF are closely related to each
other and are jointly learned in a unified framework. In the
following sections, DS denotes an N × N diagonal matrix

with DS[n, n] , 1+
n∑

p=1
AS[n, p] for each n ∈ {1, 2, . . . , N}.

σ(·) denotes an activation function. `(Y, Ŷ) denotes a dif-
ferentiable function that measures the difference between the
target Y and the prediction Ŷ, and we use the cross-entropy
error function in our experiments.

B. General Framework

In this section, we present the general framework of CGNN.
Our framework can jointly learn C-graphs from different
aspects and neural network parameters. The learned C-graphs
can reveal both the underline structure information of sample
similarities and feature combination preferences for helping
obtain better node embeddings and deal with semi-supervised
problems without knowing graphs a priori. Let R be the
number of submodules in our method. In Fig. 1, each blue
dotted box denotes a submodule, and there are R submodules
in total. The following formulas (1), (2), and (3) are repeated
for each submodule r ∈ {1, 2, . . . , R}, and thus in these
formulas, we omit submodule index r. Firstly, we use a C-
graph transformation operation to embed X with the C-graph,

4

… 1 0 0
… 0 0 1

… … . . . … … … … …

… 0 1 0
… 0 0 0

…
…

… … . . . … …

…
…

x1
x2

...
x9
x10

f1 f2 … f15 f16

𝐀𝐀𝐒𝐒 𝐀𝐀𝐅𝐅

Tree-based
Feature G

raph

X Y

1 0 0

0 0 1

… … …

0 1 0

0 0 0

Z

z1
z2

...
z9
z10

…

19∈α

Randomly Initialize
a Trainable Vector

… 0 0
… 0 0

… … . . . … … … … …

… 0 0
… 0 0 0

Z

1z
2z

10z

…

9z

…
…

… … . . . … …

…
…

 =R ZZ

…
…

… … . . . … …

…
…

XUpdated

X

…
…

… … . . . … …

…
…

16∈α

⊙ …

X

…
…

… … . . . … …

…
…

1f 2f …

15f 16f

⊕

Sparsify

Graph Normalize
Generate Feature Trees
using TDIDT Rules and
Boosting Framework

Feature Trees

1()q X 2 ()q X 3 ()q X

Utilize the Feature
Trees to Initialize a
Feature Selection
Vector

Tree-based
Feature Graph
Transformation

Update using X 𝐀𝐀𝐅𝐅

⊙
…
…

… … . . . … …

…
…

1 α

legend

Legend
Data Flow

⊕ Concatenate
Operator

⊙ Element-Wise
Product

Sample Node

Feature Node

Back Propagation

CGNN
Sub-module One (Algorithm 2)

Sam
ple G

raph
Neural Network

C-graph Transformation Operation (Algorithm 1)

Input

… …

…

Sub-module Two
…

Sub-module R…

Output

Update

Predicted as Class 2

Predicted as Class 1

Predicted as Class 3

Direct Relation-
ship Features

Indirect Relation-
ship Features

Fig. 1. A toy example of CGNN with R submodules for a three-class classification of input X ∈ R10×16. Each blue dotted box denotes a submodule, and
there are R blue dotted boxes in total. Y̊ ∈ R10×3 denotes the pseudo labels generated from the training labels. X̆ denotes the node embeddings obtained
by learning the composite graph (C-graph) defined in Definition 1. In our method, the C-graph AG = {AS,AF} and the parameters of the neural network
are jointly learned. In the C-graph AG , AS and AF depend on each other in the update process. The proposed C-graph Transformation Operation takes X,
AG = {AS,AF} and α̃ as input, and outputs X̆. Best viewed in color.

and the obtained node embeddings are further input to a fully
connected hidden layer. This process is given by

X(1) = σ (Cgto (X,AG , α̃) Θ1) , (1)

where Cgto(·, ·, ·) is the C-graph transformation operation
over AG , Θ1 is a trainable F ×H matrix where H denotes
the number of features of the first hidden layer, and X(1) is
the output of the first hidden layer. The Cgto can not only
enhance the feature weight by extracting information between
neighbors but also can highlight the important features. The
pseudocode of Cgto is shown in Algorithm 1. In line 6 of
Algorithm 1, X is normalized to X̃ by AS and DS. From
line 7 to line 16, X̃ is further updated using AF. It is worth
noting that in line 17, the important features will be assigned
larger weights by α̃ in the training process, which will be
illustrated in Section III-C2 in details.

Next, we use a generalized GCN layer to update X(1) and
obtain

X(2) = σ
(
D
− 1

2

S (AS + I)D
− 1

2

S X(1)Θ2

)
, (2)

where Θ2 is a trainable H × C matrix. Different from the
GCN [12] that uses a fixed graph in the training process,
in formula (2), the adjacency matrix of the samples AS are
trained together with Θ2.

Finally, we use a softmax function to process X(2) and
obtain

X(3) = Softmax
(
X(2)

)
. (3)

In our method, (1), (2), and (3) are jointly regarded as a
submodule of CGNN. CGNN uses multiple submodules to
learn multiple C-graphs from different aspects and thus can
adapt to the case where the relations of samples and features
are influenced by multiple factors.

We use R submodules and for each r ∈ {1, 2, . . . , R}, the
loss function of submodule r is given by

Lr = `(Y,X(3)). (4)

Note that the submodule index r is omitted in X(3).

5

Then the loss function of CGNN is

L(θ) =
1

R

R∑
r=1

Lr + Ω(θ), (5)

where R is the number of submodules, Ω is a regularizer and
θ denotes the set of trainable parameters.

Algorithm 1: C-graph Transformation Operation
Input : X, AG = {AS,AF}, α̃
Output: the transformed X

1 Initialize the three hyperparameters wC , wD, and wI ;
2 Initialize DS ∈ RN×N as a zero matrix;
3 for each n ∈ {1, 2, . . . , N} do

4 DS[n, n] = 1 +
n∑

p=1
AS[n, p];

5 end
6 X̃ = D

− 1
2

S (AS + I)D
− 1

2

S X;
7 for each feature f̃i in X̃ do
8 f̃i = wC f̃i;
9 for each f ∈ {1, 2, . . . , F} do

10 if AF[i, f] = 2 then
11 f̃i = f̃i + wD f̃f ;
12 else if AF[i, f] = 1 then
13 f̃i = f̃i + wI f̃f ;
14 end
15 end
16 end
17 X̆ = 1>α̃� X̃;
18 return X̆;

C. Learning the C-graph

In our model, C-graphs are used for node embeddings and
the proposed C-graph framework considers both the relation-
ship between samples and the relationship between features.
In this section, we first introduce how to learn the sample
graph AS and the tree-based feature graph AF. Moreover,
we introduce how AS and AF depend on each other in the
learning process.

1) Learning Sample Relations: In this section, we propose
the method to learn the adjacency matrix of the sample graph
AS. We consider the known class label as an important feature
to learn the sample graph. We first construct pseudo labels
Y̊ = [̊y1, ẙ2, . . . , ẙN]> using the training labels by

ẙn =

{
yn if yn is a training label
0 otherwise

, (6)

where n ∈ {1, 2, . . . , N}, and 0 denotes the C-dimensional
zero vector. Then, we concatenate xn and ẙn, and obtain

zn = Concatenate (xn, ẙn) , (7)

where Concatenate(·, ·) denotes the concatenation operation.
It should be noted that, the test labels are all-zero vectors
in the train and test process. Besides, as pointed out in the
literature [48], noisy features can hinder the model training

process. Hence, a trainable vector α is utilized to diminish
the noisy features, which is given by

z̃n = zn �α. (8)

We regard α as a feature improvement operator. The ef-
fectiveness of this simple operator is also shown in [49].
Different from most feature selection methods, α is trained
mainly to assign different weights to different features rather
than reduce the feature dimension. In other words, at the end
of the training process, the smaller values of α will indicate
the noisy dimensions of features. Given that α is initialized
randomly, different α can have different values and focus on
different features in different submodules. From (8), a new
matrix Z̃ = [z̃1, z̃2, . . . , z̃N]> can be obtained and then we
compute the relationship matrix R̃ using Z̃:

R̃ = Z̃Z̃>. (9)

Next, we find the top η values in each row of R̃, and set the
others to 0 to sparsify R̃. The sparsified R̃ is regarded as the
AS.

2) Learning Feature Relations: In this section, the method
to learn the tree-based feature graph (i.e., AF) is presented.
We decompose the learning of a tree-based feature graph into
the learning of multiple binary decision trees. There are three
main advantages of using binary decision trees: (i) features
used to construct a tree are more closely related to each other
than the unused features [31]; (ii) the hierarchy of features in
a tree reflects their informativeness and the features closer to
the root are more important [30]; and (iii) the binary decision
tree structure is easy to implement and has high computational
efficiency [50]. Take Fig. 2 as an example. We first learn three
binary trees (see Fig. 2 (a)) and then turn them into the tree-
based feature graph (see Fig. 2 (b)). The specific tree-based
feature graph transformation method is as follows. First, we
define two kinds of relationships: the direct relationship and
the indirect relationship. The direct relationship is between
each pair of directly connected nodes (e.g., the relationship
between f11 and f16 in Fig. 2 (a)) and the indirect relationship
is between each pair of nodes that belong to the same branch
of the tree but are not directly connected (e.g., the relationship
between f11 and f10 in Fig. 2 (a)).

Second, we assume that direct relationships represent
stronger influence than indirect relationships and use 0, 1, and
2 to denote no relationship, an indirect relationship, and a
direct relationship between each pair of features, respectively.
Then we connect all the related features by finding all the
direct and indirect relationships in the tree (see the transfor-
mation from Fig. 3 (a) to Fig. 3 (b)). Similarly, for multiple
binary trees in Fig. 2, the same nodes and edges generated
by each tree are merged. The adjacency matrix of the merged
graph with values from {0, 1, 2} is the tree-based feature graph
AF that we want to learn.

In this paper, multiple trees are employed to learn the
tree-based feature graph since a very deep tree will be
generated when the number of features is becoming larger.
Thus, in our learning process, ensemble learning methods are
considered [51] to generate multiple binary trees to express
the relationship between many features with the purpose of

6

f1

f5 f9

f14f6 f8

f2

f4 f6

f1f13

f11

f16 f12

f10f3

(a) (b)

f6 f2 f4 f10

f1 f9 f13 f12

f5 f14 f3 f11

f7 f8 f15 f16

Fig. 2. An example of constructing a tree-based feature graph of 16 features from multiple binary trees. The red lines and the blue lines indicate the direct
relationships and the indirect relationships, respectively.

constructing the tree-based feature graph. The main advantage
of ensemble learning is that it can combine many weak models
into a strong model, so each generated tree can be relatively
simple. We use the boosting framework in ensemble learning
to generate multiple trees and these trees are all finally merged
into one graph. Here the boosting framework is used due to the
following reason: In the boosting framework, the generation
of the latter tree depends on the information of the former
tree [52], and thus the trees generated in the framework of
boosting have stronger correlation with each other than other
frameworks in ensemble learning.

f11

f16 f12

f10f3

（a） （b）

f3 f11

f16

f10 f12

f11

f16 f12

f10f3

(a) (b)

f3 f11

f16

f10 f12

Fig. 3. An example of constructing a tree-based feature graph from a binary
tree. The red lines and the blue lines indicate the direct relationships and the
indirect relationships, respectively.

Specifically, we build trees according to the Top-Down
Induction of Decision Trees (TDIDT) method [53], which
splits the features of X̃ = D

− 1
2

S (AS + I)D
− 1

2

S X recursively,
creates the successor children by searching the greatest gain
value to the predictions, and stops when the gain value does
not increase. For X̃ = [x̃1, x̃2, . . . , x̃N]>, our method builds
trees by minimizing `(Y, Ỹ), where Ỹ = [ỹ1, ỹ2, . . . , ỹN]>

is the prediction results of the feature trees, and each element
ỹn ∈ RC . We train the trees in an additive manner. Suppose
that T is the total number of iterations for training trees; then,
we build CT trees in total because C trees are generated
in each iteration by minimizing `(Y, Ỹ). Thus, minimizing

`(Y, Ỹ) is equivalent to minimize

`(T)
(
Y, Ỹ(T)

)
=

N∑
n=1

l
(
yn, ỹ

(T)
n

)
=

N∑
n=1

l

(
yn,

(
ỹ(T)
n [c]

)C
c=1

), (10)

where `(T)(Y, Ỹ(T)) and Ỹ(T) = [ỹ
(T)
1 , ỹ

(T)
2 , . . . , ỹ

(T)
N]> are

the loss function value and the prediction results, respectively,
and l denotes a differentiable function that measures the
difference between the target yn and the prediction ỹ

(T)
n .

Let B(T)[c] be the c-th tree (c ∈ {1, 2, . . . , C}) generated
at the finial iteration. Next, we take the process of generating
B(T)[c] as an example to introduce our approach to building
feature trees. At the T -th iteration, for each n ∈ {1, 2, . . . , N},
ỹ
(T)
n [c] is computed by

ỹ(T)
n [c] = ỹ(T−1)

n [c] +B(T)[c] (x̃n) (11)

= ỹ(T−1)
n [c] +

M(T)[c]∑
m=1

b(T)
m [c]1

(
x̃n ∈ B(T)

m [c]
)
,

where B(T)[c](x̃n) denotes the value of using B(T)[c] to
predict x̃n as the c-th class, M (T)[c] denotes the total number
of leaves in B(T)[c], B(T)

m [c] and b
(T)
m [c] denote the m-th

leaf of B(T)[c] and the value of B(T)
m [c], respectively, and

1(·) denotes the indicator function. Notably, ỹ
(0)
n [c] = 0

for n ∈ {1, 2, . . . , N} and c ∈ {1, 2, . . . , C}. We use sec-
ond–order approximation [54] to optimize (11) and compute
the optimal b

(T)
m [c]. Then we further rewrite (10) as the

following regularized objective.

`(T)
(
Y, Ỹ(T)

)
+

C∑
c=1

Ω(B(T)[c])

=

N∑
n=1

l
(
yn, ỹ

(T−1)
n + B(T) (x̃n)

)
+

C∑
c=1

Ω(B(T)[c])

'
N∑

n=1

l (yn, ỹ
(T−1)
n

)
+

C∑
c=1

∂l
(
yn, ỹ

(T−1)
n

)
∂ỹ

(T−1)
n [c]

B(T)[c]

(12)

7

+
1

2

C∑
c1=1

C∑
c2=1

∂2l
(
yn, ỹ

(T−1)
n

)
∂ỹ

(T−1)
n [c1]ỹ

(T−1)
n [c2]

B(T)[c1]B(T)[c2]

+

C∑
c=1

Ω(B(T)[c]),

where Ω(B(T)[c]) denotes the regularizer on the leaves of
B(T)[c] and B(T) (x̃n) denotes a C-dimension vector con-
sisting of B(T)[1](x̃n), B(T)[2](x̃n), . . ., B(T)[C](x̃n). Since
B(T)[c] (x̃n) =

∑M(T)[c]
m=1 b

(T)
m [c]1

(
x̃n ∈ B(T)

m [c]
)

, we then

substitute
∑M(T)[c]

m=1 b
(T)
m [c]1

(
x̃n ∈ B(T)

m [c]
)

into (12) and
transform it into an optimization problem with respect to
b
(T)
m [c]. Therefore, we can train B(T)[c] by optimizing b(T)

m [c].
As for how to set and split the nodes of B(T)[c], there are
many good algorithms proposed in past literatures, such as
greedy top-down approach [55], multiple classification rank
method [56] and candidate node split finding approximate
algorithm [57]. Since the main contribution of this paper is
not to improve the node splitting of decision trees, we choose
loss reduction as gain value and use the candidate node split
finding approximate algorithm to conduct node selection and
splitting of B(T)[c] after considering a trade-off between the
computational efficiency and practical effect.

3) Dependencies between AS and AF in the Learning
Process: We have presented the methods to learn AS and AF.
In the following, we will show how AS and AF depend on
each other in the learning process. The feature enhancement
in learning AS can help the learning of binary trees when
learning AF. The operator α in AS can enhance the impor-
tant features through continuous optimization. The enhanced
features can further help AF construct the ensemble trees with
nodes being features. Recall that in training AS, α is randomly
initialized with different values to ensure learning different AS

in different submodules, which can increase the diversity of
trees in AF.

Sample graph and feature graph are jointly used to generate
the node embeddings. Firstly, X̃ is computed using AS (see
Section III-C2). Then for each i ∈ {1, 2, . . . , F}, we further
update each feature (i.e., column vector) f̃i in X̃ using the
learned AF, which is given by

f̃i =
∑
j∈J

wD f̃j +
∑
k∈K

wI f̃k + wC f̃i, (13)

where J and K represent the index sets of features having
indirect and direct relations with f̃i, respectively, and wD, wI ,
wC are three hyperparameters denoting the weight of the direct
relationship, the weight of the indirect relationship, and the
weight of the self-relations, respectively. Next, we perform
feature selection on the updated X̃ = [f̃1, f̃2, . . . , f̃F] by using
a new trainable row vector α̃.

X̆ = 1>α̃� X̃, (14)

where 1> is the N -dimensional all-one column vector and α̃
is initialized with feature importance values, namely α̃[i] =
exp (vi). Here exp(·) denotes the exponential function, and
vi ∈ [0, 1] is the importance value of f̃i. Notably, {vi}Fi=1 are
obtained in the process of building trees in learning AF.

The obtained X̆ is further updated in (2) using AS.

D. Model Training and Pseudocode of CGNN

It is worth noting that the C-graph transformation operation
in (1) is non-differentiable for AF. Thus, the three variables
AF, θ and AS share the optimization objective, but have
different update method. Specifically, we use ensemble tree
model to update AF, as shown in (11)-(12). It can be seen
that in formulas (1)-(5) the loss function is differentiable with
respect to θ and AS, and thus we use error back-propagation
to update these two variables.

The pseudocode of CGNN with one submodule is given in
Algorithm 2.

Algorithm 2: CGNN (one submodule)

1 Input: X, Y;
2 Output: Best learned C-graph A∗G and the values of

parameters α∗, α̃∗ and θ∗;
3 Initialize parameters: α, α̃, θ = {Θ1,Θ2};
4 Initialize hyperparameters;
5 while Stopping condition is not met do
6 Substitute X, Y and α into (6)-(9) to compute the

sample graph AS;
7 Use AS to obtain DS;

8 X̃← D
− 1

2

S (AS + I)D
− 1

2

S X;
9 Use X̃ and (11)-(12) to compute the trees of

features and obtain the tree-based feature graph
AF;

10 Initialize α̃ using AF;
11 Generate AG using AS and AF;
12 while Inner objective decreases do
13 Substitute X, AG , α̃, θ, Y into (1)-(5) to

compute L(θ);
14 Update α, α̃, θ by using L(θ);
15 end
16 end
17 Denote the last iteration values of α, α̃, and θ as α∗,

α̃∗ and θ∗, respectively;
18 Substitute X, Y and α∗ into (6)-(9) to compute the

best sample graph A∗S;
19 Use A∗S to obtain D∗S;

20 X̃∗ ← D
∗− 1

2

S (A∗S + I)D
∗− 1

2

S X;
21 Use X̃∗ and (11)-(12) to compute the trees of features

and obtain the best tree-based feature graph A∗F;
22 Generate A∗G using A∗S and A∗F;
23 return A∗G , α∗, α̃∗ and θ∗.

IV. EXPERIMENTS

In the experiments, we use 28 baseline methods and eight
datasets to evaluate the performance of our model. We evaluate
CGNN on node classification problems. Our experiments are
conducted mainly to answer the following questions:
Q1 Does CGNN have better performance than other baseline

methods in semi-supervised node classification problems
when graphs are unknown?

8

TABLE II
DETAILS OF THE EXPERIMENTAL DATASETS. “NO” INDICATES THAT THE SAMPLE GRAPH IS UNKNOWN IN THIS DATASET.

Dataset # Samples # Features # Sample Graph Edges # Classes Train / Val / Test Type

Wine 178 13 No 3 10 / 20 / 158 Chemical
Cancer 569 30 No 2 10 / 20 / 539 Medical
Digits 1,797 64 No 10 50 / 100 / 1,647 Image
20news 9,607 236 No 10 100 / 200 / 9,307 News
FMA 7,994 140 No 8 160 / 320 / 7,514 Music
Citeseer 3,327 3,703 4,732 6 120 / 500 / 1,000 Citation
Cora 2,708 1,433 5,429 7 140 / 500 / 1,000 Citation
Pubmed 19,717 500 44,338 3 60 / 500 / 1,000 Citation
ogbn-arxiv 169,343 128 1,166,243 40 90,941 / 29,799 / 48,603 Citation

Q2 Will CGNN perform worse if the C-graph is replaced by
a sample graph or a feature graph?

Q3 Is the proposed tree-based feature graph better than the
feature graph based on pairwise similarity?

Q4 Does CGNN have stable performance for the three pro-
posed hyperparameters WC , WD, and WI?

Q5 CGNN can learn multiple C-graphs using multiple sub-
modules, but do multiple C-graphs really improve perfor-
mance?

Q6 What is the relationship between the number of submod-
ules and the time and space consumption of CGNN?

Q7 Does jointly learning graph structures and parameters
improve the classification performance of our proposed
CGNN when the structure of sample graph is known?

Q8 Does CGNN have the scalability to be applied in large
datasets?

A. Details of Experiments

Datasets Settings. In the experiments, we use eight bench-
mark datasets to evaluate the performance of CGNN. The
datasets include three frequently utilized citation network
datasets in GNNs such as Citeseer [58], Cora [59], and
Pubmed [60], a music genre classification dataset FMA [61],
and four classic datasets from scikit-learn [62]: Wine, Cancer,
Digits and 20news. These datasets are commonly used to
evaluate graph learning methods [19]. In addition, ogbn-
arxiv [63] is used in our experiments to evaluate the scalability
and performance of CGNN in large graph applications. We use
the same dataset split of previous work [19], [64]. Details of
the above datasets are given in Table II.

Experimental Settings. For the sake of fair comparisons,
the hyperparameters of baselines are selected according to
the original implementations of the authors. Specifically, we
tune hyperparameters using validation datasets and select their
values through the validation loss and accuracy. The values of
main hyperparameters are given in Table III. In our method,
the activation function σ is set as the ReLU function, the
function ` is set as the cross-entropy error function, and the
optimizer is set as AdaMax [65].

Experimental Environment. We use Python 3.7, TensorFlow
2.0, and XGBoost [57] to implement our method1, and we run
all the codes on a Hewlett-Packard server with 4 × NVIDIA

1Codes is available at https://github.com/Peter7777777/CGNN.

Quadro RTX 6000 24GB GPUs, 4 × Intel Xeon Gold 5210
CPUs, 16 × 32GB DDR4 RAM, and 5 × 2TB hard disks.

B. The Performance of CGNN without Knowing Graphs in
Advance (Q1)

CGNN tries to solve the semi-supervised node classification
problem when graph structures are completely unknown. In
this case, we compare CGNN with 14 baseline methods
including:

a Four classical machine learning algorithms: logis-
tic regression (LogReg), feed-forward neural networks
(FFNN), and support vector machines (Linear SVM and
RBF SVM).

b Two ensemble learning methods: random forests
(RF) [66], and eXtreme Gradient Boosting (XGB) [57]
which is the basis of constructing ensemble trees in our
model.

c Three popular semi-supervised learning methods:
label propagation (LP) [67], manifold regularization
(ManiReg) [68], and semi-supervised embedding
(SemiEmb) [32]. ManiReg and SemiEmb are provided
with a kNN sample graph for graph Laplacian
regularization.

d Seven GNN methods: Sparse-GCN, Dense-GCN, RBF-
GCN, kNN-GCN, kNN-GAT, kNN-AdaGCN and kNN-
LDS. Sparse-GCN creates a sparse Erdös-Rényi random
sample graph, Dense-GCN creates a dense sample graph
with equal edge probabilities, and RBF-GCN creates
a dense RBF kernel sample graph. kNN-GCN, kNN-
GAT, kNN-AdaGCN and kNN-LDS create a kNN sample
graph.

To ensure the fair comparison with baseline methods, we
adopt the same dataset preprocessing and splitting way as that
in kNN-LDS [19]. Table IV shows the comparative experiment
results of CGNN and the baseline methods. In terms of
classification accuracy, we can observe that CGNN achieves
the highest node classification accuracies than other methods
on all datasets except Digits. CGNN underperforms kNN-
GAT on the Digits dataset because every neighbor in the C-
graph has the same importance, while kNN-GAT considers the
importance of each neighbor utilizing an attention mechanism
to assign different weights to nodes, which helps kNN-GAT
learn better embeddings than CGNN on Digits. Comparing
CGNN with kNN-LDS, we can find that CGNN can achieve

9

TABLE III
VALUES OF MAIN HYPERPARAMETERS.

Hyperparameters Wine Cancer Digits Citeseer Cora 20news FMA Pubmed ogbn-arxiv
Learning rate 0.01 0.01 0.1 0.01 0.01 0.01 0.01 0.1 0.01
Number of epochs 800 700 800 800 800 800 1000 700 800
η (in Section III-C1) 50 85 30 12 12 12 12 12 10
wC (in Section III-C3) 1.2 1 1.2 1.3 1.3 1.3 1.2 1.5 1.5
wD (in Section III-C3) 1.1 0.8 0.02 1.1 1.1 1.1 0.2 0.2 0.02
wI (in Section III-C3) 1 0.5 0.01 0.9 0.9 0.9 0.1 0.1 0.01

Number of trees for each class 100
Max depth of each tree 5
Default number of submodules 3
Features of the first hidden layer 64
L2 Regularizer parameter 5.00E-05
Dropout rate 0.5

TABLE IV
THE PERCENTAGE OF THE AVERAGE ACCURACY (± STANDARD DEVIATION) WITHOUT GRAPH STRUCTURE AS INPUT, AND WE FUSE THREE

SUBMODULES IN CGNN FOR REPORT ITS RESULTS. EACH RESULT OF CGNN IS REPORTED BASED ON 30 MONTE CARLO EXPERIMENTS. THE TOP
THREE RESULTS ARE IN BOLD, AND CGNN ACHIEVES THE BEST RESULTS ON ALL THE DATASETS.

Method Wine Cancer Digits Citeseer Cora 20news FMA
LogReg 92.1 (1.3) 93.3 (0.5) 85.5 (1.5) 62.2 (0.0) 60.8 (0.0) 42.7 (1.7) 37.3 (0.7)
Linear SVM 93.9 (1.6) 90.6 (4.5) 87.1 (1.8) 58.3 (0.0) 58.9 (0.0) 40.3 (1.4) 35.7 (1.5)
RBF SVM 94.1 (2.9) 91.7 (3.1) 86.9 (3.2) 60.2 (0.0) 59.7 (0.0) 41.0 (1.1) 38.3 (1.0)
FFNN 89.7 (1.9) 92.9 (1.2) 36.3 (10.3) 56.7 (1.7) 56.1 (1.6) 38.6 (1.4) 33.2 (1.3)
RF 93.7 (1.6) 92.1 (1.7) 83.1 (2.6) 60.7 (0.7) 58.7 (0.4) 40.0 (1.1) 37.9 (0.6)
XGB 85.1 (0.0) 85.7 (0.0) 64.8 (0.0) 56.6 (0.0) 57.6 (0.0) 38.4 (0.0) 25.9 (0.0)
LP 89.8 (3.7) 76.6 (0.5) 91.9 (3.1) 23.2 (6.7) 37.8 (0.2) 35.3 (0.9) 14.1 (2.1)
ManiReg 90.5 (0.1) 81.8 (0.1) 83.9 (0.1) 67.7 (1.6) 62.3 (0.9) 46.6 (1.5) 34.2 (1.1)
SemiEmb 91.9 (0.1) 89.7 (0.1) 90.9 (0.1) 68.1 (0.1) 63.1 (0.1) 46.9 (0.1) 34.1 (1.9)
Sparse-GCN 63.5 (6.6) 72.5 (2.9) 13.4 (1.5) 33.1 (0.9) 30.6 (2.1) 24.7 (1.2) 23.4 (1.4)
Dense-GCN 90.6 (2.8) 90.5 (2.7) 35.6 (21.8) 58.4 (1.1) 59.1 (0.6) 40.1 (1.5) 34.5 (0.9)
RBF-GCN 90.6 (2.3) 92.6 (2.2) 70.8 (5.5) 58.1 (1.2) 57.1 (1.9) 39.3 (1.4) 33.7 (1.4)
kNN-GCN 93.2 (3.1) 93.8 (1.4) 91.3 (0.5) 68.3 (1.3) 66.5 (0.4) 41.3 (0.6) 37.8 (0.9)
kNN-GAT 97.3 (0.1) 93.1 (0.1) 93.4 (0.1) 69.3 (1.1) 65.7 (0.4) 41.3 (0.7) 38.8 (0.2)
kNN-AdaGCN 97.8 (0.5) 94.1 (2.7) 91.9 (3.6) 59.0 (0.6) 58.1 (2.0) 48.5 (1.4) 38.6 (0.5)
kNN-LDS 97.3 (0.4) 94.4 (1.9) 92.5 (0.7) 71.5 (1.1) 71.5 (0.8) 46.4 (1.6) 39.7 (1.4)
SCRL 93.9 (2.1) 92.2 (0.3) 89.5 (1.3) 66.2 (2.7) 65.7 (2.2) 40.3 (1.9) 38.9 (1.7)
SPGRL 97.7 (0.3) 94.0 (0.2) 92.6 (0.4) 69.0 (1.3) 68.9 (0.9) 42.4 (0.6) 37.4 (0.4)
CGNN 98.0 (0.1) 94.5 (0.1) 92.7 (0.4) 73.6 (0.3) 73.4 (0.4) 50.2 (0.6) 40.5 (0.2)

2% higher accuracies than kNN-LDS on Citeseer and Cora,
and about 4% higher than kNN-LDS on 20news. CGNN
also outperforms kNN-AdaGCN by a significant margin on
Citeseer and Cora. CGNN outperforms baseline methods since
it captures and utilizes the relationships between features by
learning C-graphs. The comparison between CGNN and the
ensemble learning algorithms RF and XGB also shows that
although CGNN uses the same scheme as XGB to implement
the ensemble tree models, the performance of CGNN is much
higher than that of XGB. This result further highlights the
importance of learning C-graphs. As for the standard deviation,
the experimental results of CGNN on all the datasets are also
significantly lower than those of other GNN baseline methods.
We also give a visualization result of the learned C-graph in
Fig. 4 and visualization results of α and α̃ in Fig. 5.

We conduct some experiments to show the robustness of
CGNN and the results are shown in Table V. We add random
noises on the original dataset. The noises are randomly
sampled from a uniform distribution over the interval [0, 0.2],
and the proportion of features that are added noises is given
in the first column of Table V. From Table V, we can find
that when the noise ratio reaches 10%, the performance of

our algorithm is still better than that of kNN-LDS. When
the ratio reaches 20%, the performance of our algorithm
is still close to the performance of kNN-LDS on clean
datasets. When the noise ratio is 50%, the performance of
our algorithm decreases on Cora, Citeseer and 20news, but
in general, are still comparable to the performance of other
baselines on clean datasets. The average node classification
results on several datasets (e.g., Wine, Cancer, and Digits)
do not change because these datasets are relatively simple,
within a certain degree of noise ratio. After reducing the
impact of noises through the proposed trainable vector α,
the sample graph learned after adding noises is high-quality.
Moreover, the features used to generate trees are first filtered
by α, which helps find valuable features in noisy data.
Furthermore, the trees are constructed by minimizing the
classification loss, which ensures the features selected for
data splitting are essential for the target classification task
and high-quality feature trees. Consequently, our model gets
high-quality C-graphs, equivalent to the C-graphs we are
learning from these datasets when we do not add noises.

10

Fig. 4. The C-graph learned on the Cora dataset when our method has one submodule. The graph in the red box is the sample graph. In the sample graph,
the classes of the black nodes are unknown, the other nodes use different colors to represent their classes, and each grey line is an edge between two samples.
The graph in the blue box is a tree-based feature graph. For the convenience of observation, we do not show the feature nodes without direct or indirect
relations to other feature nodes. The pink nodes are features in the tree-based feature graph, and the red and blue edges are the direct and indirect relations
between features, respectively.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

 (a)

1.40 1.63 0.55 0.45 0.54 0.70 0.48 0.46 0.39 0.32 0.55 0.38 0.55 0.49 0.53 0.52 0.63 0.42 0.54 0.55 0.50 0.49 0.54 0.43 0.46 0.70 0.45 0.38 0.35 0.32 0.52 0.45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

 (b)

2.01 1.14 1.50 1.53 1.10 1.54 1.42 1.56 1.20 2.95 1.34 1.48 1.44 1.34 2.09 1.25 1.35 1.32 1.97 1.40 1.59 1.27 1.66 1.48 1.18 1.34 1.41 1.61 1.34 1.30

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
color scale

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
color scale

(a) α

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

 (a)

1.40 1.63 0.55 0.45 0.54 0.70 0.48 0.46 0.39 0.32 0.55 0.38 0.55 0.49 0.53 0.52 0.63 0.42 0.54 0.55 0.50 0.49 0.54 0.43 0.46 0.70 0.45 0.38 0.35 0.32 0.52 0.45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

 (b)

2.01 1.14 1.50 1.53 1.10 1.54 1.42 1.56 1.20 2.95 1.34 1.48 1.44 1.34 2.09 1.25 1.35 1.32 1.97 1.40 1.59 1.27 1.66 1.48 1.18 1.34 1.41 1.61 1.34 1.30

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
color scale

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
color scale

(b) α̃

Fig. 5. Heatmap visualization results of α and α̃ on the Cancer dataset when our method uses one submodule. The scale value in the horizontal direction
represents the feature number. Recall that α ∈ RF+C and α̃ ∈ RF , so α is longer than α̃.

TABLE V
AVERAGE NODE CLASSIFICATION ACCURACY (%) OF CGNN IN THE

ROBUSTNESS EXPERIMENTS. THE FIRST COLUMN INDICATES THE
PROPORTION OF FEATURES THAT ARE ADDED NOISES.

Noise Wine Cancer Digits Citeseer Cora 20news FMA
1% 98.0 94.5 92.6 73.2 73.1 49.3 40.5
2% 98.0 94.5 92.6 72.9 73.1 49.2 40.5
5% 98.0 94.5 92.6 72.5 72.9 48.2 40.5
10% 98.0 94.5 92.6 72.5 72.5 46.5 40.4
20% 98.0 94.2 92.6 71.7 71.1 44.3 40.4
50% 98.0 94.1 92.4 70.6 70.1 38.7 40.3

C. Ablation Study (Q2, Q3)

Our proposed CGNN has two key components to learning
C-graphs: learning sample graphs and learning tree-based
feature graphs. In this section, we validate their impacts on the
performance via ablation experiments. We detail the variants
of CGNN as follows:

• SGNN: SGNN (sample graph neural network) only learns
the sample graphs and uses them to replace the C-graphs
in CGNN. In other words, SGNN is equivalent to CGNN
without learning the tree-based feature graphs.

• FGNN: FGNN (tree-based feature graph neural network)

11

is the method that only learns the feature graphs. Notably,
FGNN uses the tree-based feature graphs generated in
the final iteration and the sample graphs generated in
the first iteration to conduct node classification. FGNN
requires sample graphs since learning feature graphs and
solving node classification depend on sample relations in
our approach. Using the sample graphs generated at the
initial iteration facilitates us to compare the difference
between learning C-graphs and only learning tree-based
feature graphs without learning the sample graphs.

9
6

.7

9
4

.1

9
2

.3

6
9

.9

6
8

.2

3
9 4
0

9
8

.0

9
3

.8

9
1

.3

7
3

.1

7
3

4
7

.8

3
9

.1

9
8

.0

9
4

.5

9
2

.7

7
3

.6

7
3

.4

5
0

.2

4
0

.5
0

20

40

60

80

100

Wine Cancer Digi ts Citeseer Cora 20news FMA

A
c
c

(%
)

SGNN FGNN CGNN

Fig. 6. Comparison of the percentage of the average node classification
accuracy (Acc) of CGNN and its two variants, SGNN and FGNN. SGNN
denotes only learning the sample graphs in CGNN. FGNN denotes only
learning the feature graphs in CGNN.

The results of the ablation experiments are given in Fig. 6.
From the node classification accuracies in Fig. 6, we see that
CGNN outperforms SGNN and FGNN. In general, the results
imply that both learning sample graphs and tree-based feature
graphs are conducive to the model performance. It is worth
noting that although the results of SGNN or FGNN are close to
those of CGNN sometimes on some datasets, the performance
of CGNN is much better than its two variants on 20news. The
main reason is that only learning sample relations or feature
relations are unable to get satisfactory embeddings for the
downstream neural network to classify nodes nicely on the
dataset. Therefore, both the sample graph and the tree-based
feature graph are important in graph node embedding.

We also compare CGNN with its two another variants:
• CGNN-S: CGNN-S (composite graph neural network

with a simple fully connected layer) only uses a simple
fully connected layer to learn the embeddings for classi-
fication.

• CGNN-M: CGNN-M (composite graph neural network
with multiple layers) uses multiple hidden layers to learn
the embeddings for classification.

The main difference between CGNN, CGNN-S, and CGNN-
M is the number of network layers. The neural network in
CGNN has two hidden layers. Fig. 7 gives the comparison
results between the three methods, and we set the hidden
layer number as five to report the results of CGNN-M. From
Fig. 7, we observe that CGNN has the best performance,
which means two hidden layers are most appropriate for the
current CGNN. However, since the results of CGNN-M on
several datasets (e.g., Citeseer, Cora, and 20news) are inferior
to that of CGNN, this indicates that CGNN also exists the
limitation of over-smoothing, i.e., with the number of layers

increasing, the representations of nodes in CGNN become
indistinguishable. Thus, we think it’s significant future work
to design an improved CGNN that not only jointly learns the
C-graph and neural network parameters but also deals with
the problem of over-smoothing.

9
7

.0

9
4

.4

9
2

.1

7
2

.9

7
1

.6

4
7

.4

3
9

.8

9
7

.2

9
4

.2

9
2

.2

7
1

.5

7
1

.9

4
7

.7

4
0

.4

9
8

.0

9
4

.5

9
2

.7

7
3

.6

7
3

.4

5
0

.2

4
0

.5

0

20

40

60

80

100

Wine Cancer Digi ts Citeseer Cora 20news FMA

A
c
c

(%
)

CGNN-S CGNN-M CGNN

Fig. 7. Comparison of the percentage of the average node classification
accuracy (Acc) of CGNN and its another two variants, CGNN-S and CGNN-
M. Difference from CGNN, which uses two hidden layers to learn the
embeddings for classification, CGNN-S uses a simple fully connected layer,
and CGNN-M uses multiple hidden layers to learn the embeddings for
classification. The hidden layers number of CGNN-M is set as five to report
the results.

To further compare the difference between our proposed
tree-based feature graph and pairwise similarity-based fea-
ture graph, we propose T-EmbNN (tree-based feature graph
embedding neural network). T-EmbNN is an extremely sim-
plified variant method of CGNN, which only uses tree-based
feature graphs to conduct node classification. Specifically, we
use X̃ = X to replace X̃ = D

− 1
2

S (AS+I)D
− 1

2

S X in (11)-(12)
and Algorithm 1, and we use X(2) = σ

(
X(1)Θ2

)
to replace

X(2) = σ
(
D
− 1

2

S (AS + I)D
− 1

2

S X(1)Θ2

)
in (2). In order to

control variables, the number of submodules of T-EmbNN is
set to one. Then we compare T-EmbNN with two methods
that use pairwise similarity of features to generate a feature
graph. These two methods are denoted as E-EmbNN and C-
EmbNN, and use the popular Euclidean distance and cosine
similarity to measure the similarity between paired features,
respectively. Both E-EmbNN and C-EmbNN use a kNN graph,
k ∈ {2, 3, . . . , 20}, to construct the sparsified feature graph.
In addition to E-EmbNN and C-EmbNN, we also compare
T-EmbNN with a neural network approach that does not use
any graph structures, denoted as NN. NN takes the simple
form: Softmax (σ (σ (XΘ1) Θ2)). In other words, the model
of NN only has an input layer, two hidden fully connected
layers, and an output layer. The results of the comparative
experiments are given in Fig. 8. From Fig. 8, we can observe
that T-EmbNN achieves the best performance in most cases.
It is worth noting that T-EmbNN is significantly superior to
other methods on Citeseer, Cora, and 20news. It can also be
observed that E-EmbNN is not always better than C-EmbNN,
and vice versa. This implies that it is difficult to find a
pairwise feature similarity metric that is appropriate to all these
datasets. Moreover, on some datasets, both the performance
of E-EmbNN and C-EmbNN are even inferior to NN. In this
experiment, T-EmbNN achieves better performance on almost
all the datasets, which demonstrates the importance of learning
feature importance and proper feature combination.

12

91
.8

92
.1

81
.8

54
.1

54
.5

40
.6

33

92
.8

92
.8

76
.6

40

47
.9

32
.1

32
.6

91
.4

92
.3

81
.8

12
.4

29
.7 37

.5

32
.8

92
.3

93
.3

82
.1

58 60
.4

43
.1

34
.9

0

10

20

30

40

50

60

70

80

90

100

Wine Cancer Digits Citeseer Cora 20news FMA

A
cc

 (%
)

NN E-EmbNN C-EmbNN T-EmbNN

Fig. 8. Comparative experiments on the average node classification accuracy
(Acc) of learning tree-based feature graphs. T-EmbNN only learns a tree-based
feature graph, which is an extremely simplified variant method of CGNN.
Both E-EmbNN and C-EmbNN learn a kNN feature graph, and they use
the Euclidean distance and cosine similarity to measure the pairwise feature
similarity, respectively. NN denotes a neural network approach that does not
use any graph structures.

D. Sensitivity Analysis of Hyperparameters (Q4)

In this section, we analyze the three proposed hy-
perparameters, WC , WD, and WI . First, we test them
by setting each of their values via a grid search in
{0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 1.2, 1.5, 2.0}, and fix others
values as given in Table III. We report the average clas-
sification accuracy of ten runs, and the results are shown
in Fig. 9. We find that our model mostly performs better
than the baselines in Table IV. Even if we only look at the
worst results on each dataset, the performance of CGNN still
stays comparable. Furthermore, in order to analyze the sen-
sitivity of the three hyperparameters more comprehensively,
we conduct an experiment by setting all of their values in
{0.01, 0.1, 0.5, 1.0, 2.0} through grid search. Since there are a
total of 125 combinations and three variables are involved, we
choose parallel coordinates to show the experimental results.
We report the average classification accuracy of five runs on
Cancer, and the results are shown in Fig. 10. We observe that
our model has stable performance as the results mostly reach
the fine-tuned accuracy in Table IV.

E. Space and Time Consumption (Q5, Q6)

We consider that CGNN can improve the classification
accuracy by fusing different C-graphs learned in multiple
submodules. We perform experiments to study the impact
of the number of submodules on the classification accuracy
of CGNN. Table VI shows the classification accuracy of
CGNN with varying numbers of submodules when graphs are
unknown. In Table VI, the number in the first column of

TABLE VI
AVERAGE NODE CLASSIFICATION ACCURACY (%) OF CGNN WITH

VARYING NUMBERS OF SUBMODULES WHEN NO GRAPH STRUCTURE IS
PROVIDED AS INPUT. HERE R DENOTES THE NUMBER OF SUBMODULES.

R Wine Cancer Digits Citeseer Cora 20news FMA
1 98.0 94.4 92.5 73.0 73.1 48.5 40.4
2 98.0 94.5 92.6 73.1 73.2 49.9 40.4
3 98.0 94.5 92.7 73.6 73.4 50.2 40.5
4 98.0 94.5 92.8 73.1 73.7 50.3 40.2
5 98.0 94.4 92.6 73.6 73.8 50.7 40.4

0.01 0.02 0.05 0.1 0.2 0.5 1.0 1.2 1.5 2.0
(a)

73.0

73.2

73.4

73.6

73.8

74.0

A
cc

(%
)

WC

WD

WI

(a) Citeseer

0.01 0.02 0.05 0.1 0.2 0.5 1.0 1.2 1.5 2.0
(b)

72.0

72.5

73.0

73.5

74.0

A
cc

(%
)

WC

WD

WI

(b) Cora

0.01 0.02 0.05 0.1 0.2 0.5 1.0 1.2 1.5 2.0
(c)

39.0

39.5

40.0

40.5

41.0

A
cc

(%
)

WC

WD

WI

(c) FMA

Fig. 9. The influence of the hyperparameters, WC , WD and WI , on Citeseer,
Cora and FMA.

WC Acc(%)

0.01

0.5

1

1.5

2

94

94.2

94.4

94.6

94.8

95

0.1
0.01

0.5

1

1.5

2

0.1
0.01

0.5

1

1.5

2

0.1

WD WI

Fig. 10. The influence of the hyperparameters, WC , WD and WI , on Cancer.

13

TABLE VII
BRIEF DESCRIPTIONS OF THE BASELINE METHODS FOR COMPARING WITH CGNN WHEN THE SAMPLE GRAPH IS KNOWN A PRIORI.

Algorithm Description
GIN [69] A GNN method under the neighborhood aggregation framework.
GCN [12] A method aggregates neighbor information with spectral convolutions on graphs.
GAT [13] A method aggregates neighbor information by attention mechanism.
Graphite [45] A latent variable generative model based on variational autoencoding.
BGCN-T [39] A method improves GCN with bilinear interactions between neighbor nodes.
BGAT-T [39] A method improves GAT with bilinear interactions between neighbor nodes.
SGC [70] A simple and efficient GCN-based method.
Shoestring [71] A graph-based method with severely limited labeled data.
APPNP [72] A method utilizes the relationship between GCN and personalized PageRank.
DAGNN [15] A deep adaptive GNN method can capture sample relations from large and adaptive receptive fields.
SelfSAGCN [73] A GCN-based simple and effective self-supervised semantic alignment method.
kNN-LDS [19] A method jointly learns the graph structure of samples and parameters of a neural network.
GCNII [14] A simple and deep GCN-based method via initial residual and identity mapping.
(A+kNN)-GCN [64] A GCN-based method uses the given sample graph and a constructed kNN feature graph.
SimP-GCN [64] A node similarity preserving GCN-based method.
SCRL [74] A self-supervised consensus graph representation learning method.
SPGRL [75] A structure-preserving graph representation learning method.
Ortho-GCN [76] A method improves GCN with orthogonal graph convolutions.
Ortho-GCNII [76] A method improves GCNII with orthogonal graph convolutions.

each row indicates the number of submodules in CGNN. From
Table VI, we see that properly increasing the number of sub-
modules, especially from 1 to 3, can improve the performance
of our method. Thus, after considering the tradeoff between
computation complexity and performance, we choose R = 3
as the default number of submodules in our method. Fig. 11
and Fig. 12 give the results of average running time (second)
and memory (MB) of CGNN under different submodules,
respectively. From Fig. 11 and Fig. 12, we observe that the
time and space consumption of CGNN increase linearly with
the number of submodules in general.

Complexity. The time complexity of learning sample graph
and tree-based feature graph are O(N2) and O(NFTD),
respectively. N and F are the number of samples and features
of the input dataset, respectively; T and D denote the number
of trees and the max depth of each tree, respectively. Thus,
the time complexity of our method is O(N2 + NFTD +
|ES ||EF |U), where U is the number of hidden units in the
network; ES and EF denote the edge number of the learned
sample graph and tree-based feature graph, respectively. The
time complexity of the baseline method kNN-GCN is O(N2+
|ES |U), and other GCN-based baselines have similar time
complexity with kNN-GCN. Our method has higher time
complexity than these methods since it learns and captures
feature relations while others do not.

F. The Performance of CGNN When the Sample Graph Is
Known (Q7)

Our method is proposed mainly for the scenarios where
graph structures are completely inaccessible and noisy. In this
experiment, we will show our method is better than baselines
when graph structures are known a priori. To this end, we
compare our method with many GNNs on datasets with
known graphs. Specifically, we learn the tree-based feature
graph using the known sample graph, and then obtain the C-
graph. We select some recently proposed and state-of-the-art

1 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 5
0

100

200

300

400

500

600

700

800
Ti

m
e

(s
)

Dataset
Wine
Cancer
Digits
Citeseer
Cora
20news
FMA

Fig. 11. Average training time (second) of CGNN when using different
submodules. The horizontal coordinate indicates the number of submodules.

1 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 5

1000

2000

3000

4000

5000

6000

7000

8000

M
em

or
y

(M
B)

Dataset
Wine
Cancer
Digits
Citeseer
Cora
20news
FMA

Fig. 12. Average memory (MB) of CGNN when using different submodules.
The horizontal coordinate indicates the number of submodules.

algorithms for comparative experiments. Brief descriptions of
the baseline methods are given in Table VII.

Table VIII shows the results of CGNN and the baseline
methods. We provide a comparison on each dataset by fol-
lowing the same dataset splitting setup as that in previous

14

works [39], [64], and some reported results of the baseline
methods also come from these publications. From Table VIII,
we observe CGNN achieves the best accuracy on all the three
datasets. The main reason why CGNN performs better than
other baselines is that CGNN learns the tree-based feature
graphs and thus captures and utilizes the beneficial feature
relationships.

TABLE VIII
THE PERCENTAGE OF THE AVERAGE ACCURACY (± STANDARD

DEVIATION) WHEN GRAPH IS PROVIDED AS INPUT. EACH RESULT OF
CGNN IS REPORTED BASED ON 30 MONTE CARLO EXPERIMENTS. THE

TOP THREE RESULTS ARE IN BOLD, AND CGNN ACHIEVES THE BEST
RESULTS ON ALL THE DATASETS.

Method Cora Citeseer Pubmed

GIN 79.7 (0.8) 69.4 (0.6) 78.5 (0.2)
GCN 81.2 (0.4) 71.1 (0.7) 78.5 (1.0)
GAT 83.1 (0.7) 72.5 (0.7) 79.0 (0.3)
Graphite 82.1 (0.1) 71.0 (0.1) 79.3 (0.1)
BGCN-T 82.0 (0.1) 71.9 (0.1) 79.4 (0.1)
BGAT-T 84.2 (0.4) 74.0 (0.3) 79.8 (0.3)
SGC 81.7 (0.6) 71.3 (1.1) 78.9 (1.3)
Shoestring 81.9 (2.1) 69.5 (2.4) 79.7 (4.5)
APPNP 83.3 (0.4) 71.8 (0.9) 80.1 (1.3)
DAGNN 84.4 (0.4) 73.3 (0.7) 80.5 (0.9)
SelfSAGCN 83.8 (0.5) 73.5 (1.2) 80.7 (1.5)
kNN-LDS 84.1 (0.4) 75.0 (0.4) 80.0 (0.5)
GCNII 85.5 (0.5) 73.4 (0.6) 80.2 (0.4)
(A+kNN)-GCN 79.1 (0.7) 71.1 (0.7) 80.8 (0.9)
SimP-GCN 82.8 (0.5) 72.6 (0.7) 81.1 (0.6)
SCRL 72.5 (1.0) 73.6 (1.4) 79.6 (1.1)
SPGRL 81.3 (0.4) 75.1 (1.1) 77.6 (1.0)
Ortho-GCN 82.8 (1.0) 72.3 (1.2) 80.7 (0.5)
Ortho-GCNII 85.6 (0.7) 74.1 (1.1) 81.2 (0.6)
CGNN 86.3 (0.5) 75.7 (0.7) 81.6 (0.7)

G. Scalability of CGNN in Large Dataset Applications (Q8)

We evaluate the performance of our method on eight
datasets with less than 20,000 nodes in both scenarios where
the graph structure is unknown or known. In this section,
we conduct experiments on ogbn-arxiv with 169,343 nodes
to further evaluate the scalability and performance of CGNN
on large datasets. We compare CGNN with baseline methods
on ogbn-arxiv under the same dataset splitting setup as that in
previous works [63], [76]. In Table IX, we give the results

TABLE IX
THE PERCENTAGE OF THE AVERAGE ACCURACY (± STANDARD

DEVIATION) IN THE LARGE GRAPH APPLICATION. EACH RESULT OF
CGNN IS REPORTED BASED ON 30 MONTE CARLO EXPERIMENTS.

Dataset Scenario Method Result

ogbn-arxiv

graph unknown a priori
kNN-GCN 53.5 (0.3)
kNN-GAT 54.2 (0.2)
CGNN 54.9 (0.3)

graph known a priori

GCN 71.3 (0.3)
GAT 71.3 (0.2)
GCNII 71.2 (0.2)
Ortho-GCN 71.3 (0.3)
Ortho-GCNII 71.4 (0.2)
CGNN 72.2 (0.3)

of CGNN and baselines, and the number of hidden layers

is set to two for a fair comparison. From Table IX, we
know that CGNN is applicable to large datasets in scenarios
where graph structure is unknown or known a priori, and
CGNN achieves the best performance in both scenarios. The
results demonstrate that learning the C-graph is vital for graph
learning, especially when graph structure is unknown a priori.

V. CONCLUSION

In this work, we have presented a new Graph Neural
Network method named Composite Graph Neural Network
(CGNN) to solve semi-supervised classification problems. Un-
like other GNN methods, our composite graphs not only char-
acterize sample similarities but also imply feature importance
and combination preference. Furthermore, CGNN can learn
multiple composite graphs (C-graphs) from different aspects.
Each C-graph is obtained by simultaneously optimizing the
graph structure of samples and the tree structure of features,
which ensures robustness. Experiments on multiple datasets
show our model achieves the best performance on almost all
the datasets and is robust to feature noises.

In terms of limitations, just like many GNN meth-
ods face the problem of over-smoothing, there is also an
over-smoothing phenomenon in CGNN. Although the over-
smoothing problem has aroused many concerns recently, the
existing methods are not good enough to help CGNN. The
key reason is that existing approaches do not have opti-
mization schemes for the C-graph. Thus, employing existing
techniques in our framework can not ensure a high-quality C-
graph is obtained by jointly learning the C-graph and neural
network parameters. How to improve CGNN to avoid over-
smoothing deserves further study. Another limitation is that
our method has more time complexity than most baselines
since it learns and captures feature relations while others do
not. Two solutions may be investigated in the future to improve
the computation efficiency: (i) our method learns the sample
graph of the C-graph using all the samples, a node cluster
algorithm proposed in [77] may help our model use a part
of samples to infer the sample graph of all samples quickly;
and (ii) since our model includes many submodules to learn
C-graphs, an approach that can split the training process into
optimizing many subtasks [78] may be involved in our model
to speed up the training process.

REFERENCES

[1] G. Li, M. Müller, B. Ghanem, and V. Koltun, “Training graph neural
networks with 1000 layers,” in Proceedings of the International Confer-
ence on Machine Learning, 2021, pp. 6437–6449.

[2] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: Going beyond euclidean data,” IEEE Signal
Processing Magazine, vol. 34, no. 4, pp. 18–42, 2017.

[3] Y. Yang, Z. Ren, H. Li, C. Zhou, X. Wang, and G. Hua, “Learning
dynamics via graph neural networks for human pose estimation and
tracking,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2021, pp. 8074–8084.

[4] D. Gao, K. Li, R. Wang, S. Shan, and X. Chen, “Multi-modal graph neu-
ral network for joint reasoning on vision and scene text,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2020, pp. 12 743–12 753.

[5] Y. Zhang, X. Yu, Z. Cui, S. Wu, Z. Wen, and L. Wang, “Every doc-
ument owns its structure: Inductive text classification via graph neural
networks,” in Proceedings of the Annual Meeting of the Association for
Computational Linguistics, 2020, pp. 334–339.

15

[6] L. Chen, Y. Zhao, B. Lyu, L. Jin, Z. Chen, S. Zhu, and K. Yu,
“Neural graph matching networks for chinese short text matching,” in
Proceedings of the Annual Meeting of the Association for Computational
Linguistics, 2020, pp. 6152–6158.

[7] W. Kool, H. van Hoof, and M. Welling, “Attention, learn to solve routing
problems!” in Proceedings of the International Conference on Learning
Representations, 2019, pp. 1–25.

[8] L. C. Lamb, A. S. d’Avila Garcez, M. Gori, M. O. R. Prates, P. H. C.
Avelar, and M. Y. Vardi, “Graph neural networks meet neural-symbolic
computing: A survey and perspective,” in Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence, 2020, pp. 4877–4884.

[9] G. Panagopoulos, G. Nikolentzos, and M. Vazirgiannis, “Transfer graph
neural networks for pandemic forecasting,” in Proceedings of the AAAI
Conference on Artificial Intelligence, 2021, pp. 4838–4845.

[10] V. L. Gatta, V. Moscato, M. Postiglione, and G. Sperlì, “An epidemio-
logical neural network exploiting dynamic graph structured data applied
to the COVID-19 outbreak,” IEEE Transactions on Big Data, vol. 7,
no. 1, pp. 45–55, 2021.

[11] Y. Feng, H. You, Z. Zhang, R. Ji, and Y. Gao, “Hypergraph neural net-
works,” in Proceedings of the AAAI Conference on Artificial Intelligence,
2019, pp. 3558–3565.

[12] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proceedings of the International Conference
on Learning Representations, 2017, pp. 1–14.

[13] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Ben-
gio, “Graph attention networks,” in Proceedings of the International
Conference on Learning Representations, 2018, pp. 1–12.

[14] M. Chen, Z. Wei, Z. Huang, B. Ding, and Y. Li, “Simple and deep graph
convolutional networks,” in Proceedings of the International Conference
on Machine Learning, vol. 119, 2020, pp. 1725–1735.

[15] M. Liu, H. Gao, and S. Ji, “Towards deeper graph neural networks,” in
Proceedings of the ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, 2020, pp. 338–348.

[16] X. Wei, L. Xu, B. Cao, and P. S. Yu, “Cross view link prediction by
learning noise-resilient representation consensus,” in Proceedings of the
International Conference of World Wide Web, 2017, pp. 1611–1619.

[17] M. Zhang and Y. Chen, “Weisfeiler-lehman neural machine for link pre-
diction,” in Proceedings of the ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2017, pp. 575–583.

[18] W. Jin, Y. Ma, X. Liu, X. Tang, S. Wang, and J. Tang, “Graph structure
learning for robust graph neural networks,” in Proceedings of the ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, 2020,
pp. 66–74.

[19] L. Franceschi, M. Niepert, M. Pontil, and X. He, “Learning discrete
structures for graph neural networks,” in Proceedings of the International
Conference on Machine Learning, vol. 97, 2019, pp. 1972–1982.

[20] T. Wanyan, A. Vaid, J. K. D. Freitas, S. Somani, R. Miotto, G. N.
Nadkarni, A. Azad, Y. Ding, and B. S. Glicksberg, “Relational learning
improves prediction of mortality in COVID-19 in the intensive care unit,”
IEEE Transactions on Big Data, vol. 7, no. 1, pp. 38–44, 2021.

[21] S. Kim and E. P. Xing, “Tree-guided group lasso for multi-task re-
gression with structured sparsity,” in Proceedings of the International
Conference on Machine Learning, 2010, pp. 543–550.

[22] J. Wang and J. Ye, “Multi-layer feature reduction for tree structured
group lasso via hierarchical projection,” in Proceedings of the Annual
Conference on Neural Information Processing Systems, 2015, pp. 1279–
1287.

[23] T. Sandler, J. Blitzer, P. P. Talukdar, and L. H. Ungar, “Regularized
learning with networks of features,” in Proceedings of the Annual
Conference on Neural Information Processing Systems, 2008, pp. 1401–
1408.

[24] S. Yang, L. Yuan, Y. Lai, X. Shen, P. Wonka, and J. Ye, “Feature
grouping and selection over an undirected graph,” in Proceedings of the
ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
2012, pp. 922–930.

[25] S. Kim and E. P. Xing, “Statistical estimation of correlated genome
associations to a quantitative trait network,” PLoS Genetics, vol. 5, no. 8,
p. e1000587, 2009.

[26] K. Jia, T. Chan, and Y. Ma, “Robust and practical face recognition
via structured sparsity,” in Proceedings of the European Conference on
Computer Vision, vol. 7575, 2012, pp. 331–344.

[27] Z. Li, Z. Cui, S. Wu, X. Zhang, and L. Wang, “Fi-GNN: Modeling
feature interactions via graph neural networks for CTR prediction,” in
Proceedings of the ACM International Conference on Information and
Knowledge Management, 2019, pp. 539–548.

[28] W. Chen, F. Feng, Q. Wang, X. He, C. Song, G. Ling, and Y. Zhang,
“CatGCN: Graph convolutional networks with categorical node fea-
tures,” IEEE Transactions on Knowledge and Data Engineering, vol. 35,
no. 4, pp. 3500–3511, 2023.

[29] S. Yun, Z. Guo-ying, and Y. Yong, “A road detection algorithm by boost-
ing using feature combination,” IEEE Intelligent Vehicles Symposium,
pp. 364–368, 2007.

[30] X. M. Zhou and T. S. Dillon, “A statistical-heuristic feature selection
criterion for decision tree induction,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 13, no. 8, pp. 834–841, 1991.

[31] F. Provost and T. Fawcett, Data Science for Business: What You Need
to Know about Data Mining and Data-Analytic Thinking. O’Reilly
Media, Inc., 2013.

[32] J. Weston, F. Ratle, H. Mobahi, and R. Collobert, “Deep learning
via semi-supervised embedding,” in Proceedings of the International
Conference on Machine Learning, 2008, pp. 1168–1175.

[33] B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online learning of
social representations,” in Proceedings of the ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, 2014, pp. 701–710.

[34] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “LINE:
Large-scale information network embedding,” in Proceedings of the
International Conference of World Wide Web, 2015, pp. 1067–1077.

[35] Z. Yang, W. W. Cohen, and R. Salakhutdinov, “Revisiting semi-
supervised learning with graph embeddings,” in Proceedings of the
International Conference on Machine Learning, 2016, pp. 40–48.

[36] C. Zhuang and Q. Ma, “Dual graph convolutional networks for graph-
based semi-supervised classification,” in Proceedings of the Web Con-
ference, 2018, pp. 499–508.

[37] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A
comprehensive survey on graph neural networks,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 32, no. 1, pp. 4–24,
2021.

[38] K. Sun, Z. Zhu, and Z. Lin, “AdaGCN: Adaboosting graph convolu-
tional networks into deep models,” in Proceedings of the International
Conference on Learning Representations, 2021, pp. 1–12.

[39] H. Zhu, F. Feng, X. He, X. Wang, Y. Li, K. Zheng, and Y. Zhang, “Bi-
linear graph neural network with neighbor interactions,” in Proceedings
of the International Joint Conference on Artificial Intelligence, 2020,
pp. 1452–1458.

[40] Z. Kang, H. Pan, S. C. H. Hoi, and Z. Xu, “Robust graph learning
from noisy data,” IEEE Transactions on Cybernetics, vol. 50, no. 5, pp.
1833–1843, 2020.

[41] X. Ai, C. Sun, Z. Zhang, and E. R. Hancock, “Two-level graph neural
network,” IEEE Transactions on Neural Networks and Learning Systems,
pp. 1–14, 2022.

[42] S. Guan, X. Jin, Y. Wang, and X. Cheng, “Link prediction on n-ary
relational data,” in Proceedings of the Web Conference, 2019, pp. 583–
593.

[43] W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proceedings of the Annual Conference on
Neural Information Processing Systems, 2017, pp. 1024–1034.

[44] Y. Chen, L. Wu, and M. J. Zaki, “Deep iterative and adaptive learning
for graph neural networks,” arXiv:1912.07832, 2019.

[45] A. Grover, A. Zweig, and S. Ermon, “Graphite: Iterative generative
modeling of graphs,” in Proceedings of the International Conference
on Machine Learning, vol. 97, 2019, pp. 2434–2444.

[46] J. Gan, R. Hu, Y. Mo, Z. Kang, L. Peng, Y. Zhu, and X. Zhu, “Multigraph
fusion for dynamic graph convolutional network,” IEEE Transactions on
Neural Networks and Learning Systems, pp. 1–12, 2022.

[47] L. Peng, R. Hu, F. Kong, J. Gan, Y. Mo, X. Shi, and X. Zhu, “Reverse
graph learning for graph neural network,” IEEE Transactions on Neural
Networks and Learning Systems, pp. 1–12, 2022.

[48] A. H. Sung and S. Mukkamala, “Identifying important features for
intrusion detection using support vector machines and neural networks,”
in Proceedings of the Symposium on Applications and the Internet, 2003,
pp. 209–217.

[49] J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang,
and H. Liu, “Feature selection: A data perspective,” ACM Computing
Surveys, vol. 50, no. 6, pp. 94:1–94:45, 2017.

[50] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification
and Regression Trees. Wadsworth, 1984.

[51] Z. Zhou, Ensemble Methods: Foundations and Algorithms. CRC press,
2012.

[52] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” The Annals of Statistics, vol. 29, no. 5, pp. 1189–1232, 2001.

[53] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1,
no. 1, pp. 81–106, 1986.

16

[54] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression:
a statistical view of boosting,” The Annals of Statistics, vol. 28, no. 2,
pp. 337–407, 2000.

[55] R. Bekkerman, M. Bilenko, and J. Langford, Scaling Up Machine
Learning: Parallel and Distributed Approaches. Cambridge University
Press, 2011.

[56] P. Li, C. J. C. Burges, and Q. Wu, “McRank: Learning to rank using
multiple classification and gradient boosting,” in Proceedings of the
Annual Conference on Neural Information Processing Systems, 2007,
pp. 897–904.

[57] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in
Proceedings of the ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, 2016, pp. 785–794.

[58] C. L. Giles, K. D. Bollacker, and S. Lawrence, “Citeseer: An automatic
citation indexing system,” in Proceedings of the ACM International
Conference on Digital Libraries, 1998, pp. 89–98.

[59] A. McCallum, K. Nigam, J. Rennie, and K. Seymore, “Automating
the construction of internet portals with machine learning,” Information
Retrieval, vol. 3, no. 2, pp. 127–163, 2000.

[60] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Gallagher, and T. Eliassi-
Rad, “Collective classification in network data,” AI Magazine, vol. 29,
no. 3, pp. 93–106, 2008.

[61] M. Defferrard, K. Benzi, P. Vandergheynst, and X. Bresson, “FMA: A
dataset for music analysis,” in Proceedings of the International Society
for Music Information Retrieval Conference, 2017, pp. 316–323.

[62] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[63] W. Hu, M. Fey, H. Ren, M. Nakata, Y. Dong, and J. Leskovec,
“OGB-LSC: A large-scale challenge for machine learning on graphs,”
arXiv:2103.09430, 2021.

[64] W. Jin, T. Derr, Y. Wang, Y. Ma, Z. Liu, and J. Tang, “Node similarity
preserving graph convolutional networks,” in Proceedings of the ACM
International Conference on Web Search and Data Mining, 2021, pp.
148–156.

[65] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proceedings of the International Conference on Learning Represen-
tations, 2015, pp. 1–15.

[66] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, 2001.

[67] X. Zhu, Z. Ghahramani, and J. D. Lafferty, “Semi-supervised learning
using gaussian fields and harmonic functions,” in Proceedings of the
International Conference on Machine Learning, 2003, pp. 912–919.

[68] M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regularization: A
geometric framework for learning from labeled and unlabeled examples,”
Journal of Machine Learning Research, vol. 7, no. 11, pp. 2399–2434,
2006.

[69] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” in Proceedings of the International Conference on
Learning Representations, 2019, pp. 1–17.

[70] F. Wu, A. H. S. Jr., T. Zhang, C. Fifty, T. Yu, and K. Q. Weinberger,
“Simplifying graph convolutional networks,” in Proceedings of the
International Conference on Machine Learning, 2019, pp. 6861–6871.

[71] W. Lin, Z. Gao, and B. Li, “Shoestring: Graph-based semi-supervised
classification with severely limited labeled data,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2020,
pp. 4173–4181.

[72] J. Klicpera, A. Bojchevski, and S. Günnemann, “Predict then propagate:
Graph neural networks meet personalized pagerank,” in Proceedings of
the International Conference on Learning Representations, 2019, pp.
1–15.

[73] X. Yang, C. Deng, Z. Dang, K. Wei, and J. Yan, “SelfSAGCN:
Self-supervised semantic alignment for graph convolution network,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2021, pp. 16 775–16 784.

[74] C. Liu, L. Wen, Z. Kang, G. Luo, and L. Tian, “Self-supervised
consensus representation learning for attributed graph,” in Proceedings
of the ACM International Conference on Multimedia, 2021, pp. 2654–
2662.

[75] R. Fang, L. Wen, Z. Kang, and J. Liu, “Structure-preserving graph
representation learning,” arXiv:2209.00793, 2022.

[76] K. Guo, K. Zhou, X. Hu, Y. Li, Y. Chang, and X. Wang, “Orthogonal
graph neural networks,” in Proceedings of the AAAI Conference on
Artificial Intelligence, 2022, pp. 3996–4004.

[77] L. Hu, S. Yang, X. Luo, and M. Zhou, “An algorithm of inductively
identifying clusters from attributed graphs,” IEEE Transactions on Big
Data, vol. 8, no. 2, pp. 523–534, 2022.

[78] X. Luo, H. Wu, Z. Wang, J. Wang, and D. Meng, “A novel approach
to large-scale dynamically weighted directed network representation,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 44, no. 12, pp. 9756–9773, 2022.

Zhaogeng Liu is currently pursuing his Ph.D. de-
gree in the School of Artificial Intelligence at Jilin
University, supervised by Prof. Yi Chang. His cur-
rent research interests include graph neural networks
and feature selection.

Jielong Yang received the Ph.D. degree in Elec-
trical and Electronic Engineering from Nanyang
Technological University, Singapore, in 2020. He is
currently an Assistant Professor in the School of
Artificial Intelligence at Jilin University, P. R. China.
He received the B.Eng. and M.Sc. degrees in Me-
chanical Engineering from Xi’an Jiaotong University
in 2012 and 2014, respectively. His research interests
include semi-supervised and unsupervised learning
with bayesian networks and graph neural networks.

Xionghu Zhong received the B.Eng. and M.Sc.
degrees from Northwestern Polytechnical University,
China, in 2003 and 2006, respectively, and the Ph.D.
degree from the Institute for Digital Communica-
tions, The University of Edinburgh, U.K., in 2010.
He was a Research Fellow with the School of
Computer Engineering and a Senior Research Fellow
with the School of Electrical and Electronic Engi-
neering, Nanyang Technological University, Singa-
pore. He was with Xylem Inc., as a Data Scientist
from 2017 to 2018. He is currently a Professor

with the College of Computer Science and Electronic Engineering, Hunan
University, China. His research interests include statistical signal processing,
target localization and tracking, and machine learning methods, and their
applications to distant speech enhancement and recognition, V2X commu-
nications, and water distribution network monitoring.

17

Wenwu Wang received the B.Sc. degree in 1997, the
M.E. degree in 2000, and the Ph.D. degree in 2002,
all from Harbin Engineering University, China. He
then worked in King’s College London, Cardiff Uni-
versity, Tao Group Ltd. (now Antix Labs Ltd.), and
Creative Labs, before joining University of Surrey,
UK, in May 2007, where he is currently a Professor
in Signal Processing and Machine Learning, and a
Co-Director of the Machine Audition Lab within the
Centre for Vision Speech and Signal Processing. He
is also an AI Fellow within the Surrey Institute for

People Centred Artificial Intelligence. His current research interests include
signal processing, machine learning and perception, artificial intelligence,
machine audition (listening), and statistical anomaly detection. He has (co)-
authored over 300 publications. His work has been funded by EPSRC,
EU, Dstl, MoD, DoD, Home Office, Royal Academy of Engineering, Na-
tional Physical Laboratory, BBC, and industry (including Samsung, Tencent,
Huawei, Atlas, Saab, and Kaon). He is a Senior Area Editor (2019-2023)
for IEEE Transactions on Signal Processing, an Associate Editor (2020-) for
IEEE/ACM Transactions on Audio Speech and Language Processing, and an
Associate Editor of Nature Scientific Report (2022-) and Senior Area Editor
of Digital Signal Processing (2021-).

Hechang Chen is currently an associate professor of
the School of Artificial Intelligence, Jilin University
(JLU), China. He received his Ph.D. degree from the
College of Computer Science and Technology, Jilin
University (JLU), in December 2018. He was en-
rolled in the University of Illinois at Chicago (UIC)
as a joint training Ph.D. student from November
2015 to December 2016 and enrolled in HongKong
Baptist University (HKBU) as a visiting student
from July 2017 to January 2018. He has published
more than 40 articles in international journals and

conferences, including IEEE TPAMI, TNNLS, KBS, EAAI, TKDD, IJCAI,
SIGIR, ICDE, WWW, EMNLP, WSDM, ICDM, etc. His current research
interests lie in the areas of machine learning, data mining, complex network
analysis, deep reinforcement learning, and knowledge graph. He has served as
a peer reviewer for several international journals and conferences, including
IEEE TKDE, IEEE TCYB, IoT, IEEE TITS, STOTEN, IEEE TKDD, IODP,
FCS, KDD, ICML, AAAI, IJCAI, WWW, WSDM, CIKM, ECML, KSEM,
etc.

Yi Chang is the dean of the School of Artificial
Intelligence, Jilin University (JLU). He became a
Senior Member (SM) of IEEE in 2010, a Chinese
National Distinguished Professor in 2017, and an
ACM Distinguished Scientist in 2018. Before join-
ing academia, he was a Technical Vice President
at Huawei Research America, in charge of knowl-
edge graph, question answering, and vertical search
projects. Before that, he was at Yahoo Labs/Research
from 2006 to 2016 as a research director and was
in charge of search relevance of Yahoo’s web search

engine and vertical search engines. His research interests include information
retrieval, data mining, machine learning, natural language processing, and
artificial intelligence. He is the author of two books and more than 100 papers
in top conferences or journals, and the associate editor of IEEE TKDE. He
won the Best Paper Award on ACM KDD’2016 and ACM WSDM’2016. He
served as one of the conference General Chairs for ACM WSDM’2018 and
ACM SIGIR’2020.

